
                                            MODULE -I 

CHAPTER 1 - INTRODUCTION TO ELECTROCHEMICAL SYSTEMS 

LEARNING OBJECTIVES 

After reading this chapter, you will be able to identify 

(i)  the various facets of Electrochemistry 

(ii)  the interdisciplinary nature of Electrochemistry 

(iii)  the unique status of Electrochemistry 

(iv)  the importance of concepts of Electrochemistry in other fields 

The field of Electrochemistry has witnessed rapid progress during the past few 

decades, especially because of its growing importance in other engineering 

disciplines as well as all branches of science. It is hence no wonder that any 

modern text book on electrochemistry will hardly cater to everyone, irrespective of 

the branch of specialization. 

As Table 1 indicates, a text book covering all aspects of Electrochemistry is 

rendered almost impossible. Hence in this entire module, a few topics of Table 1 

will be discussed in detail and other topics will be mentioned in passing. 

Ionics 

The incorporation of interionic interactions in a solvent medium is customarily 

designated as ionics in Electrochemistry. The various sub-topics covered in the 

ionics are Debye - Huckel limiting law and extensions, Conductivity of electrolyte 

solutions and its applications. 

Thermodynamics of electrochemical systems 



The construction of electrochemical cells and applications of Nernst equation will 

be indicated with examples. The liquid junction potentials in concentration cells as 

well as Donnan membrane equilibrium will be analyzed.  

Electrodics 

The kinetics of electrochemical reactions encompasses the classical Butler Volmer 

equations and various special cases such as Ohm’s law and Tafel equations. These 

lead to a complete analysis of corrosion, electro deposition and electrochemical 

energy storage devices. 

Electroanalytical Chemistry 

The polarographic and amperometric techniques play a crucial role in recent 

developments of biosensors. These along with the differential pulse voltammetry 

will be discussed. 

Energy storage devices 

The relevance of ionics and electrodics as regards the study of batteries, fuel cells 

and supercapcitors will be indicated. A few common fuel cells will be discussed in 

detail. 

Steady state and transient electrochemical techniques 

There exist a variety of electrochemical experimental techniques and the choice of 

the technique depends upon the needs; however, a common feature underlying all 

the electrochemical experiments is that the desired relation involves two of the four 

variables viz current, potential, time, concentration. While the steady state 

experiments pertain to the system behavior as t →∞, the transient experiments 

provide the dynamical behavior. 



 

WORKED OUT EXAMPLES 

1. How does the information on inter – ionic interactions help in the 

construction of electrochemical cells? 

        In Nernst equation for cell reactions, the activities of the reactants and 

products occur    explicitly and hence their accurate values are required for 

estimating electrode potentials. 

 

2. What is the importance of Faraday’s laws in kinetics of electrochemical 

reactions? 

   Faraday’s law provides the maximum amount for a species that can be 

deposited or             dissolved for a chosen charge while a study of the kinetics 

of electrochemical reactions gives the actual amount and faradic efficiency of 

the process. 

3. Which electrochemical experiments can be employed for qualitative and 

quantitative analysis? 

Polarography was the first electroanalytical technique for qualitative and 

quantitative analysis of inorganic as well as organic compounds; subsequently 

several other techniques such as amperometry, different pulse voltammetry etc 

are being employed extensively during the past few decades. 

4. Distinguish between galvanic and electrolytic cells 

In Galvanic cells, chemical energy is converted into electrical energy. Batteries, 

fuel cells etc are examples of Galvanic cells. Several industrial electrochemical 



processes make use of electrolysis where electrical energy is used as an input to 

produce desired products. Kolbe synthesis, Hall – Heroult processes are two 

examples of industrially important electrochemical processes. 

 

EXERCISES 

1. Why do reference electrodes become un-avoidable in electrochemical 

measurements? 

2. Distinguish between metallic and electrolytic conductances. 

3. Which thermodynamic properties can be estimated from the experimental 

data on electrochemical cells? 

SUMMARY 

An overview of Electrochemical Science and Technology has been provided. The 

thermodynamics of electrolytes comprises analysis of ion-ion interactions in a 

dipolar solvent and Debye-Hückel theory provides a method of computing the 

activity coefficients. The construction of electrochemical cells leads to the 

prediction of the feasibility of chemical reactions. The study of electrode kinetics 

has been demonstrated to be important in various energy storage devices. Different 

types of electrochemical experiments have been indicated.  

