
Solutions

7 Vector and tensor analysis:

1.

2.

3. (a) The easiest way to solve this problem is the following. Consider
the vector:

Ai = ǫijk∂j∂kφ (16)

Since ǫijk = −ǫikj ,

−Ai = ǫikj∂j∂kφ = ǫikj∂k∂jφ (17)

since the derivatives can be interchanged. But the second term on
the right side is also equal to Ai, since the j and k are summed
over. Therefore, we get an equation of the form Ai = −Ai, imply-
ing that Ai = 0.

The physical interpretation is that ∇φ is in the direction ⊥ to
lines of constant φ. However, ∇×∇φ involves derivatives in the
plane ⊥ to ∇φ, which is tangent to surfaces of constant φ, so these
derivatives are zero.

(b) First prove that ǫijkǫklm = δilδjm − δimδjl. Since ǫijkǫklm is a real
vector, and it is isotropic, it has to be of the form:

ǫijkǫklm = Aδilδjm +Bδimδjl + Cδijδlm (18)

Multiplying by δilδjm, δimδjl and δijδml respectively, we get the
following equations:

ǫijkǫkij = Aδiiδjj +Bδijδij + Cδijδij
→ 6 = 9A+ 3B + 3C

ǫijkǫkji = Aδijδij +Bδiiδjj + Cδijδij
→ −6 = 3A+ 9B + 3C

ǫiikǫkll = Aδjlδjl +Bδjmδjm + Cδiiδll
→ 0 = 3A+ 3B + 9C

(19)
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The solutions to these equations are A = 1, B = −1 and C = 0,
and hence we obtain the above identity.

This can be easily used to prove:

∇×∇× u = ǫijkǫklm∂j∂lum

= (δilδjm − δimδjl)∂j∂lum

= ∂i∂juj − ∂2
jui

= ∇(∇·u) −∇2u

(20)

(c) If B = SijAij, (B is a scalar), then we find that B = −SjiAji (since
Sij = Sji and Aij = −Aji). But since i and j are summed over, it
is also true that B = SjiAji. Therefore, B = −B, implying that
B = 0.

(d) The antisymmetric tensor Aij has only three independent compo-
nents (since the diagonal terms are zero), and therefore they can
be expressed in terms of the three components of a vector ωk. The
only stipulation is that Aij = −Aji, and this is satisfied if:

Aij = ǫijkωk → Aji = ǫjikωk = −Aij (21)

The product ǫijkAjk is given by:

ǫijkAjk = ǫijkǫjklωl

= (δilδjj − δijδlj)ωl

= 2ωi

(22)

4.
Fij

∫

V
dV f(r) rirj (23)

First note that the only vector Fij can depend on is ai. So Fij has to
be a product of ai, δij and ǫijk. The only permissible combination of
these is:

Fij = Aδij +Baiaj (24)

For evaluating A and B, we need two equations. The first of these can
be obtained using:

δijFij = 3A+B = I1 (25)
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where the integral I1 is:

I1 =
∫

V
dV f(r) r2

=
∫ 2π

φ=0
dφ
∫ θ0

θ=0
sin (θ)dθ

∫ 1

r=0
dr r4f(r)

= 2π(1 − cos (θ0))
∫ 1

0
dr f(r) r4

(26)

The second equation is obtained from:

aiajFij = A+B = I2 (27)

where the integral I2 is:

I2 =
∫

V
dV f(r)(riai)

2

=
∫

V
dV f(r) r2 cos (θ)2

=
∫ 2π

φ=0
dφ
∫ θ0

θ=0
cos (θ)2 sin (θ)dθ

∫ 1

r=0
dr r4f(r)

= (2π/3)(1 − cos (θ0)
3)
∫ 1

0
dr r4 f(r)

(28)

The constants A and B are then given by:

A = (I1 − I2)/2 (29)

B = (3I2/2) − (I1/2) (30)

For a sphere, we would expect the result to be an isotropic tensor, and
therefore B = 0. Since cos (θ0) = −1 for a sphere, we find that:

I1 = 4π
∫ 1

0
dr r4 f(r) (31)

I2 = (4π/3)
∫ 1

0
dr r4 f(r) (32)

Using this, we get:

A =
4π

3

∫ 1

0
dr r4 f(r) (33)

B = 0 (34)
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5. The integral Iij is:

Iij =
∫

S
dSaibjakblxkxl

= Aδij +Baiaj + Cbibj +Daibj + Eajbi
(35)

Multiplying the above equation by δij , aiaj and bibj we get the following
simultaneous equations for A, B and C:

3A+B + C = 0

A +B = 0

A+ C = 0

These three can be solved to give A = 0, B = 0 and C = 0. Multiplying
1̊ by ajbi we get:

E = 0

Multiplying 1̊ by aibj we get:

D = a2
i b

2
j

∫

S
dSakblxkxl

In order to calculate this integral, take a and b along the x1 and x2

directions. Then the equation becomes:

D =
∫ 2π

0
dφ
∫ π

0
sin (θ)dθ[cos (θ) cos (φ) cos (θ) sin (φ)]

It can easily be verified that the right side of the above equation is
identically zero.

