Solutions

7 Vector and tensor analysis:

1.
2.

3.

(a)

The easiest way to solve this problem is the following. Consider
the vector:

Ai = €10;010 (16)

Since €ijk = —€ikj,
—A; = €i1;0;0p ¢ = €1;0,0; ¢ (17)

since the derivatives can be interchanged. But the second term on
the right side is also equal to A;, since the j and k are summed
over. Therefore, we get an equation of the form A; = —A;, imply-
ing that A; = 0.

The physical interpretation is that V¢ is in the direction L to
lines of constant ¢. However, V x V¢ involves derivatives in the
plane | to V¢, which is tangent to surfaces of constant ¢, so these
derivatives are zero.

First prove that €;x€xim = 0i10jm — OimOji. Since €;x€xm, is a real
vector, and it is isotropic, it has to be of the form:

€ijk€kim = A0iy0jm + Béimbj + C0ij0im, (18)

Multiplying by 0;10;m, dimd;i and 0;;0,,; respectively, we get the
following equations:

Eijkeki]’ = A5”5” + B(SU(SU + 051](5”
—6=9A4+3B+ 3C
Gijkekji = A(SZ](SZ] + 3522(5]3 + 061352]
— —6=3A+9B+3C
€iik€ri = Adji01 + BjmOim + Cidy
—0=3A+43B+9C

(19)
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The solutions to these equations are A =1, B = —1 and C' = 0,
and hence we obtain the above identity.

This can be easily used to prove:

VxVxu = eijkeklmajalum
= (5¢z5jm - 6im5jl)ajalum
= 8i8juj - 8]2%
=V(V-u) — Vu

(20)

If B = S;;A;;, (Bisascalar), then we find that B = —Sj;A;; (since
Sij = Sj; and A;; = —A;;). But since ¢ and j are summed over, it
is also true that B = Sj;Aj;. Therefore, B = —B, implying that
B=0.

The antisymmetric tensor A;; has only three independent compo-
nents (since the diagonal terms are zero), and therefore they can
be expressed in terms of the three components of a vector wy. The
only stipulation is that A;; = —A;;, and this is satisfied if:

Aij = €ijrwr — Aji = €jipwr = — Ay (21)

The product €;;, A is given by:

EijkAjk = €ijkEjkIWI
= (0udj; — 0301 )wi (22)
= 2&)2'
Fij / dV f(?”) ’I“Z"I“j (23)
1%

First note that the only vector F;; can depend on is a;. So Fj; has to
be a product of a;, d;; and €;;,. The only permissible combination of
these is:

Ej = A(SZ] + Baiaj (24)

For evaluating A and B, we need two equations. The first of these can
be obtained using:
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where the integral [ is:

L :/V;rﬂ/f(?“)r2

= do " sin (6)df 1 drr*f(r) (26)

$=0 0=0 L =0
=27 (1 — cos (90))/ dr f(r)rt
0
The second equation is obtained from:
CLZ‘CLJ‘.FZ'J‘ =A + B = IQ (27)

where the integral I is:

I = [ av jo)a)

= [ dV f(r)r*cos (h)
V27r 0o 1 (28)
= do cos (A)* sin (9)df drrif(r)
¢=0 6=0 1 r=0
— (27/3)(1 — cos (6y)°) /O drrt f(r)
The constants A and B are then given by:
A= (L - 1,)/2 (29)
B = (3/2) — (11/2) (30)

For a sphere, we would expect the result to be an isotropic tensor, and
therefore B = 0. Since cos (6y) = —1 for a sphere, we find that:

L= 47r/01 dr £(r) (31)
1
I, = (47 /3) /O dr v f(r) (32)
Using this, we get: e
A= g/o drr f(r) (33)
B=0 (34)
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d.

6.

The integral I;; is:

[ij :/dSaibj&kblxka:l
S

(35)
= A(SU + B&i&j + Cblb] + D&ibj + E&jbi

Multiplying the above equation by ¢;;, a;a; and b;b; we get the following
simultaneous equations for A, B and C:

3JA+B+C=0
A+B=0
A+C=0

These three can be solved to give A = 0, B = 0 and C' = 0. Multiplying
1 by a;b; we get:
E=0

Multiplying 1 by a;b; we get:
D= &?b?/ ds&kbl$k$l
s

In order to calculate this integral, take a and b along the x; and x5
directions. Then the equation becomes:

D= /027r do /07r sin (6)d6|cos () cos (¢) cos (#) sin (¢)]

It can easily be verified that the right side of the above equation is
identically zero.