 

CHAPTER 2 - THERMODYNAMICS OF ELECTROLYTE SOLUTIONS – 

ACTIVITY COEFFICENTS AND IONIC STRENGTHS 

 



LEARNING OBJECTIVES 

After reading this chapter, you will be able to  

(i)  comprehend the concept of activity coefficients and ionic strengths of 

electrolytes 

(ii)  estimate the mean ionic activity coefficients of electrolytes 

and 

(iii)  relate the mean ionic activity coefficients to individual ionic 

contributions 

MEAN IONIC ACTIVITES AND MEAN IONIC ACTIVITY 

COEFFICIENTS 

In the case of concentrated solutions, the properties of ionic species are affected on 

account of its interactions with other ions sterically and electrostatically. Hence the 

molar concentration is often an unsuitable parameter. Therefore, what is required is 

a parameter, related to the number density of ions, but which expresses more 

realistically the interactions between ions. This parameter is known as activity (ai) 

and is related to concentration by  i the simple relationship  ai =  i ci and  i  is 

known as the activity coefficient which has different forms depending upon the 

manner in which concentration is expressed viz  molarity (M) or molality (m) or 

mole fraction (x). The chemical potential of the electrolyte can be written in any 

of the following forms: 
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where the term within ‘ln’ is ai , the ionic activity. 

As is well known, any property of a specific type of ion cannot be experimentally 

measured. It is therefore only possible to employ activity or activity coefficient of 

an electrolyte which takes into account both anions and cations. 

The following notations are required 

          = mean ionic activity coefficient 

      a  = Mean ionic activity 

      m  =   Mean molality 

      m+  =    Molality of cations 

      m−  = Molality of anions 

       +  = Stoichiometric number of cations 

       − = Stoichiometric number of anions 

        =Total Stoichiometric number =  + −+  

 The mean ionic parameters are as follows 

v vv  + −

 + −=                                               (4) 

 

 



These equations indicate that ,a  
 and m

 are geometric means of the individual 

ionic quantities. 

In terms of the molality of the electrolyte, 

 

Hence the mean ionic molality m  is,  

 

 

We shall demonstrate how the above equations arise by considering the chemical 

potentials of the electrolytes. 

 Thermodynamics of Equilibria in electrolytes 

Consider the dissociation of a salt represented as  .M A viz + −  
 

( )0 ln
M

RT a  + + + += +                         (7) 

 

                      (8) 

 

If 2 is chemical potential of the undissociated electrolyte and 2
0 is its chemical 

potential in the standard state, 0

2 2 2ln . HenceRT a = +  

0 0 0

2    + + − −= +                                      (9) 

i.e. 

( ) ( )0 0 0

2 2 2ln ln lnRT a RT a RT a     + + + − − −= + + + = +  

( )0 ln
A

RT a  − − − −= +



or 
2ln ln lna a a + + − −= +                       

or 2a a a + −

+ −=                                          (10) 

The activity of the electrolyte a2 is given in terms of the individual ionic activities. 

If the stoichiometric number is represented as v, then  + −= + ; the activity of the 

electrolyte, ( ) ( ) ( )
2a a a a a

   + −+ −
+

+ −  =  = =
 
 , 

Thus, 

( )
11

2a a a a   + −

 + −= =                                      (11) 

The activity of each ion can be expressed in terms of its activity coefficient and 

molal concentration. For example, a+ = m+ + and a- = m- - 

 ( ) ( )2a m m
 

 + −

+ + − −= 
 

and ( )
1
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If ‘m’ is the molality of the electrolyte, then m+ = +m and m- = -m 
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since m+ = + m and m- =  - m .  In general, the mean concentration c  is 
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We rewrite the above equation for clarity:  

a m  =                                                           (16) 
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TABLE 1: Mean ionic activity and activity coefficients of various electrolytes 

 Electrolyte  a = (c  

) 

 NaCl (+-)1/2   c22 

 Na2SO4 (+
2-)1/3   4 c33 

 CaCl2 (+-
2)1/3   4 c33 

 LaCl3 (+-
3)1/4   27 c44 

 Al2(SO4)2 (+
2-

3)1/5   108 c55 

                  

Determination of Activity Coefficients 

A number of diverse experimental methods have been employed for estimating the 

activity coefficients of solutes (electrolytes) in a chosen solvent. Among them, the 

following methods deserve mention:  



1. depression of freezing point 

2. elevation of boiling point 

3. lowering of vapor pressure 

4. measuring cell potentials 

 

Fig 1: Schematic variation of log    with square root of the ionic strength for 

different electrolytes 

Fig 1 provides the dependence of the mean ionic activity coefficient on the ionic 

strength.  

The semi-quantitative interpretation of Fig 1 lies in the classical Debye – Hückel 

theory of electrolytes according to which log   in I  where I denotes the ionic 

strength.  

Thermodynamic interpretation of the activity  

The excess Gibbs free energy of a system is defined as 



GE(T,P,xi) = Gactual (T,P,xi ) - G ideal (T,P,xi) 

where the first term on the r.h.s is the actual Gibbs free energy while the second 

term denotes the Gibbs free energy of the ideal system. The excess chemical 

potential excess

i also follows from the above as 
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The excess chemical potential is indicative of the deviation from ideality. Hence 

excess

i can be written as  
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Ionic Strength: In this context, it is customary to define a quantity called ‘ionic 

strength’ as  
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where 
ic is the concentration of ions in the molar scale. The summation includes all 

the ions present in the electrolytes. This quantity was originally defined by Lewis 

and Randall in 1921 and has since been extensively employed in the theory of 

electrolyte solutions. Let one may think that the above equation applies to only 

strong electrolytes, we hasten to add that the concept of ionic strength holds good 



even for weak electrolytes such as acetic acid, formic acid etc. In the latter, we 

need to include the degree of dissociation while writing the molar concentrations.  