6. (a) Since we know that the unit vectors eξ and eη are in the directions
of ∇ξ and ∇η respectively, it is necessary to find these vectors.
It is not possible to invert the expressions to determine ξ and η
in terms of x and y, but we can find the expressions for the unit
vectors directly. The unit vectors in the x and y directions are
given by:

∇x = ex = (∇ξ) sinh (ξ) cos (η) − (∇η) cosh (ξ) sin (η)
∇y = ey = (∇ξ) cosh (ξ) sin (η) + (∇η) sinh (ξ) cos (η)

(36)
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The above simultaneous equations can be solved to determine ∇ξ
and ∇η:

∇ξ =
sinh (ξ) cos (η)ex + cosh (ξ) sin (η)ey

[sinh (ξ) cos (η)]2 + [cosh (ξ) sin (η)]2

∇η =
− cosh (ξ) sin (η)ex + sinh (ξ) cos (η)ey

[sinh (ξ) cos (η)]2 + [cosh (ξ) sin (η)]2

(37)

The magnitude of the gradients ∇ξ and ∇η are:

|∇ξ| = |∇η| = {[sinh (ξ) cos (η)]2 + [cosh (ξ) sin (η)]2}−1/2 (38)

and therefore the unit vectors eξ and eη are:

eξ =
sinh (ξ) cos (η)ex + cosh (ξ) sin (η)ey

{[sinh (ξ) cos (η)]2 + [cosh (ξ) sin (η)]2}1/2

eη =
− cosh (ξ) sin (η)ex + sinh (ξ) cos (η)ey

{[sinh (ξ) cos (η)]2 + [cosh (ξ) sin (η)]2}1/2

(39)

(b) From the above equation, it can easily be verified that eξ·eη = 0,
indicating that the coordinate system is an orthogonal one.

(c) The expressions for hξ and hη can be derived using:

dx = dxex + dyey (40)

From equation 1̊, dx and dy are given by:

dx = sinh (ξ) cos (η)dξ − cosh (ξ) sin (η)dη
dy = cosh (ξ) sin (η)dξ + sinh (ξ) cos (η)dη

(41)

In addition, the equation for ex and ey are given in terms of eξ

and eη in 1̊a. Using these and after some algebraic simplification,
we get the following expression for dx:

dx = {[sinh (ξ) cos (η)]2+[cosh (ξ) sin (η)]2}1/2{dξeξ+dηeη} (42)

Therefore, we find that

hξ = hη = {[sinh (ξ) cos (η)]2 + [cosh (ξ) sin (η)]2}1/2 (43)
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The Laplacian in an orthogonal coordinate system in two dimensions,
using the extension of the formula derived in class is:

∇2φ =
1

h1h2

[

∂

∂y1

(

h2

h1

∂φ

∂y1

)

+
∂

∂y2

(

h1

h2

∂φ

∂y2

)]

(44)

Using this formula, we find that:

∇2φ =
1

[sinh (ξ) cos (η)]2 + [cosh (ξ) sin (η)]2

(

∂2φ

∂ξ2
+
∂2φ

∂η2

)

(45)

7. The definition of ∇2φ is ∇·(∇φ) where ∇φ is:

∇φ = e1

1

h1

∂φ

∂y1

+ e2

1

h2

∂φ

∂y2

+ e3

1

h3

∂φ

∂y3

(46)

Using the equation for the divergence of a vector derived in class,

∇·(∇φ) =
1

h1h2h3

[

∂

∂y1

(

h2h3

h1

∂φ

∂y1

)

+
∂

∂y2

(

h3h1

h2

∂φ

∂y2

)

+
∂

∂y3

(

h1h2

h3

∂φ

∂y3

)]

(47)

8 Kinematics

1.

2. The velocity field is,

vz = V

(

1 −
x2 + y2

R2

)

(48)

Therefore, the rate of deformation tensor is given by

∇v =







0 0 0
0 0 0

(−2x/R) (−2y/R) 0





 (49)

The isotropic part of this rate of deformation field is zero, while the
symmetric and anti-symmetric parts are,

S =







0 0 (−x/R)
0 0 (−y/R)

(−x/R) (−y/R) 0





 (50)
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A =







0 0 (x/R)
0 0 (y/R)

(−x/R) (−y/R) 0





 (51)

3. The velocity field is given by vθ = (Ω/r). In cylindrical co-ordinates,
it can easily be seen that the rate of deformation tensor is,

∇v =

(

(∂vr/∂r) (∂vθ/∂r)
(1/r)(∂vr/∂θ) − (vθ/r) (vr/r) + (1/r)(∂vθ/∂θ)

)

(52)

∇v =

(

0 −(Ω/r2)
−(Ω/r2) 0

)

(53)

The stress tensor is symmetric in this co-ordinate system, and the curl
of the velocity is zero. The velocities in a Cartesian co-ordinate system
are,

vx = −vθ sin (θ) = −
Ωy

x2 + y2
(54)

vy = vθ cos (θ) =
Ωx

x2 + y2
(55)

The rate of deformation tensor in a Cartesian co-ordinate system is

∇v =

(

(2Ωxy)/(x2 + y2)2 Ω(y2 − x2)/(x2 + y2)2

Ω(y2 − x2)/(x2 + y2)2 (−2Ωxy)/(x2 + y2)2

)

(56)

The stress tensor is symmetric. The vorticity can be verified to be zero
in both the Cartesian and cylindrical co-ordinates.

4.

9 Conservation equations:

1.