(a) Since we know that the unit vectors e; and e, are in the directions
of V& and Vn respectively, it is necessary to find these vectors.
It is not possible to invert the expressions to determine & and 7
in terms of x and y, but we can find the expressions for the unit
vectors directly. The unit vectors in the x and y directions are
given by:

Vi =e, = (VE)sinh (£)cos (n) — (Vn) cosh (¢) sin (1)

Vy = e, = (V€) cosh (&) sin (n) + (V) sinh (€) cos () 0
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(b)
(c)

The above simultaneous equations can be solved to determine V¢
and Vn:

Ve = sinh (§) cos (1)e, + cosh (£) sin (n)e,
[sinh (£) cos (n)]? + [cosh (£) sin (n)]? (37)
V= cosh () sin (n)e, + sinh (&) cos (n)e,
[sinh (§) cos (n)]? + [cosh (§) sin (1)]?

The magnitude of the gradients V& and V7 are:

V€| = V| = {[sinh (€) cos (1)} + [cosh (€) sin (1)]*}* (38

and therefore the unit vectors e¢ and e, are:

o — sinh (§) cos (n)e, + cosh (£) sin (n)e,
sinh (&) cos cosh (&) sin
. {[_ cos(h %g) si gl ()7]7)ex [—i- Sln}(l () Ee (57]()7]7)
" {[sinh (&) cos (n)]2 + [cosh (&) sin (n)]? }1/2

From the above equation, it can easily be verified that e¢-e, = 0,
indicating that the coordinate system is an orthogonal one.

7 (39)

The expressions for he and h, can be derived using:
dx = dze, + dye, (40)
From equation 1, dz and dy are given by:

dx = sinh (&) cos (n)d& — cosh (§) sin (n)dn (41)
dy = cosh (&) sin (n)d§ + sinh () cos (n)dn

In addition, the equation for e, and e, are given in terms of e
and e, in la. Using these and after some algebraic simplification,
we get the following expression for dx:

dx = {[sinh (¢) cos (n)]*+ [cosh (£) sin (n)]2}1/2{d§e5+d7]en} (42)
Therefore, we find that

he = hy = {[sinh (¢) cos ()] + [cosh (¢) sin ()]*}/? (43)
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The Laplacian in an orthogonal coordinate system in two dimensions,
using the extension of the formula derived in class is:

b L [0 (lwdo) 0 (loo
Vo= hihs layl <h1 @Zh) * 2 <h2 8@/2)] (44)
Using this formula, we find that:
2, 1 P¢  0%¢
Ve = [sinh (§) cos (n)]? + [cosh (§) sin (n)]? <8§2 * 8772> (49)

. The definition of V3¢ is V:(V¢) where V¢ is:

1 0¢ 1 0¢ 1 0¢
Vop=e———t+ep——— teg———
¢ 1h1 oy 2h2 2 3h3 ys3

Using the equation for the divergence of a vector derived in class,

V-(V) = 1 [8 <h2h3@>+ 0 <h3h1%>+ 0 <h1h2@>1

(46)

B hihahs 3—91 hy ayl 8—92 ha 392 3—93 hs 593
(47)
Kinematics
. The velocity field is,
%+ y2
v, =V <1 - (48)

Therefore, the rate of deformation tensor is given by
0 0 0
Vv = 0 0 0 (49)
(—2z/R) (=2y/R) 0

The isotropic part of this rate of deformation field is zero, while the
symmetric and anti-symmetric parts are,

0 0 (—z/R)
S( 0 0 <y/R>) (50)
(—z/R) (~y/R) 0
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0 0  (z/R)
A( 0 0 (W@) (51)
(~¢/R) (~y/R) 0

3. The velocity field is given by vy = (£2/r). In cylindrical co-ordinates,
it can easily be seen that the rate of deformation tensor is,

B (Ov,./Or) (Ovg/Or)
VV‘((l/rxavr/ae)—(va/r) (UT/T)JF(l/T)(aUe/aQ)) (52)

w=( o %) o

The stress tensor is symmetric in this co-ordinate system, and the curl
of the velocity is zero. The velocities in a Cartesian co-ordinate system
are,

Q

vy, = —vp sin (0) = —Wny (54)
Qzx

v, = vgcos (0) = R (55)

The rate of deformation tensor in a Cartesian co-ordinate system is

_( @Qay)/@ P QA — o)/ (@ )
v = (a2 L ool 1ot ) 69

The stress tensor is symmetric. The vorticity can be verified to be zero
in both the Cartesian and cylindrical co-ordinates.