 

Temperature dependence of the ionic activity 

The chemical potential of a solute in the molality scale is 
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where 
mH  denotes the partial molar enthalpy 

Hence, 
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where mH  refer to the partial molar enthalpy in the standard state 

Table 2: Mean Ionic activity coefficient of HCl at different molalities 

Molality 

of HCl 

 

0.0005 0.98 

0.0904 0.01 

0.830 0.05 

0.757 0.5 

0.809 1.0 



 

we note from the Table that the activity coefficient tends to unity for very dilute 

solutions. 

TABLE 2: The dependence of the mean ionic activity coefficient on molality 

 

m 0.05 0.1 

KCl 0.815 0.769 

H2SO4 0.34 0.265 

CuSO4 0.21 0.16 

La(NO3)3 0.39 0.33 

In2(SO4)3 0.054 0.035 

Ca(NO3)2 0.54 0.48 

   

MgSO4 0.22 0.18 

 

 

 

TABLE 3: Ionic strengths of 1M salt solutions for different Mv+ Av- 

electrolytes 

 

Salt Type Ionic Strength 

NaCl 1:1 ½ (1+1) = 1 

K2SO4 1:2 ½ (4+2) = 3 

MgSO4 2:2 ½ (4+4) = 4 



K3PO4 1:3 ½ (9+3) = 6 

K4[Fe(CN)6] 1:4 ½ (16+4) = 10 

La 3(PO4)3 3:3 ½ (9+9) = 9 

 

WORKED OUT EXAMPLES 

1. Write the expressions for mean ionic activity for 1:1 and 1:2 electrolytes. 

 

(a) 1:1 Electrolyte  

+ = 1; - = 1  = 2 

( )
1

m m   + −

 + −=   = m  

or m = m 

( ) ( )( )a a m
      + −+ −

+

 + − = =   

or ( )
22a a m = =    

or a = m 

 

(b) 1:2 Electrolyte  

      + = 2; - = 1  = 3 

       ( )
1

m m   + −

 + −=   = 41/3 m  

       or m = 1.587 m 

     
( ) ( )( ) ( )

3 3 32 12 1 4a a m m   = =  =  

       ( )
1

34a m =  

2. Calculate (i) mean molality and (ii) ionic strength of 0.05 molar solution of 

Mg(NO3)2. 



     

( )+ -

1
v v

± + -

+ -

1
2 3

(i) m  = m +

      = +  = 3

       = 0.05 (2 .1)

       =0.0794

 

  
 

 2

i i

1 1
(ii) Ionic strength , I = c z  = 0.05×4×0.05×1 =0.125

2 2
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3.  Write the expressions for  ,
±m and 2a for a general + -v  : v electrolyte. 

        Mean ionic activity coefficient = ( )
1

v v v  + −

 + −=                      (18) 

             Mean molality  ( )+ -

1
v v v

± + -m  = m v v                                               (19) 

              Activity of the electrolyte 2

va a=                                              (17) 

 

4. What is the ionic strength of the solution containing 1 mol dm-3 H2SO4, 0.1 

mol dm-3 Al2(SO4)3 and 0.2 mol dm-3 K2SO4? 
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5. The mean ionic activity coefficient of 1 mol are H2SO4 is 0.265. Estimate the 

activity of H2SO4. 

     + -v v

2 + -a  = a a  



                 ( )+ -

1
v v v

± + -m  = m v v  

                       = 0.1(1 x 4)1/3  

                       = 0.1587 

                 a m   =                                                                            

                     = 0.265 x 0.1587                          

                     = 0.0420        

                ( )2

v
a a=  

                a2 = 0.0420 x (0.042)2 

                    = 7.42 x 10-5           

6. Write the activity coefficients  for (a) 1:1 (b) 3:1 (c) 3:2 electrolytes in terms 

of the individual ionic activities. 

             
( ) ( )

+ +

z+ z-

v v + -

2

For  A B = v A + v B

v v
a a a+ −

+ −=
 

                        Hence 

(a) 1:1 electrolytes: a2 = (a+) (a-) 

(b) 3:1 electrolytes : a2 = (a+) (a-)3 

(c) 3:2 electrolytes : a2 = (a+)2 (a-)3 

7. Write the general expression for the osmotic coefficient in the Debye – 

Hückel     

         approximation. 

     
D-H + -1 3A Z Z I− =  



         where  is the osmotic coefficient and 
D-HA  refers to the constant in the    

         Debye – Hückel limiting law.  

 

8. Estimate the ionic strength of a solution containing HCl (molarity 0.005) as 

well as CaCl2 (molarity 0.002) at 298 K. 