D = 2µsijsji − (2/3)µs2
kk

= 2µ(s2
11 + s2

22 + s2
33 + 2s12s21 + 2s13s31 + 2s23s32)

−(2/3)µ(s2
11 + s2

22 + s2
33 + 2s11s22 + 2s11s33 + 2s22s33)

= 2µ(s2
12 + s2

13 + s2
23) + (2µ/3)((s11 − s22)

2 + (s22 − s33)
2 + (s11 − s33)

2)(57)
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10 Viscous flows:

1. (a) The problem can be taken as the superposition of two problems —
one with the force of gravity parallel to the line joining the sphere’s
centeres, and the other with the force of gravity perpendicular to
the line joining the centers. It is clear from reversibility that if
two spheres separated when they fell, they would come together
when the direction of gravity is reversed. This violates symmetry,
so the two spheres can neither come together not separate from
each other, and therefore the distance between their line of centers
remains a constant.

(b) When Fg, the force due to gravity, is to p, U = U‖gi. When Fg

is ⊥ to p, then U = 1
2
U‖gi. In the general case where Fg is at an

angle to p, then the components in the ‖ and ⊥ directions are:

F‖ = Fg cos (θ) F⊥ = Fg sin (θ) (58)

This induces a velocity U‖ cos (θ) parallel to p and a velocity
1
2
U‖ sin (θ) perpendicular to p. Therefore, the velocity in the ver-

tical direction is given by:

Uv = (U‖ cos (θ)) cos (θ) +
(

1
2
U‖ sin (θ)

)

sin (θ)

= 1
2
U‖(1 + cos (θ)2)

(59)

The velocity in the horizontal direction is:

Uh = (U‖ cos (θ)) sin (θ) − (1
2
U‖ sin (θ)) cos (θ)

= 1
2
U‖ cos (θ) sin (θ)

(60)

2.

3. It is convenient to separate the fluid velocity ui = Gijxj + u′i, where
u′i → 0 for r → ∞. The velocity u′i is obtained by solving the equation:

µ∇2u′i = ∇p ∇2p = 0 (61)

The solution of this is given by:

u′i = u′ih + (1/2µ)xip (62)
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where u′ih is the solution of the homogeneous equation ∇2u′ih = 0.

The velocity u′i and the pressure p can depend only on the tensor Gij ,
and so the possible solutions are:

p = 2µλ1Gjk

(

δjk
r3

−
3xjxk

r5

)

(63)

u′ih =
λ2Gijxj

r
+ λ3Gjk

(

15xixjxk

r7
−

3(δijxk + δjkxi + δikxj)

r5

)

(64)

The equation for the pressure is inserted into 2̊, and we can simplify
the above expressions by noting that Gii = 0:

u′i = λ1Gjk

(

−3xixjxk

r5

)

+λ2

(

Gijxj

r2

)

+λ3Gjk

(

15xixjxk

r7
−

3(xjδik + xkδij)

r5

)

(65)

One of the constants in the above equation can be determined from the
equation of continuity:

∂iu
′
i = 0 (66)

λ1

(

−3(δiixjxk + δijxixk + δikxixj)

r5
+

15xixixjxk

r7

)

Gjk

+ λ2Gij

(

δij
r3

−
3xixj

r5

)

+ λ3Gjk

(

15(δiixjxk + δijxixk + δikxixj)

r7
−

105xixixjxk

r9

−
3(δijδik + δikδij)

r5
+

15(xixjδik + xixkδij)

r7

)

= 0

(67)

The above equation can be simplified using the conditions that Gii = 0
and xixi = r2.

−3λ2Gij
xixj

r5
= 0 → λ2 = 0 (68)

In addition, the center of the particle is at the origin and is stationary,
so we have the condition:

ui = 0 at r = a (69)

This gives us:

λ1Gjk

(

−3xixjxk

r5

)

+ λ3Gjk

(

15xixjxk

a7
−

6xk

a6

)

+Gijxi = 0 (70)
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The above equation can be easily solved to give:

λ1 =
5a3

6
λ3 =

a5

5
(71)

Inserting these into the expression for the velocity 5̊, the final expression
for the velocity is:

ui = Gijxj −
5

2

a3xixjxkGjk

r5
+Gjk

(

5

2

a5xixjxk

r7
−
a5(xjδik + xkδij)

2r5

)

p = −
5µa3Gjkxjxk

r5

(72)

The stress acting on the particle is given by:

Til = −pδil + µ

(

∂ui

∂xl

+
∂ul

∂xi

)

(73)

At the surface of the particle, (∂ui/∂xl) is:

∂ui

∂xl
= Gil −

5

2a2
Gjk(δilxjxk + δjlxixk + δklxixj) +

25

2a4
Gjk(xixjxkxl)

+
5

2a2
Gjk(δilxjxk + δjlxixk + δklxixj) −

35

2a4
xixjxkxlGjk

−
1

2
(δjlδik + δklδij)Gjk +

5

2a2
Gjk(xjxlδik + xkxlδij)

=
−5

a4
xixjxkxlGjk +

5

a2
Gikxkxl

(74)
Using the above relation, the stress is:

Til =
5µ

a2
(δilxjxk + δijxkxl + δjlxixk)Gjk) −

10µ

a4
(xixjxkxlGjk) (75)

The product Tilnlxm is given by:

Tilnlxm = Tilxm
xl

a

=
5µ

a3
(2xixjxkxm + δijxkx

2
l xm)Gjk −

10µ

a4
(xixjxkx

2
l xm)Gjk

=
5µ

a3
Gikxkxm

(76)
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The integral of this over the surface of a aphere is:

∫

A
dA

5µ

a3
Gikxkxm = 5µGim

(

4

3
πa3

)

(77)

4. (a) At low Reynolds number, the velocity can be separated into a
homogeneous and a particular solution:

ui = uhi + upi (78)

The homogeneous solution is obtained from the equation:

∂2
juhi = 0 (79)

while the particular solution can be expressed as a function of the
pressure:

upi =
1

2µ
pxi (80)

where the pressure is obtained by solving:

∂2
j p = 0 (81)

Note that the angular velocity vector Ω is a pseudo vector, while ui

and p are real vectors. Since Ω is the only vector in the system, ui

and p are linear functions of Ω. However, there is no way to make
a real scalar p from δij , ǫijk and the pseudo vector Ωi. Therefore,

p = 0 (82)

Therefore, the particular solution for the velocity is also zero. The
general solution for the velocity has to be of the form:

ui =
A

r
+
Bixi

r3
+ . . . (83)

The only way to make a real vector ui which decays as r → ∞
and is linear in Ωk is:

ui = λǫijkΩ
xk

r3
(84)
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where λ is a constant. Note that the incompressibility condition
is automatically satisfied by the above equation:

∂iui = λǫijkΩj

(

δik
r3

−
3xixk

r5

)

= 0 (85)

The constant λ can be determined from the boundary condition
that at r = a, ui = ǫijkΩjxk. This gives λ = a3, and therefore the
solution for the velocity is:

ui = ǫijkΩjxka
3/r3 (86)

(b) The force per unit area on the surface is fi = Tilnl. Since the
pressure is zero, the stress tensor Til is given by:

Til = µ(∂lui + ∂iul) (87)

The strain rate is:

∂lui = ǫijkΩja
3

(

δkl

r3
−

3xkxl

r5

)

∂iul = ǫljkΩja
3

(

δik
r3

−
3xixk

r5

) (88)

Therefore, the force fi is given by:

fi = Til
xl

r

= µa3

[

ǫijkΩj

(

δklxl

r4
−

3xkxlxl

r6

)

+ǫljkΩja
3

(

δikxl

r4
−

3xixkxl

r5

)]

(89)

The fourth term on the right side of the above equation contains
x × x = 0. Further, it can be easily verified that the first and
third terms cancel, and so the force is given by:

fi =
−3µa3ǫijkΩjxk

r4
(90)

The torque on the sphere is:

Lm =
∫

dAǫminxj(−3µ/a)ǫijkΩjxk

= ǫminǫijkΩk(−3µ/a)
∫

dAxnxk

(91)
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In order to calculate the integral in the above equation, use direc-
tional symmetries:

∫

dAxnxk = λδnk
∫

dAr2 = 3λ

λ =
4πa4

3

(92)

Therefore, we get

Lm = ǫminǫijkΩj(−4πµa3)
= −8πµa3Ωm

(93)

5. Consider a cylindrical coordinate system with the origin located at the
wall perpendicular to the center of the disk. It is appropriate to non -
dimensionalise the length, time and velocity scales as follows:

z =
z∗

aǫ
r =

r∗

a
uz =

u∗z
U

ur =
u∗rǫ

U
t =

t∗ǫU

a
(94)

where the variables with the superscript ∗ are dimensional, while those
without the superscript are dimensional. The scaling for ur in the above
equation was determined from the mass conservation equation:

1

r∗
∂(r∗u∗r)

∂r∗
+
∂u∗z
∂z∗

= 0 (95)

With the above scaling, the momentum equations in the r direction is:

Re

ǫ2

(

∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z

)

= −
a

µU

∂p∗

∂r
+

(

1

ǫ3
∂2ur

∂z2
+

1

ǫ

1

r

∂

∂r

(

r
∂ur

∂r

)

−
1

ǫ

u2
r

r

)

(96)
In the leading approximation, this equation reduces to:

∂2ur

∂z2
=
ǫ3a

µU

∂p∗

∂r
+O(Reǫ) +O(ǫ2) (97)

From this equation, it is appropriate to scale p∗ by (µU/aǫ3), and the
leading order equation is:

∂2ur

∂z2
=
∂p

∂r
(98)
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The momentum conservation equation in the z direction is:

Re

ǫ

(

∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z

)

= −
1

ǫ4
∂p

∂z
+

1

ǫ2
∂2uz

∂z2
+

1

r

∂

∂r

(

r
∂uz

∂r

)

−
uz

r2

(99)
In the limit ǫ→ 0, this equation is:

∂p

∂z
= 0 +O(ǫ2) +O(ǫ3Re) (100)

The boundary conditions are:

ur = 0 uz = 0 at z = 0
ur = 0 uz = −1 at z = 1

(101)

Equation 7̊ for the pressure field implies that p is only a function of r
(p = p(r)). Using this information, equation 5̊ for the radial velocity
can be solved:

ur =
1

2

∂p

∂r
(z2 − z) (102)

This solution satisfies the boundary condition 8̊ ur = 0 at z = 0 and
z = 1. The value of the pressure gradient can be obtained by examining
the continuity equation:

∂uz

∂z
= −

1

r

∂(rur)

∂r
(103)

Integrating this between z = 0 and 1, we get

uz|
1
z=0 = −

∫ 1

0
dz

1

r

∂(rur)