Conservation equations:

D = 2usysji — (2/3)uspy,
= 2,[1,(8%1 + 8%2 + S§3 + 2812821 + 2813831 + 2823832)
—(2/3) (83, + S5 + S35 + 2511820 + 2511833 + 2522533)
= 2u(sty + Sis + 553) + (20/3)((s11 — $22)° 4 (522 — 533)° + (s11 — 5497)
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10 Viscous flows:

1. (a) The problem can be taken as the superposition of two problems —
one with the force of gravity parallel to the line joining the sphere’s
centeres, and the other with the force of gravity perpendicular to
the line joining the centers. It is clear from reversibility that if
two spheres separated when they fell, they would come together
when the direction of gravity is reversed. This violates symmetry,
so the two spheres can neither come together not separate from
each other, and therefore the distance between their line of centers
remains a constant.

(b) When F,, the force due to gravity, is to p, U = Ujg;. When F,
is 1 to p, then U = %U”gi. In the general case where F is at an
angle to p, then the components in the || and L directions are:

Fy=Fycos(f) F,. = F,sin(0) (58)

This induces a velocity Ujcos(f) parallel to p and a velocity
%U | sin (@) perpendicular to p. Therefore, the velocity in the ver-
tical direction is given by:

U, = (Ujcos(f))cos(0) + (%U” sin (0)) sin (6)

59
— 10,1+ cos () %9)

The velocity in the horizontal direction is:
Up = (Ujcos(6))sin (0) — (30} sin (6)) cos (6) (60)

- %U” cos (#) sin ()

2.

3. It is convenient to separate the fluid velocity u; = Gj;z; + u}, where
u; — 0 for r — oo. The velocity u, is obtained by solving the equation:

uViu,=Vp Vip=0 (61)
The solution of this is given by:

w, = ugy, + (1/2p)x;p (62)
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where u}, is the solution of the homogeneous equation V2u}, = 0.

The velocity w, and the pressure p can depend only on the tensor Gj;,
and so the possible solutions are:

p = 2uMGji <ﬁ -3 ) (63)
i, = QTJJCJ Wen < xrf]xk 30y + ;;;x + kx])> (64)

The equation for the pressure is inserted into 2, and we can simplify
the above expressions by noting that G, = 0:

G r2 7 o

(65)
One of the constants in the above equation can be determined from the
equation of continuity:

T r
+uciy (54 - 20
r r 67)
+ /\3ij T — 9
3(0:50ik + 0i0ij)  15(xiw0ip + T;210;5)
a 7> + r? =0

The above equation can be simplified using the conditions that G;; = 0

and x;x; = .
ZiZj

r
In addition, the center of the particle is at the origin and is stationary,

so we have the condition:

uw=0atr=a (69)
This gives us:
—37,%; 15z, 6
MG <%> + A3Gi (% - %) + Gz, =0 (70)
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The above equation can be easily solved to give:
M =" A3=— (71)

Inserting these into the expression for the velocity 5, the final expression
for the velocity is:

5adrx;xpG i 5a’xivjxy,  a® (20 + Tx0;j)
= e e
5ua’G gy
pP= —————
r
(72)
The stress acting on the particle is given by:
ou; Ou
Ty = —pdy + + 73
| = —poi u(axl 8:@) (73)
At the surface of the particle, (Qu;/0z;) is:
ouy; 5 25
axl = Gil — 2—a2ij((5il$jl’k + (SﬂIL’Z’[L’k + 5kllL’i.Tj) + 2—&4ij($¢1’]’1’ka)
35
+ ?ij(éilzjzk + 6jl$ixk + 6klxixj) - @xixjxklejk
5
— 5(5jl5z‘k + 0110i5 )G i + ﬁij(Ijﬂﬁz@k + 2 710:5)
-5
= ﬁxixjxklejk + EGikxkxl
(74)
Using the above relation, the stress is:
5 10
Ty = &_g(éilxjxk + 0ijxpx; + djwxk)Gin) — &—f(xixjxklejk) (75)
The product T;n;z,, is given by:
Tynz, = z'zflfmﬂ
5 10
= —/;(2xixjxkxm + (L-jxkxfxm)ij - a—f(ajixjxkx?a:m)ij
= &—/;Gikxkﬂfm
(76)
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4.