       ( )2 2 21
0.005 1 0.002 2 0.009 1

2
I =  +  +   = 0.011 molar 

9. Write the physical significance of the activity coefficients. 

The activity coefficient arises as the proportionality constant between ionic 

activity and concentration viz. 

a= 
molal

γ  m (molality scale, m in mol kg-1) 

a = 
molar

γ  M (molality scale, m in mol dm-3) 

If γ  →1 the activity and molality /molarity become identical.  

10. Calculate    an aqueous 1.0 m acetic acid a weak monobasic acid whose 

dissociation constant is 1.75 x 10-5. 
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H CH COO H CH COO
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CH COOH CH COOH CH COOH

a a m m
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          Since 
3

γCH COOH  can be assumed as unity and γ  1 can be assumed as unity. 
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          0.0042 =  



EXERCISES 

1. Calculate the mean molality of 0.2 m ( )2 4 3
Al SO .  

2. Estimate     for 0.001 M solution of 0

2 4 25Na SO at C. 

3.  Determine the approximate cationic and anionic activities for 0.1M CaCl2 at 

298K   

if 0.078 and 0.33 + −= =  

4. For 0.002 m   CaCl2 solution , 2+ -Ca Cl
calculate γ  and γ  

5. The mean ionic activity coefficient  
2 40.265 0.1 .for M H SO  =  Calculate the 

activity of 
2 4.H SO  

6. The solubility of TlBr in H2O at 025 C is   51.4 10 MX −  while the solubility is 2 x 

10-2 M in 0.1M KNO3. Calculate  . of TlBr. 

7. Calculate the activity of the electrolyte and the mean activity of the ions in 

0.1 molal solutions of (a) KCl; (b) H2SO4, (c) CuSO4 (d) La(NO3)3 and (e) 

In2(SO4)3 

8. Calculate the mean ionic molality, m in 0.05 molal solutions of Ca(NO3)3, 

NaOH and MgSO4. What is the ionic strength of each of the above solutions? 

9. Write the expression for activities of NaCl, CaCl2, CuSO4, LaCl in terms of 

molality. 

10. Calculate the ionic strength of 0.01 M acetic acid if the dissociation constant 

of the acid is 1.8 x 10-5. 

11. Write the expression for the chemical potential of a weak electrolyte. 

12. Write the expression for the activity of an ionic species in terms of the 

appropriate Gibbs free energies. 

SUMMARY  



    The estimation of activity coefficients and ionic strength for diverse types of 

electrolytes has been illustrated. The importance of the concept of activity 

coefficients has been pointed out. 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3: DEBYE – HÜCKEL THEORY AND ITS EXTENSIONS 

LEARNING OBJECTIVES 

After reading this chapter, you will be able to  

(i)  derive the Debye – Hückel limiting law for mean ionic activity coefficients 

(ii)  analyse the limitations of the Debye – Hückel theory    

and 

(iii)  calculate the activity coefficients for dilute electrolyte solutions 

The theory of electrolyte solutions has a chequered history in so far as it is 

considered as an ‘impossible’ problem to solve. The difficulties encountered in 



developing equilibrium theory of electrolyte solutions so as to compute 

thermodynamic quantities such as Gibbs free energy, enthalpy, entropy etc are 

many and among them, mention may be made of the following: (i) diverse 

columbic interactions (ion-ion, ion-dipole, dipole-dipole etc);(ii) specific short 

range interactions;(iii) influence of dielectric properties of the solvent and (iv) need 

to handle the system as a many body problem etc. 

In this context, the most illuminating analysis is provided by the Debye–Hückel 

theory which despite its simplicity has stood the test of time and has served as a 

touch stone for more improved modern versions. For this reason, an elaborate 

analysis of the Debye–Hückel limiting law is provided below. 

Assumptions 

(i) Solvent- treated as a dielectric continuum and no explicit incorporation of 

permanent and induced dipole moments 

(ii) Complete dissociation of ions at all concentrations 

(iii)Ions-assumed as point charges  

(iv)Validity of Boltzmann distribution for ions and thermal energy assumed to 

be much larger than electrostatic interaction of ions with the electric field.  

(v)The dielectric constant of the solution is assumed to be equal to that of the 

solvent and assumed to be independent of the electric field. 

     (vi)System is assumed to be spherically symmetric. 

Mathematical details 

Solving linearized version of the Poisson-Boltzmann equation assuming spherical 

symmetry 



Outcome 

Theoretical prediction of  

(i) Mean ionic activity coefficients 

(ii) Osmotic pressure and 

(iii) Thermodynamic quantities such as G, H and S. 

Limitations 

Valid only for dilute solutions up to 0.001 M; not applicable (i)if ion-pairs are 

formed (ii)for  higher concentrations and (iii) non 1:1 electrolytes at moderate 

concentrations. 

