Advanced Numerical Analysis for Chemical Engineerig Quiz and Solution Key

- 1. Describe geometrically the subspaces of R^3 spanned by following sets
 - (a) (1,0,1), (0,1,-1), (0,-2,0)

Solution: The above 3 vectors are linearly independent and span the entire 3 dimensional space, i.e. R^3 .

(b) (-1,0,0), (5,0,-8), (0,0,4)

Solution: Only 2 out above 3 vectors are linearly independent and they span a 2 dimensional subspace in \mathbb{R}^3 .

- (c) (2,-2,0), (-5,0,0), (0,3,0)
 Solution: Only 2 out above 3 vectors are linearly independent and they span a 2 dimensional subspace in R³.
- 2. Determine whether following definition is valid as definitions for norm in $\mathbf{C}^{(2)}[a,b]$

Solution: Since we are dealing with real valued functions, for any function to qualify as inner product, it has to satisfy the following four axioms

- A1. $\|\mathbf{x}\| \ge 0$ for all $x \in X$; $\|\mathbf{x}\| = 0$ if and only if $x = \overline{0}$ (zero vector)
- A2. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for each $x, y \in X$. (triangle inequality).
- A3. $\|\alpha \mathbf{x}\| = |\alpha| \cdot \|\mathbf{x}\|$ for all scalars α and each $x \in X$
- (a) $max |\mathbf{x}(t)| + \max |\mathbf{x}'(t)|$

For any non-zero function x(t), axiom A1 is satisfied. Axiom A2 follows from the following inequality

$$\begin{aligned} \|\mathbf{x}(t) + \mathbf{y}(t)\| &= \max |\mathbf{x}(t) + \mathbf{y}(t)| + \max |\mathbf{x}'(t) + \mathbf{y}'(t)| \\ &\leq \left[\max |\mathbf{x}(t)| + \max |\mathbf{y}(t)|\right] + \left[\max |\mathbf{x}'(t)| + \max |\mathbf{y}'(t)|\right] \\ &\leq \left[\max |\mathbf{x}(t)| + \max |\mathbf{x}'(t)|\right] + \left[\max |\mathbf{y}(t)| + \max |\mathbf{y}'(t)|\right] \\ &\leq \|\mathbf{x}(t)\| + \|\mathbf{y}(t)\| \end{aligned}$$

It is easy to show that axiom A3 is also satisfied for all scalars α . Thus, given function defines a norm on $C^{(2)}[a,b]$.

(b) $|\mathbf{x}(a)| + \max |\mathbf{x}'(t)|$

For any non-zero function x(t), axiom A1 is satisfied. Axiom A2 follows from the following inequality

$$\begin{aligned} \|\mathbf{x}(t) + \mathbf{y}(t)\| &= \|\mathbf{x}(a) + \mathbf{y}(a)\| + \max |\mathbf{x}'(t) + \mathbf{y}'(t)| \\ &\leq [|\mathbf{x}(a)| + |\mathbf{y}(a)|] + [\max |\mathbf{x}'(t)| + \max |\mathbf{y}'(t)|] \\ &\leq [|\mathbf{x}(a)| + \max |\mathbf{x}'(t)|] + [|\mathbf{y}(a)| + \max |\mathbf{y}'(t)|] \\ &\leq \|\mathbf{x}(t)\| + \|\mathbf{y}(t)\| \end{aligned}$$

Axiom A3 is also satisfied for any α as

$$\|\alpha \mathbf{x}(t)\| = |\alpha \mathbf{x}(a)| + \max |\alpha \mathbf{x}'(t)|$$
$$= |\alpha| [|\mathbf{x}(a)| + \max |\mathbf{x}'(t)|]$$
$$= |\alpha| . \|\mathbf{x}\|$$

(c) $|\mathbf{x}(a)| \max |\mathbf{x}(t)|$

Consider a non-zero function x(t) in $C^{(2)}[a, b]$ such that x(a) = 0 and $\max |\mathbf{x}(t)| \neq 0$. 0. Then, axiom A1 is NOT satisfied for any vector x(t) in $C^{(2)}[a, b]$ and the above function does not qualify to be a norm on $C^{(2)}[a, b]$.

3. Show that function $\langle \mathbf{x}, \mathbf{y} \rangle_W : R^n \times R^n \to R$ defined as

$$\langle \mathbf{x}, \mathbf{y} \rangle_W = \mathbf{x}^T W \mathbf{y}$$

defines an inner product on when W is a symmetric positive definite matrix.

Solution: For $\langle \mathbf{x}, \mathbf{y} \rangle_W = \mathbf{x}^T W \mathbf{y}$ to qualify as inner product, it must satisfy the following axioms