The integral of this over the surface of a aphere is:

o 4 4
/AdA gGikkuBm = 5uGim (g?TCL ) (77)

(a) At low Reynolds number, the velocity can be separated into a

homogeneous and a particular solution:
Ui = Up; + Up; (78)
The homogeneous solution is obtained from the equation:
Fup; =0 (79)
while the particular solution can be expressed as a function of the

pressure:
1

2

where the pressure is obtained by solving:

pT; (80)

upi =

Pp=0 (81)

Note that the angular velocity vector €2 is a pseudo vector, while u;
and p are real vectors. Since 2 is the only vector in the system, u;
and p are linear functions of 2. However, there is no way to make
a real scalar p from ¢;;, €;;;, and the pseudo vector €2;. Therefore,

p=0 (82)

Therefore, the particular solution for the velocity is also zero. The
general solution for the velocity has to be of the form:

r r3

(83)

U;

The only way to make a real vector u; which decays as r — oo
and is linear in €2, is:
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where A is a constant. Note that the incompressibility condition
is automatically satisfied by the above equation:

ik 3%‘%) 0

@ui = )\eiijj (F — 7“5 (85)
The constant A can be determined from the boundary condition
that at r = a, u; = €;;8;25. This gives A = a?, and therefore the
solution for the velocity is:

u; = eiijjxka?’/T?’ (86)
The force per unit area on the surface is f; = Tyn;. Since the
pressure is zero, the stress tensor Tj is given by:
The strain rate is:
0 3r,T
@ui = Giijj&:g i; — ]; !
r r
(88)
a o 0 3 5zk SI'ZZEk
iUl = €L F - 5
Therefore, the force f; is given by:
x
i =Ty—
r
. 3 ey (Skl.Tl 3$k$l$l
R Lt N RV S (89)

% 3%, XLT
3 ikl Lk
+€1ijJCL < ’1“4 7“5

The fourth term on the right side of the above equation contains
x x x = 0. Further, it can be easily verified that the first and
third terms cancel, and so the force is given by:

B —3,ua3eijk.ijk.

fi= (90)

rd

The torque on the sphere is:

L, :/dAemma:j(—Su/a)eiijjxk
= emmeiijk(—?;u/a)/dAxnxk
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In order to calculate the integral in the above equation, use direc-
tional symmetries:

/ dAr? = 3 (92)

Arat

3

A:

Therefore, we get

Ly, = Emineiijj(_47TMa3)

3 (93)
= —8mpa’Q,

5. Consider a cylindrical coordinate system with the origin located at the
wall perpendicular to the center of the disk. It is appropriate to non -
dimensionalise the length, time and velocity scales as follows:

z* r* u; ure ; t*eU
z = — = — U, = — u, = =
ae a U 7 U a
where the variables with the superscript * are dimensional, while those
without the superscript are dimensional. The scaling for u,. in the above
equation was determined from the mass conservation equation:

1 0(r ;) N ou’
r*  Or* 0z

(94)

=0 (95)

With the above scaling, the momentum equations in the r direction is:

Re [ 0u, ou, ou, a Op* 10%u, 1190 ou, 1u?
= tupp bl = o+ - S

e\ "9 0z U or T\ e 022 " eror "or er
(96)
In the leading approximation, this equation reduces to:
82 ., 3 On*
Y S8 4 O(Ree) + O(e) (97)

022 ,u—U or

From this equation, it is appropriate to scale p* by (uU/ae®), and the
leading order equation is:
O®u,  Op
022 Or

(98)
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The momentum conservation equation in the z direction is:

Re <8uz ou,, auz> 10p 10%u, 10 < auz> U,

e \ Ot L or S 92 ) " eloz @02 ror\ or r2
(99)
In the limit € — 0, this equation is:
dp 2 3
P 0+ O(€*) + O(e’Re) (100)
z
The boundary conditions are:
u=0 u,=0 at z=0 (101)

U =0 u,=-1 at z=1

Equation 7 for the pressure field implies that p is only a function of 7
(p = p(r)). Using this information, equation 5 for the radial velocity

can be solved:
10p

ur = 5o —(2* = 2)
This solution satisfies the boundary condition 8u,=0atz=0and

z = 1. The value of the pressure gradient can be obtained by examining
the continuity equation:

(102)

Ou,  10(ru,)
oz  r Or (103)

Integrating this between z = 0 and 1, we get

uZ’z 0— _/ dz—
Y N Z__Z_ A
Coroor 0r 6 4) (104)

4 Lt1o( dp
127 0r T@T

The above equation for the pressure can be solved to obtain:

p=—3r+Cylog (r) + Cy (105)
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6.