Derivation 

It is customary to start with the general Poisson equation given by 

( )
( )2

4 r
r





 = −           (1) 

 - mean electrostatic potential 

 – net charge density 

 - dielectric constant of the medium 

 If  equals zero, we obtain the Laplace equation.2 is known as the Laplacian 

operator and can be represented through various coordinate systems such as 

cylindrical, polar, spherical etc Although the system is electrically neutral, we are 

considering a region comprising unequal number of cations and anions which in 

turn gives rise to a net charge density and hence a non-zero electrostatic potential. 



Eqn (1) as given above pertains to the Gaussian units, since a factor of 4π appears. 

The representation of the Poisson equation in the SI unit is provided in the 

Appendix A. 

The total number of ions per unit volume is n = n+ + n- , the subscripts indicating 

the cations and anions. Assuming a spherical symmetry, wherein the distance from 

a chosen central ion ‘r’ is the only variable, equation (1) can be written as  

2

2

1 4
r

r r r

 



  
= − 

  
                                            (2) 

( )ze n n + −= −                                                          (3) 

where for the sake of brevity, the electrolyte is assumed to be z:z. Assuming  the 

classical Boltzmann distribution law,  

ze kTn ne −

+ =                                                             (4) 

ze kTn ne +

− =                                                              (5) 

Note that the exponential term has a sign opposite to the central ion. n+  denotes the 

number density of cations in a volume element dV  

Thus, the Poisson equation now becomes 

2 4 ze kT ze kTne e e 




−  = − −                                        (6) 

The above eqn is now more appropriately designated as the Poisson-Boltzmann 

equation. 

Linearising the exponential terms in the above eqn and assuming z=1 viz 1: 1 

electrolyte solution for algebraic simplicity,  



21 4
1 1

ze ze
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r r r kT kT

    
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2
28
D

ne

kT

 
 



 
= = 
 

  

where the new quantity D  is as follows:  

1
2 28

D

ne

kT






 
=  
 

 

and in anticipation, D  is designated as the inverse Debye length. 

2 2

2

1
D

d
r

r dr r


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 
=  

                                                  (8) 

Multiplying the above eqn  by ‘r’ everywhere, it follows that 

2 21
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r r
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By defining a new variable, 
r
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 
. Equivalently, 



2
2

2
0D

d

dr


 − =  

The above simple second order linear ordinary differential equation has the general 

solution as 

D Dr rAe Be  −= +                                                              (9) 

where A and B are arbitrary constants to be determined by the physical situation. If 

the distance between two ions tend to infinity, the potential should become zero 

and hence the arbitrary constant A should be zero. 

Since 
r


 = , 

DrBe

r




−

= .                                                                            (10) 

In order to identify the constant B, we expand Dr
e

− as .Thus, 

( )
(1 )DB r

r
r




−
= . For very dilute solution, 0 → and hence ( )

B
r

r
 → . In this case, 

the potential at r should be that due to the classical coulomb law  i.e  ( )
ze

r
r




→ . 

Hence 
ze

B


= consequently. 

( ) Drze
r e

r




−=                                                                           (11) 

The above is the central result of the Debye-Huckel theory since it gives the 

electrostatic potential as a function of the distance, in an electrolyte solution whose 

dielectric constant is . The parameter D , obviously has the dimension of the 

inverse length and on account of its origin in the Debye-Huckel formalism, it is 

called as the inverse Debye length. Since κD can also be considered as arising from 



an ionic cloud surrounding a central ion, 1/ κD is sometimes known as the thickness 

(or radius) of the ionic atmosphere. If D =0, i.e if the inverse Debye length 

becomes zero, the classical coulomb law is recovered. The concentration of the 

solution appears in  D    though the number density. We may once again linearize 

the exponential term of the above eqn in order to deduce some additional insights 

viz. 

If   

( ) Dzeze
r

r




 
= −                                                                        (12) 

ze

r
 → represents the potential due to the ion itself 

Dze
−




 → represents the potential arising from the presence of the ionic 

atmosphere and we rewrite it as atm. Eqn (12) is of little use since the potential  

cannot be evaluated experimentally although computer simulations enable the 

functional dependence of the electrostatic potential. One may also note that the 

equation (12) is valid only if 
Dr <1. 

On the other hand, the concept of the mean ionic activity coefficient is of immense 

use since it serves as a measure of the ionic interactions and is indicative of the 

deviations from ideal behaviour. Furthermore, thermodynamic properties of 

electrolyte solutions need to be estimated in order to know the validity of any 

theoretical treatment. For this purpose, we now deduce the expression for the mean 

ionic activity coefficient in the following manner: 

Electrical work = Wel  =   
0

( )

ze

atmd ze =   
0

( )

ze

Dze
d ze




− =    

( )
2

2

D ze


−                (13) 



The electrochemical potential of an i th ion may be written as  

lni i i elkT a W = + +                                                       (14) 

where ai is the ionic activity. Wel can also be considered as the excess chemical 

potential on account of deviations from ideal behaviour. Furthermore, the electrical 

work may also be written in terms of the ionic activity as   

lnel iW kT = +
2 2

2

i Dz e 


= −                                                (15) 

Hence  
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z e
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

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                                                              (16) 

The above eqn yields the individual ionic activity coefficient of an electrolyte 

solution. Specialising the above eqn for cations and anions separately, 

2 2

ln
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Dz e

kT


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
+

+ = −                                                               (17) 

2 2

ln
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
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
−

− = −                                                                (18) 

Unfortunately, the individual ionic activity coefficients are not obtainable 

experimentally and hence the above two equations are combined so as to deduce 

the mean ionic activity coefficient  defined as  

( )    + −

 + −=                                                                          (19) 

where + and - denote the stoichiometric numbers of the electrolyte. Further  = 

+ + -    

For an electrolyte such as CaCl2, + = 1 and - = 2. 