∂r

−1 =
−1

r

∂

∂r

(

r
∂p

∂r

)(

z3

6
−
z2

4

)1

z=0

−1 =
1

12

1

r

∂

∂r

(

r
∂p

∂r

)

(104)

The above equation for the pressure can be solved to obtain:

p = −3r2 + C1 log (r) + C2 (105)
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The constant C1 is zero because the pressure has to be finite at r = 0,
while C2 = 3 because p = 0 at r = 1. Therefore, the pressure and
velocity are:

p = 3(1 − r2) ur = 3r(z − z2) uz = (2z3 − 3z2) (106)

The force on the disk per unit area is:

fz = −nzTijnz = p∗ − 2µ
∂u∗z
∂z∗

(107)

There is a negative term in the above equation because the unit normal
to the disk is in the −z direction. The second term on the right side of
the above equation can be neglected, because it is O(ǫ2) smaller than
the first term. Therefore, the force per unit area is:

fz =
µU

aǫ3
3(1 − r2) (108)

The total force is determined by integrating the force over the area of
the disk:

Fz =
∫ 2π

0
dθ
∫ a

0
dr∗ r∗

(

µU

aǫ3
3

(

1 −
r∗2

a2

))

=
−3πµaU

2ǫ3

(109)

6. (a) It is appropriate to choose a two dimensional Cartesian coordinate
system with the origin on the channel wall. The equation for the
surface of the cylinder is:

(x∗c2 − x∗2)
2 + x∗1

2 = a2 (110)

where ∗ is used to denote dimensional quantities, and x∗c2 = a(1+ǫ)
is the position of the center of the cylinder. The above equation
can be reduced to:

x∗2 = a(1 + ǫ) −
√

a2 + x∗1
2 (111)

The coordinate x∗2 is scaled by ǫa, and the coordinate x∗1 by ǫ1/2a
to obtain the following equation for the surface:

x2 = H(x1) = 1 +
x2

1

2
+ . . . (112)
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The Navier - Stokes mass and momentum equations are:

∂∗1u
∗
1 + ∂∗2u

∗
2 = 0 (113)

ρ(∂∗t u
∗
1 + u∗1∂

∗
1u

∗
1 + u∗2∂

∗
2u

∗
1) = −∂∗1p

∗ + µ(∂∗1
2 + ∂∗2

2)u∗1 (114)

ρ(∂∗t u
∗
2 + u∗1∂

∗
1u

∗
2 + u∗2∂

∗
2u

∗
2) = −∂∗2p

∗ + µ(∂∗1
2 + ∂∗2

2)u∗2 (115)

Scaling the velocity u∗1 by U , the velocity u∗2 by ǫ1/2U and the
pressure by (µU/ǫ3/2a2), the dimensionless equations are:

∂1u1 + ∂2u2 = 0 (116)

(ρUaǫ3/2/µ)(∂t + u1∂1 + u2∂2)u1 = −∂1p+ (∂2
2 + ǫ∂2

1)u1 (117)

(ρUaǫ5/2)(∂t + u1∂1 + u2∂2)u2 = −∂2p+ ǫ(∂2
2 + ǫ∂2

1)u2 (118)

The inertial terms in the above equations can be neglected for
(ρUaǫ3/2/µ) ≪ 1.

(b) The boundary conditions required for solving the above problem
are:

u1 = 0 at x2 = 0
u2 = 0 at x2 = 0
u1 = 1 at x2 = H(x1)
u2 = 0 at x2 = H(x1)

(119)

In addition, there should also be no net flow of fluid across any
surface, so:

∫ H(x1)

0
dx2 u2 = 0 (120)

(c) The Stokes equations are:

∂1u1 + ∂2u2 = 0 (121)

−∂1p+ ∂2
2u1 = 0 (122)

−∂2p = 0 (123)

The two momentum equations can be easily solved along with the
boundary conditions and the zero net flux condition to obtain:

u1 =

(

3x2
2

H2
−

2x2

H

)

(124)

∂1p =
6

H2
(125)
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11 Potential flow:

1. The equation for the potential for a cylinder moving with a constant
velocity Ui is:

φ = λ
Uixi

r2
(126)

and the fluid velocity is:

ui = λUj

(

δij
r2

−
2xixj

r4

)

(127)

The constant λ can be determined from the condition that uini = Uini

at the surface of the cylinder r = a:

λUj

(

xj

a3
−

2x2
ixj

a5

)

=
Uixi

a
(128)

This can be solved to obtain λ = −(1/a2). Therefore, the equation for
the potential is:

φ = −
Uixia

2

r2
(129)

The pressure field is given by:

p = p0 − ρ
∂φ

∂t
− ρUiui −

ρu2
i

2
(130)

The first, third and fourth terms in the above equation do not con-
tribute to the net force on the cylinder, and the only contribution is
from the second term which is given by:

Fi =
∫

dApni (131)

The force along the direction of flow is:

Fi =
dUj

dt

∫

dA
a2xixj

r3

=
dUj

dt

(

ρπa2
)

(132)

Therefore, the added mass of the cylinder is equal to the mass of fluid
displaced by it.
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2. The equation for the stream function in the presence of a source at
(−d/2) and a sink at (d/2) and a uniform flow in the x direction is:

ψ =
mθ1
2π

+
−mθ2

2π
+ Ur sin (θ) (133)

where θ1 is the angle subtended at the source and θ2 is the angle sub-
tended at the sink. The angles θ1 and θ2 can be related to θ and r as
follows:

tan (θ1) =
r sin (θ)