The constant (' is zero because the pressure has to be finite at r = 0,
while Cy = 3 because p = 0 at » = 1. Therefore, the pressure and
velocity are:

p=31-7%) u, =3r(z—2%) wu, =(22°—32?) (106)

The force on the disk per unit area is:

. ou’
f.=-—n.Tyn, =p" — 2;1% (107)

There is a negative term in the above equation because the unit normal
to the disk is in the —z direction. The second term on the right side of
the above equation can be neglected, because it is O(€*) smaller than
the first term. Therefore, the force per unit area is:

_ U

fo =301 - r?) (108)
The total force is determined by integrating the force over the area of
the disk: -
Eo=[an [ (“—Z (1— 7"2))
B —037T,uaU0 . ! (109)
263

(a) It is appropriate to choose a two dimensional Cartesian coordinate
system with the origin on the channel wall. The equation for the
surface of the cylinder is:

(2% — 3)* + 27" = o’ (110)

where * is used to denote dimensional quantities, and z%, = a(1+¢€)
is the position of the center of the cylinder. The above equation

can be reduced to:
xy =a(l+¢€) —/a® + z}? (111)

The coordinate z3 is scaled by ea, and the coordinate z% by €'/2a
to obtain the following equation for the surface:
2

xng(xl):1+%+... (112)
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The Navier - Stokes mass and momentum equations are:
Hui + dyuy =0 (113)
p(Ofuy +uiOruy + uzdhuy) = —0yp" + p(9y + 85%)uy - (114)
p(Ofus + uidiuy + uzdhuy) = —05p” + p(0y° + 05%)uy  (115)
Scaling the velocity u! by U, the velocity uj by €/2U and the
pressure by (uU/e3/%a?), the dimensionless equations are:
O1uy + Orug =0 (116)

(pUae®? | 11)(0; 4+ u10y + usdo)uy = —0yp + (02 + €d?)uy  (117)
(pUaeS/Q)(at + Ulal -+ u282)u2 = —82]) + 6(83 -+ 68%)@62 (118)

The inertial terms in the above equations can be neglected for
(pUae®? /1) < 1.

The boundary conditions required for solving the above problem
are:
up =0 at z9 =10
U9 = 0 at To = 0
Uy = 1 at To = H(ZEl)
U9 = 0 at To = H(ZEl)

In addition, there should also be no net flow of fluid across any
surface, so:

(119)

/0 " s s = 0 (120)
The Stokes equations are:
O1uy + Orug =0 (121)
—01p + Oquy =0 (122)
—Ohp =0 (123)

The two momentum equations can be easily solved along with the
boundary conditions and the zero net flux condition to obtain:

312 2z
= | —= - — 124
“ <H2 H ) (124)

6
op = 2 (125)
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11 Potential flow:

1. The equation for the potential for a cylinder moving with a constant
velocity U; is:

Uiz
¢=A=3 (126)
and the fluid velocity is

The constant A can be determined from the condition that u;,n; = U;n;
at the surface of the cylinder r = a:

S 272 oy
AU, (ﬁ - Wﬂ) _ Ui (128)

a’d ab a

This can be solved to obtain A = —(1/a?). Therefore, the equation for
the potential is:

Uixioﬂ
I (129)
The pressure field is given by:
d¢ pu;
=po— p— — pUiu; — — 130
p=po—pgr — Pl — = (130)

The first, third and fourth terms in the above equation do not con-
tribute to the net force on the cylinder, and the only contribution is
from the second term which is given by:

F, = /dApni (131)
The force along the direction of flow is:
F / d ACL x; x]

LAWY

Therefore, the added mass of the cylinder is equal to the mass of fluid
displaced by it.

(132)
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2. The equation for the stream function in the presence of a source at
(—d/2) and a sink at (d/2) and a uniform flow in the z direction is:
m@l —m92
v= 27 + 2T
where 6, is the angle subtended at the source and 6, is the angle sub-

tended at the sink. The angles 6; and 05 can be related to 6 and r as
follows:

+ Ursin (6) (133)

rsin (6) rsin (6)
(d/2) 4 rcos (0) rcos (60) — (d/2)

These can be inserted into the above equation, and we can set ¢ = 0
to obtain the equation for the surface of the body:

o ()~ (et e 7m) |+ @ =0

tan (0;) = tan (6;) = (134)