From eqns (17) and (18), 
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It is well known that for any electrolyte, +z+ = -z- 

Therefore, 
z
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2

D was defined as 
28 ne

kT




 

n = number of ions  per cm3 ; rewriting n in terms of molar concentration, 
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But the ionic strength of a solution is defined as 

21
I

2
i ic z=   

and 
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kT
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NA = Avogadro number; e denotes the electronic charge; I = Ionic strength;  ε 

denotes the dielectric constant of the solvent and  the factor 1000 in the 

denominator indicates that the concentration should be in moles per litre while 

calculating the ionic strength. As shown below, the mean ionic activity coefficient  

follows as  

10log 0.51 z z I  + −= − . 

The above equation is known as the Debye-Hückel limiting law in view of its 

validity to very dilute solutions. (concentration limit tending to zero).The inverse 

Debye length is directly proportional to the square root of the ionic strength of the 

solution. If we substitute various quantities in the above eqn, 

( ) ( )
2

19 23 -3
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D
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   
                    (24) 

In the above, the dielectric constant of water has been employed as 78.4 and T = 

300 K is assumed. 1 Joule equals one volt-coulomb. Since the inverse Debye 

length has a dimension of ‘length’, we make use of the well-known conversion 

factor 1 cm =1.113  10-12 F( Farad = Coulomb/Volt)thus yielding  

2
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Table 1: Debye Lengths (in nm) of various electrolytes at 298K 

 

c (mol.dm-3) 

Change type of the electrolyte 

1:1 1:2 2:2 1:3 2:3 

1 0.30 0.18 0.15 0.12 0.08 

10-1   0.96 0.56 0.48 0.39 0.25 

10-2 3.04 1.75 1.52 1.24 0.78 

10-3 9.61 5.55 4.80 3.92 2.48 

10-4 30.4 17.5 15.2 12.4 7.8 

10-5 96.1 55.5 48.0 39.2 24.8 

 

For numerical calculations, the above equation is especially convenient if the 

solvent is water and temperature is ~ 300 K. The concentration should be in moles 

per litre in calculating the ionic strength. Since the ionic strength 21
I

2
i ic z=  , the 

eqn for the mean ionic activity coefficient from the D-H limiting law is  

19 2

10 2 8

z z (1.609 10 C) I
log

2 2.303 78.3 4.14 10 3.04 10 cmVC


−

+ −

 − −

 
= −

      
              (26) 

10log 0.51 z z I  + −= −        (Debye-Hückel limiting law) 

 

The numerical value of 0.51 is designated as ‘A’ 
 

 

Improved versions of the Debye- Hückel limiting law 

 

10log A z z I  + −= −

 
Debye-Hückel limiting law 



10log
1

A z z I

Ba I
 + −



−
=

+
 

 

Debye-Hückel equation 
 

10log
1

A z z I
bI

Ba I
 + −



−
= +

+
 

 

Debye-Hückel extended 

equation 

 

where B and a are independent of number density but depend upon the temperature 

and dielectric constant. Table 2 indicates how A and B vary with temperature for 

aqueous electrolytes 

 

Table 2: Temperature dependence of A and B in the Debye - Hückel theory 

for aqueous solution 

T(K) ( )
-1

2A mol/kg  ( )
-1

•1
2   B mol/kg A

 
  

 

273 1.129 0.3245 

288 1.155 0.3269 

298 1.175 0.3284 

303 1.184 0.3292 

333 1.255 0.3343 

363 1.345 0.3400 

 

Although the Debye – Hückel theory of electrolyte solutions provides a 

satisfactory description for extremely dilute electrolyte solutions, it is entirely 

inadequate for (i) 1:1 electrolyte at concentrations at >10-3 M solutions and (iii) 

polyvalent electrolytes even at <10-3 M. There are several methods by which the 

limitations of the Debye – Hückel limiting law can be overcame, both empirically 



and rigorously. Among many excellent treatments, the most impressive version is 

the well – known Mean Spherical approximation (MSA). The final analysis of 

MSA is as follows: 

( )
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2 2
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i
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z e

kT
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− 
=

+
                                                            (27) 

where  is the ‘hard sphere’ diameter while  is the mean spherical approximation 

parameter and 
2

D→  for low concentrations. If the hard diameter sphere 0 →  

and
2

D→ , the above equation becomes 
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ln
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i D
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z e

kT




−
=  

which is the Debye – Hückel limiting law (eqn 16). The MSA and its other refined 

versions ensure that the theory of inter – ionic interactions of electrolyte solutions 

becomes valid for more concentrated solutions and for polyvalent electrolytes. 