(d/2) + r cos (θ)
tan (θ2) =

r sin (θ)

r cos (θ) − (d/2)
(134)

These can be inserted into the above equation, and we can set ψ = 0
to obtain the equation for the surface of the body:
[

tan−1

(

r sin (θ)

r cos (θ) − (d/2)

)

− tan−1

(

r sin (θ)

r cos (θ) + (d/2)

)]

+
2πUr

m
sin (θ) = 0

(135)
In the limit d→ 0, the angles θ1 and θ2 are given by:

θ1 = θ −
d sin (θ)

2r
θ2 = θ +

d sin (θ)

2r
(136)

Therefore, the equation for the streamline ψ = 0 becomes:

d sin (θ)

r
=

2πUr sin (θ)

m
(137)

which is the equation for an infinite cylinder of radius:

r =

(

md

2πU

)1/2

(138)

3. (a) The fluid velocity field due to a sphere moving in potential flow
is:

ui =
−Uja

3

2

(

δij
r3

−
3xixj

r5

)

(139)

The kinetic energy per unit mass is given by:

ρu2
i

2
=
ρUjUka

6

8

(

δij
r3

−
3xixj

r5

)(

δik
r3

−
3xixk

r5

)

=

(

ρU2
i a

6

8r6
+

3ρUjUka
6xjxk

8r8

)

=
ρU2a6

8r6
(1 + 3 cos (θ)2)

(140)
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where θ is the angle made by the position vector with the direction
of the velocity vector.

The total kinetic energy is can be easily calculated from the above
expression:

∫

V
dV

ρu2
i

2
=
∫ 2π

0
dφ
∫ π

0
dθ sin (θ)

∫ ∞

a
dr r2ρU

2a6

8r6
(1 + 3 cos (θ)2)

=
πρU2a3

3
(141)

The added mass obtained is given by:

M =
KE

(U2/2)
=

2πa3ρ

3
(142)

This is exactly half the mass of the fluid displaced by the sphere.

(b) The fluid velocity field for a viscous flow is given by:

ui = Uj

[

3a

4r

(

δij +
xixj

r2

)

+
a3

r3

(

δij −
3xixj

r2

)

]

(143)

Since the velocity decays as (a/r) and the volume increases as
r3, the total kinetic energy is O(ρU2a2r), which becomes infinite
for an infinite volume. The situation can be rectified, however,
by realising that the Stokes flow approximation is valid only for
(r/a) ≪ (1/Re), and beyond this the Oseen approximation has
to be used. This decays much faster. Therefore, we can estimate
the kinetic energy as O(ρU2a3/Re). This is much larger than
the kinetic energy of O(ρU2a3) in potential flow for Re ≪ 1.
This might be expected from the minimum energy theorem, which
states that the potential flow has energy which is small compared
to any other flow.

4. (a) The condition for the flow to be irrotational is that the circulation
along any streamline should be a constant. This requires that:

Ω1R
2
1 = Ω2R

2
2 (144)

The fluid velocity as a function of radius is given by:

vθ =
Ω1R

2
1

r
(145)
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(b) The momentum conservation equation for the fluid in the r and
z directions if viscous forces are neglected at steady state is given
by:

∂zp = ρg (146)

∂rp =
v2

θ

r
(147)

These equations can be integrated to give:

(p0/ρ) + gz +
Ω1R

2
1

2r2
= 0 (148)

This gives the equation for the surface. This is also identical to
the Bernoulli equation for the fluid at the surface. Therefore, we
find that z ∼ (1/r2) for this interface.

5. The coordinates in the z and z′ planes are related by

x = x′ +
a2x′

x′2 + y′2
(149)

y = y′ −
a2y′

x′2 + y′2
(150)

A circle of radius a is transformed onto a line of length 2a along the
x axis centered at the origin. A flow around a cylinder in the z′ plane
gets converted into a flow past a flat surface.

A circle of radius b in the z′ plane gets converted onto an ellipse of
manor and minor axes (1 + a2/b2) and (1 − a2/b2) in the z plane.

6.

7. The velocity field due to the potential flow around a sphere with ve-
locity Ui is:

ui = −
Uja

3

2

(

δij
r3

−
3xixj

r5

)

The rate of dissipation of energy due to viscous dissipation is:

D =
1

2
η
∫

V
dV (∂iuj + ∂jui)(∂iuj + ∂jui)

36



where η is the viscosity. Since the flow is irrotational, the strain tensor
is symmetric and the equation for the dissipation rate becomes:

D = 2η
∫

V
dV (∂iuj)(∂jui)

The equation for the strain rate is:

∂jui = −
Uka

3

2

(

−3(δikxj + δijxk + δjkxi)

r5
+

15xixjxk

r7

)

The product (∂iuj)(∂jui) can be easily calculated from the above rela-
tion:

(∂iuj)(∂jui) =
UkUla

6

4

(

18δklx
2
i + 36xkxl

r10

)

The above equation can be easily integrated over the volume of the
fluid in spherical coordinates (using xkxl = r2 cos (θ)2 and x2

i = r2) to
give:

D = 12πηaU2

The drag force is given by:

FD = (D/U) = 12πηaU

This is twice the drag force due at zero Reynolds number (FD =
6πηaU). We would expect the drag in potential flow to be greater,
due to the mimimum dissipation theorem which states that the energy
dissipation in a zero Reynolds number flow is lower than that in any
other flow.