(135)
In the limit d — 0, the angles 6; and 6, are given by:
6, — 0 dsin (6) 6, — 0+ dsin (0) (136)
2r 2r
Therefore, the equation for the streamline ¢ = 0 becomes:
dsin () _ 27nUrsin (0) (137)
r m
which is the equation for an infinite cylinder of radius:
1/2
md
= — 138
" <27rU ) (138)
3. (a) The fluid velocity field due to a sphere moving in potential flow
is:
—Uj&g 6ij 3xia:j
Ui = 2 <ﬁ s (139)
The kinetic energy per unit mass is given by:
pu;  pU;Uga® 0ij  Bwary\ (O 3wy
2 8 r3 rd r3 rd
_ pU?a® N 3pU,;Ura’z jxy, (140)
8r6 8r8
pU?a° 2
= W(l + 3 cos (0) )
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where 6 is the angle made by the position vector with the direction
of the velocity vector.

The total kinetic energy is can be easily calculated from the above
expression:

2 27 7r oo 246
[ v — [ as [“apsind) [ ar 20 (14 3cos (0
1% 2 0 0 a 8

6
_wpU 2a3
-3
(141)
The added mass obtained is given by:
KE 2ma’p
M = = 142
0?2~ 3 )

This is exactly half the mass of the fluid displaced by the sphere.

The fluid velocity field for a viscous flow is given by:

3 T 3 32,2
wou[f o) B8R oo

r

Since the velocity decays as (a/r) and the volume increases as
r3, the total kinetic energy is O(pU?a?r), which becomes infinite
for an infinite volume. The situation can be rectified, however,
by realising that the Stokes flow approximation is valid only for
(r/a) < (1/Re), and beyond this the Oseen approximation has
to be used. This decays much faster. Therefore, we can estimate
the kinetic energy as O(pU?a®/Re). This is much larger than
the kinetic energy of O(pU?a®) in potential flow for Re < 1.
This might be expected from the minimum energy theorem, which
states that the potential low has energy which is small compared
to any other flow.

The condition for the flow to be irrotational is that the circulation
along any streamline should be a constant. This requires that:

ORI = OLR3 (144)
The fluid velocity as a function of radius is given by:
O R?
v = —2 (145)
T
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(b) The momentum conservation equation for the fluid in the r and
z directions if viscous forces are neglected at steady state is given

by:
0.p = pg (146)
2
r
These equations can be integrated to give:
O R?
(po/p) + 97+ =5+ =0 (148)

This gives the equation for the surface. This is also identical to
the Bernoulli equation for the fluid at the surface. Therefore, we
find that z ~ (1/r?) for this interface.

5. The coordinates in the z and 2’ planes are related by

a’x’
!
a2y/
!
y=y9 — ZL"Q + y/Q (150)

A circle of radius a is transformed onto a line of length 2a along the
x axis centered at the origin. A flow around a cylinder in the 2’ plane
gets converted into a flow past a flat surface.

A circle of radius b in the 2’ plane gets converted onto an ellipse of
manor and minor axes (1 + a?/b%) and (1 — a*/b?) in the z plane.

7. The velocity field due to the potential flow around a sphere with ve-

locity U; is:
UjCLB (61 SIZZ'])
Ui = — — —

2 73 7D

The rate of dissipation of energy due to viscous dissipation is:

1
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where 7 is the viscosity. Since the flow is irrotational, the strain tensor
is symmetric and the equation for the dissipation rate becomes:

D= QU/‘/dV(ain)(ajui)

The equation for the strain rate is:

Ukag <_3(6ik:$j + 6ij$k: -+ (5]ka) 4 15xixjxk>

ﬁjui = —

2 r,a5 ’1“7

The product (0;u;)(0;ju;) can be easily calculated from the above rela-
tion:

UkUZCLG 186kl$? + 36[Ek$l
(Oyuy)(Ojuq) = 1 ( 10

The above equation can be easily integrated over the volume of the
fluid in spherical coordinates (using z,z; = 2 cos (0)° and z2 = r2) to
give:

D = 127nalU?

The drag force is given by:
Fp = (D/U) = 12mnalU

This is twice the drag force due at zero Reynolds number (Fp =
6mnal). We would expect the drag in potential flow to be greater,
due to the mimimum dissipation theorem which states that the energy
dissipation in a zero Reynolds number flow is lower than that in any
other flow.