Other solvents and other temperatures 

The numerical value A is                   

A=5.77057 x 104 (εT)-3/2    m3/2. mol-1/2  = 1.82481 x 106 (εT)-3/2   dm3/2.. mol-1/2 

and, for water at 25º C, 

           A=1.61039 x 10-2 m3/2. mol-1/2   = 0.50925 dm3/2..mol-1/2 

The numerical value B is 

B =1.5903 x 1010 (εT)-1/2    m1/2. mol-1/2  = 502.90 (εT)-1/2   dm3/2.. mol-1/2 . nm-1 

and, for water at 25º C, 

           B =1.0392 x 108 m1/2. mol-1/2    = 3.2864 dm3/2..mol-1/2. nm-1 



Fig 1 provides the variation of    with I for various electrolytes. It is of interest to 

note that for non 1:1 electrolyte there exists a minimum value of    and is 

indicative of ion association and reflects the failure of the Debye – Hückel limiting 

law 

 

Fig 1: Schematic variation of the mean ionic activity coefficient on molarity of 

the electrolyte at 298K 

 

Physical Significance of the Debye length 

The Debye length sometimes denoted as LD is 
1

D
 in the above notation and it 

plays a central role in condensed matter physics. The Debye length represents the 

characteristic length within which the influence of the electric field is felt ie. 

beyond LD, the electric field does not have any effect on the ionic distributions. 

 

Flow Chart for the Debye – Hückel theory of electrolyte solutions 



Distribution of ions in a solvent 

 

Computation of the mean electrostatic potential ( )r  

 Electrostatics + Statistical mechanics 

Formulation of the Poisson equation  

                                Potential vs charge density 

Boltzmann distribution of ions  

                                 Net number density 

Linearised Poisson – Boltzmann equation                           

                                Solution of the differential equations 

Debye potential ( ) Drze
r e

r

 −=                               Excess thermodynamic properties                          

                                                 Activity coefficient, Osmotic pressure   

                                                  Chemical potentials, Gibbs free energies                             

 

                                                                                    

The Debye – Hückel theory pertains to the primitive model of the electrolyte since 

the solvent is treated as a continuum while ions are considered as point charges. 

The next improvement is provided by Restricted primitive model wherein the ions 

are treated as hard sphere, with the solvent being a dielectric continuum. There are 

other hierarchical improvements in this context such as Hypernetted Chain (HNC), 

Generalized Mean Spherical Approximation etc. The net result is that the Debye 



length  
1

D
 is an involved function of the bulk concentration of the electrolyte as 

well as ion sizes. 

 

WORKED OUT EXAMPLES 

1. Calculate the radius of the ionic atmosphere in aqueous NaCl solution of 

concentration 10-3 mol L-1  

        
21

I
2

i ic z=  =   10-3 

       
-81 3.035×10

= cm
ID

= 9.59 10-7 cm 

 

2. Use the Debye-Hückel limiting law to evaluate  in 10-4 mol lit-1 of 2:2 

electrolytes  at 25 °C 

       
21

I
2

i ic z= = 4 41
10 4 10 4

2

− −    = 4  10-4  mol cm-3 

       10log 0.51 z z I  + −= −  

        4log 0.51 4 4 10 −

 = −               and   = 0.91  

 

3. Calculate the Debye length for 8.25  10-5 mol kg-1 solution of Al2(SO4)3. 

          

21

2
i iI c z=   

             = ( ) ( ) 2 25 51
2 8.25 10 3 3 8.25 10 2

2

− −  +    

             =  
5

5 18.25 10
18 12 15 8.25 10 mol kg m

2

−
− −
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            = 1.2375  10-3 mol kg m-1 = 1.2375 mol m-3 
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kT

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                 = 
2 -38 -3 23

12 21

1.60 10 2 (1.2375 10 ) 6.023 10
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                 =
21.60 2 1.2375 6.023

78 8.85 4.14
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 
 

             κD
2= 1.335  1019 met-2 

           1/κD = 2.736  10-10 met 

             

4.  A 50% ( )v
v

 aqueous ethanol (dielectric constant =68) contains 0.001 mol kg-1 

each in HBr and CaBr2. Find the mean activity coefficient ( )   of CaBr2 in this 

solution at 300K using the Debye - Hückel limiting law. 

             Debye - Hückel limiting law is 10log                              A z z I  + −= −  

            where A = 1.823 x 106  

                                  ( T)3/2 

            when   = 68, A= 1.823 x 106    at T = 300K  

                                        (68 x 300)3/2 

                    or A= 1.823 x 106    = 0.6256  

                               2.914x 106 

            2 2 2 2 21 1
0.001.1 0.001.1 0.001.2 0.002.1

2 2
i iI m z  = = + + +   

                          or  
1

0.001 0.001 0.004 0.002 0.004                        
2

I = + + + =  

           1/2

10log 0.6256 2 1 (0.004) 0.6256 2 0.06324  = −    = −    



                or 
10log   =  -0.07913 

                    0.8334  =                                                                                         

5.   Calculate the Debye length of the ionic atmosphere for 0.012 N LaCl3 in 

nitrobenzene (dielectric constant = 34.8) at 300 K. 

