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Lecture 1 Base Catalyzed Reactions I 

1.1 Principles 

The base catalyzed carbon-carbon bond formation is closely related to the carbon-carbon 

bond formation from organometallic reagents. In both methods, the negatively polarized 

carbon reacts with electrophilic carbon of carbonyl groups and related compounds.  

The scope of the base-catalyzed reactions depends on three facts: (i) a wide range of 

organic compounds is able to form carbanions, (ii) these carbanions undergo reaction 

with electrophilic carbon in a variety of environments, and (iii) the basicity of the reagent 

used to abstract the proton may be widely varied. 

1.2 Reactions of Enolates with Carbonyl Compounds 

1.2.1 Reactions with Aldehydes and Ketones 

1.2.1.1 Aldol Condensation 

The reaction has become one of the most important methods for carbon-carbon bond 

formation. It consists of the reaction between two molecules of aldehydes or ketones that 

may be same or different. One of the reactants is converted into a nucleophile by forming 

its enolate in the presence of base and the second acts as an electrophile (Scheme 1).   
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The geometry ((Z)- or (E)) of the enolate depends on the reaction conditions and the 

nature of the substituents. Strong base (e.g. LDA), low temperature and short reaction 

time lead to kinetic enolate, while weak base (e.g. hydroxide ion), high temperature and 

longer reaction time favour the formation of thermodynamic enolate (Scheme 2) 
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If the reactants are not the same, they can lead to the formation of diastereoisomers and 

their distribution depends on the reaction conditions and the nature of the substituents 

(Scheme 3).  
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Under thermodynamic control, the (Z)- and (E)-forms of the enolates are in rapid 

equilibrium, and the product distribution is determined by the relative stabilities of the 

six-membered chair-shaped cyclic transition states that includes the metal counter-ion 

(Scheme 4).  Transition sate that leads to the syn product has R in the less stable axial 

position, whereas in that leading to anti product both R and R’ are in the more stable 
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equatorial position. The latter is therefore of lower energy, leading to a major anti 

product.  
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In contrast, under kinetic control, the (Z) and (E) enolates are formed rapidly and 

irreversibly, and their relative amounts determine the product distribution (Scheme 5). 
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major product. But, the selectivity falls to 4:1 (syn:anti) when the size of the R is reduced 

from t-Bu to isopropyl. This is presumably because of the difference in steric repulsion of 

the methyl group with t-butyl and isopropyl groups. 

However, there is a general technique to increase the degree of diastereoselectivity.  The 

enolate can be converted into silyl enol ethers that can be separated by distillation. The 

separated silyl enol ethers can then be converted into pure (Z)- or (E)-enoate by treatment 

with fluoride ion (Scheme 6).  
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Asymmetric version of this reaction has also been well explored. For examples, chiral 

auxiliaries and chiral catalysts have been used as chiral source for asymmetric aldol 

reactions (Scheme 7). 
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1.2.1.2 The Reformatsky Reaction 

The enolate generated from an-bromo ester with zinc reacts with an aldehyde or ketone 

to give an aldol-type product in diethyl ether (Scheme 8). 
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1.2.1.3 The Perkin Reaction 

This process consists of the condensation of an acid anhydride with an aromatic aldehyde 

using carboxylate ion (Scheme 9). 
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1.2.1.4 The Stobbe Condensation 

The Stobbe condensation leads to attachment of three carbon chain to a ketonic carbon 

atom (Scheme 10). 
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1.2.1.5 The Darzen Reaction 

The base-catalyzed condensation between an-halo ester and an aldehyde or ketone 

affords glycidic ester (Scheme 11). 
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1.2.1.6 The Knoevenagel Reaction 

The condensation of methylene group bonded with two electron withdrawing groups with 

aldehydes or ketones using weak base is known as the Knoevenagel reaction (Scheme 

12). The reaction is more useful with aromatic than with aliphatic aldehydes.  
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Problems: 

What products would you expect from the following reactions? Provide mechanism.
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Text Books: 

R.O.C. Norman and C. M. Coxon, Principles of Organic Synthesis, CRC Press, New 

York, 2009.  

B. P. Mundy, M. G. Ellerd, F. G. Favaloro Jr, Name Reactions and Reagents in Organic 

Synthesis, Wiley Interscience, New Jersey, 2005. 

