Chapter 6

- Q1. What do you mean by soil-structure interaction?
- Q2. Explain various local site effects.
- Q3. Describe kinematic interaction and inertial interaction in relation with SSI.
- Q4. Analyze the frame shown in Figure 6.17 by performing soil-structure interaction analysis in ABAQUS by
 - Direct Method.
 - Sub-Structure Method.

The frame is supported by two isolated footings having properties as mentioned below.

1. Structural Configuration

3m		
	Figure: Frame to be a	3m ure interaction analysis. 3m
2.	Properties of	structure
	Size of Beams	= 300 mm x 300 mm
	Size of columns	= 300 mm x 300 mm
	Size of foundation	= 600 mm radius
3.	Material properties of structure	
	Density ρ_{st}	$= 2500.00 \ kg/m^3$
	Modulus of Elasticity E_{st}	$= 2500.00 \ N/m^2$
	Poisson's ratio μ_{st}	= 0.2
	Damping ξ_{st}	= 5.00 %
4.	Properties of Soil	
	Density ρ_s	$= 1750.00 \ kg/m^3$
	Shear Velocity v_s	$= 200.00 \ m/sec$

Figure: Input El-Centro Earthquake Time - history.

- 6. Problem Requirment
- = Find the time histories of relative acceleration and Rotational acceleration at the top floor of the given frame.