. The force acting on the object is:
F = —/ dSpn; (151)
S

where S is the surface of the sphere. From the Bernoulli equation, this
1s:

1
F, = /SdSp (iug - Ujuj) n; (152)
The first term on the right can be simplified as follows:

1 1 1
/. dSuguinit /. dSuuin - |aszuini = [ avuou; (153)
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where S, is the surface of the wall and S, is the surface at infinity. The
first term on the left is zero because the velocity decays as r? at large
r for a body in steady motion. The right side of the above equation in
an irrotational flow is:

/ qujaqu == / dVU]aJUZ
v
= dSsot;niu; + / dSyuniu; — / dSu;n;u;
Seo VAR Su VAR g VAR
(154)
Once again neglecting the contribution from the surface at infinity, and
at the wall u;n; is zero because there is no flux through the wall. Also,

at the surface of the object, u;n; = U;n;. With this simplification, we
get:

1

It can be show, using methods similar to that used in the class, that

/ dS(anZ - uinj) = / dSmfty(ujni - uinj) + / dsw(ani - uinj)

(156)
The first integral on the right side is zero, and the final expression for
the force on the object is:

1
F, = p/S dS., (§U?”z + Uj(uin; — uj"z‘)) (157)

At the wall, the unit normal n; is (0, —1,0). Using this, the forces in
the two directions can easily be determined:

F=0 (158)

1
Fy= /S dS,, (§u§ + U1u1> (159)

. The fluid velocity due to surface displacements is O(wéy), while the
length scale is the wavelength of the fluctuations A\. Therefore, the
u;0ju; term is O(w?E2 /), while the dyu; term is O(w?y). The former
can be neglected compared to the latter for (§,/\) < 1, or when the
amplitude of the fluctautions is small compared to the wavelength.
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10.

Consider a coordinate system where the z axis is in the vertical direc-
tion, and the fluid occupies the space z < 0 in the absence of fluctua-
tions. The equation for the surface and the velocity potential can be
expressed as a function of the wave number and frequency as follows:

€ = &oexp (ikx +iwt) ¢ = f(z)exp (ikx + iwt)
The equation for the velocity potential is:
Gio=0 = (07— k)f(2) =0

The above equation, along with the boundary condition that ¢ — 0 for
z — —o00, implies that:

f=Crexp(kz)

The constant C is determined from the boundary condition that u, =
@f at z =0.
01 = k_liw&)

The Bernoulli equation for the pressure at the surface is:

p+p(0i9 + g&) = po

where pg is the pressure above the surface. At equilibrium, in the
absence of any flow, we have:

P =Do
Therefore, the equation for the displacement field is:
¢+ 9§ =0

Inserting the expressions for ¢ and &, we find that the frequency is
given by:

w =/(gk)

For the potential flow around the sphere, the velocity far from the
sphere is given by (0¢/0z;) = G;jx;. Therefore, the potential is of the
form,

b= GBI po (_f% N M) (160)

2 73 rd
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12

Since the flow is incompressible, §,,Gy; = 0. At the surface, u;n; =
n;(0¢/0x;) = 0. Using these two conditions, we obtain,

b = CirTiT <1 L ) (161)

2 3R3

Boundary layer theory:

. For the outer potential flow solution, we have:

p~toip = U101 Uy + UsdsUy = 0 (162)

p~ 0sp = U101Us + UsdsUs = 0 (163)

Therefore the pressure is a constant in the outer flow. It is also impor-
tant to note that there is no variation in the x3 direction for a plate
that is infinite in that direction. The equations for the fluid velocity in
the boundary layer are:

81u1 + @2u2 =0 (164)
ulalul -+ u202u1 = 1/822’&1 (165)
ulalug -+ u2@2u3 = 1/622’&3 (166)

The mass conservation equation 3 and the momentum equation in the
z1 direction 4 are identical to those for the Blasius flow over a flat
plate, and the solution for the fluid velocity profile is identical to that
obtained in class.

up = U1f'(n) (167)
where n = x9/4/(vx1/Uy), and f(n) is the solution of the equation:
[T+ @) =0 (168)

The equation for the velocity us 5 is identical to that for u;, therefore
the solution for us will be proportional to u;. The condition us = Us
as ry — 00 requires that:

us = Ugul/Ul (169)
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In case the velocity Us is a function of x1, then the pressure gradient
in the w3 direction is not zero.