J. March, Advanced Organic Chemistry, 4
th

 ed, Wiley Interscience, Yew York, 1992. 
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Lecture 2 Base Catalyzed Reactions II 

1.2.2 Reactions with Esters and Analogues 

1.2.2.1 The Claisen Condensation 

The condensation of between esters is known as the Claisen condensation. It is important 

to note that an equivalent amount of base must be employed for this reaction (Scheme 1). 
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1.2.2.2 Dieckmann Condensation 

Condensation of the diesters of having C6 and C7 can be accomplished to afford five and 

six membered cyclic -ketoesters (Scheme 2).  The diesters of short-chain do not show 

cyclization, while diesters with C8 and C9 provide the cyclized products in fewer yields. 
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1.2.2.2 The Thorpe-Ziegler Reaction 

The cyclization of dinitriles using base can be accomplished (Scheme 3). Although it is 

similar to the Dieckmann reaction, the former is often better compared to the latter. 
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1.2.2.3 Enamines 

The reaction of secondary amine with aldehyde or ketone that contains an -hydrogen 

atom affords enamine (Scheme 4). The process is driven to right by removing the water 

as it is formed, either by azotropic distillation or with molecular sieves. 
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Similar to the enolates derived from ketones, enamines react with acid chlorides to give 

imine derivative that could be hydrolyzed to -diketones (Scheme 5).  
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In case of unsymmetrical ketones, less substituted enanime forms as a major product 

(Scheme 6). 
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Scheme 6 

1.3 The Alkylation of Enolates 

Enolates, like other nucleophiles, also undergo reaction with alkyl halides and sulfonates 

with the formation of carbon-carbon bonds. Depending on the reaction conditions and 

nature of the substrates, the reaction can occur either at oxygen atom or carbon atom of 

enolate (Scheme 7).  
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1.3.1 Alkylation of Monofunctional Compounds 

Depends on the reaction conditions (kinetic vs thermodynamic control), enolate can be 

selectively alkylated (Scheme 8).  
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Scheme 8 

Kinetic control with LDA: Proton abstraction takes place at less hindered -CH position 

and the reaction is faster and essentially irreversible.  

Thermodynamic control with
 t
BuOK:  equilibration takes place between the two enolates 

and the methyl-substituted one, being the more stable, is present in high concentration.   

However, when the highly substituted position is strongly sterically hindered, alkylation 

with 
t
BuOK occurs at the less sterically substituted carbon (Scheme 9). 
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1.3.2 Alkylation of Bifunctional Compounds 

A C-H bond adjacent to two electron withdrawing groups is more acidic than that 

adjacent to one electron withdrawing group and the alkylation could be carried out in 

milder conditions (Scheme 10).  
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Scheme 10 

1.4 Addition of Enolates to Activated Alkenes 

Enolates undergo addition to alkenes that are activated by conjugation to carbonyl, ester, 

nitro and nitril groups (Scheme 11). These reactions are usually referred to as Michael 

addition. 
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1.5.1 Reactions Involving Alkynes 

Acetylene and its monosubstituted derivatives are more acidic than alkenes and alkanes 

and take part in reactions with both carbonyl-containing compounds and alkyl halides in 

the presence of base (Scheme 12). 
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Application 
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Scheme 12 

1.5.2 Reactions of Cyanides with Alkyl Halides and   Sulfonates 

HCN, like acetylene, is a weak acid whose anion may be generated by base and is 

reactive towards primary and secondary alkyl halides and sulfonates to give the 

corresponding nitriles. It is more convenient to introduce the cyanide as cyanide ion (e.g. 

NaCN, TMSCN) rather than as HCN. These reactions provide a way of extending 

aliphatic carbon chains by one carbon atom. Scheme 13 summarizes some of the useful 

transformations. 
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Mechanism for Stephen Aldehyde Synthesis (Stephen Reduction) 
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Scheme 13 

1.2.2.5.2.2 Reactions of Cyanides with Carbonyl Compounds 

Cyanide ion adds to aldehydes and ketones to give cyanohydrins that can be hydrolyzed 

to-hydroxy acids (Scheme 14).  
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Scheme 14 

Asymmetric version of the process is also well explored. For example, chiral main chain 

polymer having Ti(VI) has been found to be an effective recyclable catalyst to obtain the 

cyanohydrin with up to 88% ee (Scheme 15). 
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Scheme 15 

Imine that can be prepared from amine and aldehyde readily undergoes reaction with 

cyanide ion to give -amino nitrile which can be hydrolyzed to amino acid (Strecker 

synthesis) (Scheme 16). 
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Mechanism 
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M. S. Iyer, K. M. Gigstad, N. D. Namdev, M. Lipton, J. Am. Chem. Soc. 1996, 118, 4910.

Problems: 

A.  How would you use base-catalyzed reactions in the synthesis of the following compounds?
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MeO

O
Me

S

OEtO2C

O
NC

OMe

B. Rationalize the following reactions.

 

Text Books: 

R.O.C. Norman and C. M. Coxon, Principles of Organic Synthesis, CRC Press, New 

York, 2009.  

B. P. Mundy, M. G. Ellerd, F. G. Favaloro Jr, Name Reactions and Reagents in Organic 

Synthesis, Wiley Interscience, New Jersey, 2005. 

J. March, Advanced Organic Chemistry, 4
th

 ed, Wiley Interscience, Yew York, 1992. 

 

 

 

 

 