A1.
$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$$

A2. $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$
A3. $\langle \lambda \mathbf{x}, \mathbf{y} \rangle = \lambda \langle \mathbf{x}, \mathbf{y} \rangle$ and $\langle \mathbf{x}, \lambda \mathbf{y} \rangle = \lambda \langle \mathbf{x}, \mathbf{y} \rangle$
A4. $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$ and $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only if $x = \overline{0}$.
We have, $\langle \mathbf{x}, \mathbf{y} \rangle_W = \mathbf{x}^T W \mathbf{y}$ and $\langle \mathbf{y}, \mathbf{x} \rangle_W = \mathbf{y}^T W \mathbf{x}$. Since W is symmetric, i.e. $W^T = W$, $[\mathbf{x}^T W \mathbf{y}]^T = \mathbf{y}^T W^T \mathbf{x} = \mathbf{y}^T W \mathbf{x}$. Thus, axiom A1 holds for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
 $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle_W = (\mathbf{x} + \mathbf{y})^T W \mathbf{z} = \mathbf{x}^T W \mathbf{z} + \mathbf{x}^T W \mathbf{z} = \langle \mathbf{x}, \mathbf{z} \rangle_W + \langle \mathbf{y}, \mathbf{z} \rangle_W$. Thus, axiom A2 holds for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$.
 $\langle \lambda \mathbf{x}, \mathbf{y} \rangle = (\lambda \mathbf{x})^T W \mathbf{y} = \lambda (\mathbf{x}^T W \mathbf{y}) = \lambda \langle \mathbf{x}, \mathbf{y} \rangle$
 $\langle \mathbf{x}, \lambda \mathbf{y} \rangle = \mathbf{x}^T W (\lambda \mathbf{y}) = \lambda (\mathbf{x}^T W \mathbf{y}) = \lambda \langle \mathbf{x}, \mathbf{y} \rangle$. Thus, axiom A3 holds for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Since W is positive definite, it follows that $\langle \mathbf{x}, \mathbf{x} \rangle_W = \mathbf{x}^T W \mathbf{x} > 0$ if $x \neq \overline{\mathbf{0}}$ and $\langle \mathbf{x}, \mathbf{x} \rangle_W = \mathbf{x}^T W \mathbf{x} = 0$ if $x = \overline{\mathbf{0}}$. Thus, axiom A4 holds for any $\mathbf{x} \in \mathbb{R}^n$.

Since all four axioms are satisfied, $\langle \mathbf{y}, \mathbf{x} \rangle_W = y^T W x$ is a valid definition of an inner product.

4. The triangle inequality asserts that, for any two vectors \mathbf{x} and \mathbf{y} belonging to an inner product space

$$\|\mathbf{x} + \mathbf{y}\|_2 \le \|\mathbf{y}\|_2 + \|\mathbf{x}\|_2$$

After squaring both the sides and expanding, reduce this to Schwartz inequality. Under what condition Schwartz inequality becomes an equality?

Solution: Squaring both the sides, we have

$$\begin{aligned} \|\mathbf{x} + \mathbf{y}\|_{2}^{2} &= \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle \leq [||\mathbf{y}||_{2} + ||\mathbf{x}||_{2}]^{2} \\ \langle \mathbf{x}, \mathbf{x} \rangle &+ \langle \mathbf{y}, \mathbf{y} \rangle + 2 \langle \mathbf{x}, \mathbf{y} \rangle \leq ||\mathbf{y}||_{2}^{2} + ||\mathbf{x}||_{2}^{2} + 2||\mathbf{y}||_{2}||\mathbf{x}||_{2} \\ ||\mathbf{y}||_{2}^{2} + ||\mathbf{x}||_{2}^{2} + 2 \langle \mathbf{x}, \mathbf{y} \rangle \leq ||\mathbf{y}||_{2}^{2} + ||\mathbf{x}||_{2}^{2} + 2||\mathbf{y}||_{2}||\mathbf{x}||_{2} \end{aligned}$$

Since, $||\mathbf{y}||_2^2 + ||\mathbf{x}||_2^2 \ge 0$ for any $\mathbf{x}, \mathbf{y} \in X$, the above inequality reduces to

$$\langle \mathbf{x}, \mathbf{y} \rangle \le ||\mathbf{y}||_2 ||\mathbf{x}||_2 \tag{1}$$

The triangle inequality also implies that

$$\begin{aligned} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} &= \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle \leq [||\mathbf{y}||_{2} + ||\mathbf{x}||_{2}]^{2} \\ \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle - 2 \langle \mathbf{x}, \mathbf{y} \rangle \leq ||\mathbf{y}||_{2}^{2} + ||\mathbf{x}||_{2}^{2} + 2||\mathbf{y}||_{2}||\mathbf{x}||_{2} \\ ||\mathbf{y}||_{2}^{2} + ||\mathbf{x}||_{2}^{2} - 2 \langle \mathbf{x}, \mathbf{y} \rangle \leq ||\mathbf{y}||_{2}^{2} + ||\mathbf{x}||_{2}^{2} + 2||\mathbf{y}||_{2}||\mathbf{x}||_{2} \end{aligned}$$

Since, $||\mathbf{y}||_2^2 + ||\mathbf{x}||_2^2 \ge 0$ for any $\mathbf{x}, \mathbf{y} \in X$, the above inequality reduces to

$$-\langle \mathbf{x}, \mathbf{y} \rangle \leq ||\mathbf{y}||_2 ||\mathbf{x}||_2$$

i.e.

$$-||\mathbf{y}||_2||\mathbf{x}||_2 \le \langle \mathbf{x}, \mathbf{y} \rangle \tag{2}$$

Combining inequalities (1) and (2), we arrive at the Cauchy-Schwartz inequality

$$-||\mathbf{y}||_{2}||\mathbf{x}||_{2} \leq \langle \mathbf{x}, \mathbf{y} \rangle \leq ||\mathbf{y}||_{2}||\mathbf{x}||_{2}$$
(3)

i.e.

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{y}||_2 ||\mathbf{x}||_2 \tag{4}$$

The Cauchy-Schwartz inequality reduces to equality when $\mathbf{y} = \alpha \mathbf{x}$.