                             Debye length, 

1/2

10

2

1
2.81 10                         

D i i

T

c z





−
 

=    
 

 

     where ‘ ’ is the dielectric constant and ci is the concentration of the electrolyte  

in mL-1.   

      For LaCl3, c=0.012N = 0.004 M                                  

                = 34.8 and T = 300K 

( )3 3

2 2 2.i i La La Cl Cl
c z c z c z+ + − −= +  

 = 4 x 10-3. 32 + 3 x 4 x 10-3.12 

=36 x 10-3 + 12 x 10-3 = 48 x 10-3 = 0.048 

1/2

10

2

1/2

10 2

1 34.8 300
2.81 x 10  x         

4.8 10

34.8 3
      = 2.81 10 10

4.8
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−

−

 
 =  

 

 
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 

 

         
1

or 13.1
D
= Å                   

6.  The solubility product of CdSO4 is 9.2 x 10-11 M2. Calculate the mean activity 

coefficient of the Cd and 2-

4SO  ions in a solution containing 0.05 M each of KNO3 

in KCl, compare the solubility of CdSO4 in water. 



   The ionic strength of the solution containing KNO3 and KCl is 

   

2

2

10

1
0.1M

2

log γ 2 0.51 0.1 0.645

i i

i

I c z

A z z I + −

= =

= − = −   = −


 

    Hence γ
 = 0.226 

  K sp  is water = 9.2 x 10-11 M2. Hence the solubility is  

    s = K sp  = 9.6 x 10-6 M 

   If the solubility in the solution is s,  

   
( )

2 2

211 2

K =s γ

9.2 10 s 0.226

sp 

− =
 

   solubility = 54.25 10 M−  

   Thus the solubility increases in the salt solution. 

EXERCISES 

1. The ionic strength of 0.1 M lanthanum phosphate solution is -------------------

-------- 

2. The time taken for the formation of ionic atmosphere in the case of 1.0 M 

NaCl solution is nearly -------------------seconds. 

3. Which of the following has the largest thickness of the ionic atmosphere? 

      (A)1.0 M KCl;(B) 0.1 M KCl;(C)0.01M KCl and (D)1.5 M KCl 

4. Calculate (i) the activity of the electrolyte and (ii) the mean ionic activity, a 

of ions in 0.01 molal solutions of (a) Lanthanum nitrate and (b) Indium 



sulphate, using the Debye-Huckel limiting law for the mean ionic activity 

coefficients. 

5. Write the equation for the osmotic pressure of 1:1 electrolytes of 0.0001 M 

concentration under the Debye – Hückel approximation. 

6. Use the Debye – Hückel limiting law to estimate   in 10-6 M solution of 

ZnSO4. 

7. Write the expression for the mean electrostatic potential ( )ψ at a central ion 

on the basis of Debye–Hückel’s theory. 

8. Calculate the Debye length for 0.001 M solution of 2: 2 electrolytes in 

nitrobenzene at 25ºC. 

9. Consider the ions of charges Zi and zj immersed in a solvent of dielectric 

constant . The diameters are  and i j   respectively. Write the expression 

for the pairwise interaction iju for this system. 

10.  What is the mean distance between ions when their number density is 1 x 

1024  ions / cm3?   

SUMMARY 

The subtle features underlying the Debye–Hückel theory of electrolytes have been 

outlined. The limitations and merits of the Debye–Hückel theory they have been 

pointed out. Recent improvements of the Debye – Hückel theory have been 

indicated. 

Appendix A 

An important aspect wherein the SI and Gaussian units differ is the placement of 

the 4π’s in the governing equation. Units wherein the 4π’s have been eliminated 



from Maxwell’s equations are rationalized units; SI units are an example of 

rationalized units, since the 4π’s do not appear. Gaussian units are not rationalized 

and hence ‘4 π’ appears. 

1.  1 statvolt is (approximately) 300 Volts 

2. The conversion from SI to Gaussian units can be accomplished by replacing 

o1/4πε  by        Thus Poisson’s equation in SI and Gaussion units are as follows. 

                            2 2

r r

ρ 4
 = - (SI)                 =-      

ε ε


   (Gaussian) 

where  rε  is the relative permittivity (or dielectric constant) given by ε/ε    

In SI units, 2 -ρ
 =        

ε



  

In Gaussian units, we replace 4  by 1. Hence, 2 4
=-    

ε


  

3.   is the permittivity of vacuum. 

SUMMARY 

The assumptions underlying Debye Hückel theory are pointed out. Recent 

improvements pertaining to the theory of electrolyte solutions have been 

indicated. 