8. The force acting on the object is:

Fi = −
∫

S
dSpni (151)

where S is the surface of the sphere. From the Bernoulli equation, this
is:

Fi =
∫

S
dSρ

(

1

2
u2

j − Ujuj

)

ni (152)

The first term on the right can be simplified as follows:

∫

S∞

dS∞
1

2
u2

jni +
∫

Sw

dSw
1

2
u2

jni −
∫

S
dS

1

2
u2

jni =
∫

V
dV uj∂iuj (153)
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where Sw is the surface of the wall and S∞ is the surface at infinity. The
first term on the left is zero because the velocity decays as r3 at large
r for a body in steady motion. The right side of the above equation in
an irrotational flow is:

∫

V
dV uj∂iuj =

∫

V
dV uj∂jui

=
∫

S∞

dS∞ujnjui +
∫

Sw

dSwujnjui −
∫

S
dSujnjui

(154)
Once again neglecting the contribution from the surface at infinity, and
at the wall ujnj is zero because there is no flux through the wall. Also,
at the surface of the object, ujnj = Ujnj. With this simplification, we
get:

Fi = ρ
∫

Sw

dSw
1

2
u2

jni + Uj

∫

S
dS(uinj − ujni) (155)

It can be show, using methods similar to that used in the class, that

∫

S
dS(ujni − uinj) =

∫

S∞

dSinfty(ujni − uinj) +
∫

Sw

dSw(ujni − uinj)

(156)
The first integral on the right side is zero, and the final expression for
the force on the object is:

Fi = ρ
∫

Sw

dSw

(

1

2
u2

jni + Uj(uinj − ujni)
)

(157)

At the wall, the unit normal ni is (0,−1, 0). Using this, the forces in
the two directions can easily be determined:

F1 = 0 (158)

F2 =
∫

Sw

dSw

(

1

2
u2

i + U1u1

)

(159)

9. The fluid velocity due to surface displacements is O(ωξ0), while the
length scale is the wavelength of the fluctuations λ. Therefore, the
uj∂jui term is O(ω2ξ2

0/λ), while the ∂tui term is O(ω2ξ0). The former
can be neglected compared to the latter for (ξ0/λ) ≪ 1, or when the
amplitude of the fluctautions is small compared to the wavelength.
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Consider a coordinate system where the z axis is in the vertical direc-
tion, and the fluid occupies the space z ≤ 0 in the absence of fluctua-
tions. The equation for the surface and the velocity potential can be
expressed as a function of the wave number and frequency as follows:

ξ = ξ0 exp (ikx+ iωt) φ = f(z) exp (ikx+ iωt)

The equation for the velocity potential is:

∂2
i φ = 0 =⇒ (∂2

z − k2)f(z) = 0

The above equation, along with the boundary condition that φ→ 0 for
z → −∞, implies that:

f = C1 exp (kz)

The constant C1 is determined from the boundary condition that uz =
∂tξ at z = 0.

C1 = k−1iωξ0

The Bernoulli equation for the pressure at the surface is:

p+ ρ(∂tφ+ gξ) = p0

where p0 is the pressure above the surface. At equilibrium, in the
absence of any flow, we have:

p = p0

Therefore, the equation for the displacement field is:

∂tφ+ gξ = 0

Inserting the expressions for φ and ξ, we find that the frequency is
given by:

ω =
√

(gk)

10. For the potential flow around the sphere, the velocity far from the
sphere is given by (∂φ/∂xi) = Gijxj . Therefore, the potential is of the
form,

φ =
Gjkxjxk

2
+BGjk

(

−
δjk
r3

+
3xjxk

r5

)

(160)
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Since the flow is incompressible, δjkGkj = 0. At the surface, uini =
ni(∂φ/∂xi) = 0. Using these two conditions, we obtain,

φ =
Gjkxjxk

2

(

1 +
r3

3R3

)

(161)

12 Boundary layer theory:

1. For the outer potential flow solution, we have:

ρ−1∂1p = U1∂1U1 + U3∂3U1 = 0 (162)

ρ−1∂3p = U1∂1U3 + U3∂3U3 = 0 (163)

Therefore the pressure is a constant in the outer flow. It is also impor-
tant to note that there is no variation in the x3 direction for a plate
that is infinite in that direction. The equations for the fluid velocity in
the boundary layer are:

∂1u1 + ∂2u2 = 0 (164)

u1∂1u1 + u2∂2u1 = ν∂2
2u1 (165)

u1∂1u3 + u2∂2u3 = ν∂2
2u3 (166)

The mass conservation equation 3̊ and the momentum equation in the
x1 direction 4̊ are identical to those for the Blasius flow over a flat
plate, and the solution for the fluid velocity profile is identical to that
obtained in class.

u1 = U1f
′(η) (167)

where η = x2/
√

(νx1/U1), and f(η) is the solution of the equation:

f ′′′ + (1/2)ff ′′ = 0 (168)

The equation for the velocity u3 5̊ is identical to that for u1, therefore
the solution for u3 will be proportional to u1. The condition u3 = U3

as x2 → ∞ requires that:

u3 = U3u1/U1 (169)
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In case the velocity U3 is a function of x1, then the pressure gradient
in the x3 direction is not zero.