—p~t0sp = U101Us (170)
The momentum equation for the x5 direction 5 now becomes:
U181U3 + u23QU3 = U181U3 + V822U3 (171)

The above equation is identical to the equation we had solved earlier
5 in the absence of a pressure gradient, except for the additonal inho-
mogeneous term. The general solution is the same as 8, but there is an
additional particular solution. Since the velocity Us is proportional to

x1, we can try a solution of the form:

uz = Usouy /Uy + Us1v19(n) (172)
Inserting this into 10, we get the following equation for g(n):

9"+ 1/2)fg' = flg—1=0 (173)

This equation can be solved for the unknown function g(n), since the
function f(n) is known. The boundary conditions are g = 0 at n = 0,
and g =0 at n — oc.

. The equations for the two components of the velocity are,

DU /2
w=3 (") f'n) - )

where 1 = (y/(vx/U)Y?). We use a similarity form for the equations,
(T—Ty)/(Ts—To) = h(n). Inserting this into the temperature equation,
we get,
d*h dh
Zoap o0
ez PP g,
This is the equation that has to be solved for the similarity solution
h(n)-

If the Prandtl number is large, we need to rescale n in the governing
equations. Note that the thermal boundary layer is small compared to

0
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the momentum boundary layer in this case, and so we are considering
the limit 7 < 1. In this case, the leading approximation for f(n) is
f(n) = f"(0)n?, since both f(n) and f’'(n) are zero at n = 0. We
assume a form of the dimensionless variable n = Pr%¢, where £ is the
new scaled co-ordinate, and a is a number that will be determined by
a balance between convection and diffusion. The governing equation
becomes,

d*h dh
P —2a " " P 14+a g1 2" —
r e + Protf"(0)¢ T3 0

It is clear from the above that a = —1/3, and the dimensionless variable
¢ has to be defined as € = Pr=*/;. The governing equation for the
scaled temperature field now becomes,

eh o, dh
d—§2 + f (O)SQd—g =0

This equation can be easily solved to obtain,

1= J5 dgexp (—f"(0)€°/3)
L= J5 € exp (= f"(0)€*/3)

The flux at the surface is can be determined as,

dT
¢ = — K
dy y=0
KTy — To) dh
1/2P 1/3 0 o0 174
Re r A _df - (174)

Thus, the Nusselt number is proportional to Re'/?Pr'/? in the limit of
high Prandtl number.

. The velocity scale, determined from balancing the inertial and buoy-
ancy terms, is (3(T) —Ty)gh/p)'/?, where the temperature is scaled by

(T} — Tp). The pressure scale is (3(T) — Tp)gh). Scaled this way, the
momentum conservation equation becomes,

ou* v

—+u".Vu' = -V +
ot h/Bgp(Th — o)

V*Zu*
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In terms of the Gashof number (v?/h3(Bpg(Ty —Tp)), this equation can
be expressed as,

a *
al:* +utvVut = _V*p* + Gr_1/2v*2u*
The temperature equation is,
oT*
o TV = aVT™
Introducing the scaled velocity and length, we obtain,
oT*
T u .V = @ V2T*
ot hy/hBg(Ty — Ty) /p

This can be expressed in terms of the Grashof number and Prandtl
number as,

oT™ 1
VT = ——— VAT
ot* T PrGr!/?
4. The boundary layer equations are,
Ou,  Ouy, Ou, _0

ox * oy * 0z
ou,, Ouy, Ou, op 0y

Yor Ty T T Tar Vap

u %%—u %%—u Ous ——@4—1/82“2
* Ox Y Oy 0z 0z oy?

For the outer flow, the pressure gradients are given by,

Ip

ZE A2

Ox *

Ip

£ __pg?

0z :

From the mass conservation equation, we have,

Ou,
_Y _ _A / o B /
3 f'(n) = Bg'(n)
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This can be expressed in terms of the similarity variable to obtain
Aodu
\/i—y = —Af'(n) — Bg'(n)
v on

This can be integrated once, with the boundary condition u, = 0 at
n = 0 to obtain,

u, = —\/v/A(Af(n) + Bg(n)

The above expressions are substituted into the x momentum conserva-
tion equation to obtain,

A%z f? — \Ju/A(Af + Bg)(Ax/\/v/A) f" = A% + v(Az/(v/A)) f"
Dividing throughout by A2z, we obtain,
f" 4+ f"(f + (B/A)g) + (1= f?) =0

The above expressions can be substituted into the ¢ momentum con-
servation equations to obtain,

B*zg” —\Jv/A(Af + Bg)(Bz/\Jv[A)g" = B>z + v(Bz/(v/A))g"
Dividing throughout by B2z, we obtain,
9" +9"(f + (B/A)g) + (B/A)(1—g*) =0

Thus, a similarity solution can be obtained that depends only upon the
ratio (A/B).
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