−ρ−1∂3p = U1∂1U3 (170)

The momentum equation for the x3 direction 5̊ now becomes:

u1∂1u3 + u2∂2u3 = U1∂1U3 + ν∂2
2u3 (171)

The above equation is identical to the equation we had solved earlier
5̊ in the absence of a pressure gradient, except for the additonal inho-
mogeneous term. The general solution is the same as 8̊, but there is an
additional particular solution. Since the velocity U3 is proportional to
x1, we can try a solution of the form:

u3 = U30u1/U1 + U31x1g(η) (172)

Inserting this into 1̊0, we get the following equation for g(η):

g′′ + (1/2)fg′ − f ′g − 1 = 0 (173)

This equation can be solved for the unknown function g(η), since the
function f(η) is known. The boundary conditions are g = 0 at η = 0,
and g = 0 at η → ∞.

2. The equations for the two components of the velocity are,

ux = Uf ′(η)

uy =
1

2

(

νU

x

)1/2

(ηf ′(η) − f(η))

where η = (y/(νx/U)1/2). We use a similarity form for the equations,
(T−T0)/(T∞−T0) = h(η). Inserting this into the temperature equation,
we get,

d2h

dη2
+ Prf(η)

dh

dη
= 0

This is the equation that has to be solved for the similarity solution
h(η).

If the Prandtl number is large, we need to rescale η in the governing
equations. Note that the thermal boundary layer is small compared to

41



the momentum boundary layer in this case, and so we are considering
the limit η ≪ 1. In this case, the leading approximation for f(η) is
f(η) = f ′′(0)η2, since both f(η) and f ′(η) are zero at η = 0. We
assume a form of the dimensionless variable η = Praξ, where ξ is the
new scaled co-ordinate, and a is a number that will be determined by
a balance between convection and diffusion. The governing equation
becomes,

Pr−2ad
2h

dξ2
+ Pr1+af ′′(0)ξ2dh

dξ
= 0

It is clear from the above that a = −1/3, and the dimensionless variable
ξ has to be defined as ξ = Pr−1/3η. The governing equation for the
scaled temperature field now becomes,

d2h

dξ2
+ f ′′(0)ξ2dh

dξ
= 0

This equation can be easily solved to obtain,

h =
1 −

∫ ξ
0 dξ exp (−f ′′(0)ξ3/3)

1 −
∫∞
0 dξ exp (−f ′′(0)ξ3/3)

The flux at the surface is can be determined as,

q = − k
dT

dy

∣

∣

∣

∣

∣

y=0

= Re1/2Pr1/3k(T0 − T∞)

L

dh

dξ

∣

∣

∣

∣

∣

ξ=0

(174)

Thus, the Nusselt number is proportional to Re1/2Pr1/3 in the limit of
high Prandtl number.

3. The velocity scale, determined from balancing the inertial and buoy-
ancy terms, is (β(T1 −T0)gh/ρ)

1/2, where the temperature is scaled by
(T1 − T0). The pressure scale is (β(T1 − T0)gh). Scaled this way, the
momentum conservation equation becomes,

∂u∗

∂t∗
+ u∗.∇u∗ = −∇∗p∗ +

ν

h
√

βgρ(T1 − T0)
∇∗2u∗
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In terms of the Gashof number (ν2/h3βρg(T1 − T0)), this equation can
be expressed as,

∂u∗

∂t∗
+ u∗.∇u∗ = −∇∗p∗ + Gr−1/2∇∗2u∗

The temperature equation is,

∂T ∗

∂t
+ u.∇T ∗ = α∇2T ∗

Introducing the scaled velocity and length, we obtain,

∂T ∗

∂t∗
+ u∗.∇∗T ∗ =

α

h
√

hβg(T1 − T0)/ρ
∇2T ∗

This can be expressed in terms of the Grashof number and Prandtl
number as,

∂T ∗

∂t∗
+ u∗.∇∗T ∗ =

1

PrGr1/2
∇2T ∗

4. The boundary layer equations are,

∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z
= 0

ux
∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z
= −

∂p

∂x
+ ν

∂2ux

∂y2

∂p

∂y
= 0

ux
∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z
= −

∂p

∂z
+ ν

∂2uz

∂y2

For the outer flow, the pressure gradients are given by,

∂p

∂x
= −A2x

∂p

∂z
= −B2z

From the mass conservation equation, we have,

∂uy

∂y
= −Af ′(η) − Bg′(η)
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This can be expressed in terms of the similarity variable to obtain

√

A

ν

∂uy

∂η
= −Af ′(η) − Bg′(η)

This can be integrated once, with the boundary condition uy = 0 at
η = 0 to obtain,

uy = −
√

ν/A(Af(η) +Bg(η)

The above expressions are substituted into the x momentum conserva-
tion equation to obtain,

A2xf
′2 −

√

ν/A(Af +Bg)(Ax/
√

ν/A)f ′′ = A2x+ ν(Ax/(ν/A))f ′′′

Dividing throughout by A2x, we obtain,

f ′′′ + f ′′(f + (B/A)g) + (1 − f
′2) = 0

The above expressions can be substituted into the g momentum con-
servation equations to obtain,

B2zg
′2 −

√

ν/A(Af +Bg)(Bz/
√

ν/A)g′′ = B2z + ν(Bz/(ν/A))g′′′

Dividing throughout by B2z, we obtain,

g′′′ + g′′(f + (B/A)g) + (B/A)(1 − g
′2) = 0

Thus, a similarity solution can be obtained that depends only upon the
ratio (A/B).
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