Advanced Numerical Analysis for Chemical Engineerig Quiz and Solution Key

1. Describe geometrically the subspaces of R^{3} spanned by following sets
(a) $(1,0,1),(0,1,-1),(0,-2,0)$

Solution: The above 3 vectors are linearly independent and span the entire 3 dimensional space, i.e. R^{3}.
(b) $(-1,0,0),(5,0,-8),(0,0,4)$

Solution: Only 2 out above 3 vectors are linearly independent and they span a 2 dimensional subspace in R^{3}.
(c) $(2,-2,0),(-5,0,0),(0,3,0)$

Solution: Only 2 out above 3 vectors are linearly independent and they span a 2 dimensional subspace in R^{3}.
2. Determine whether following definition is valid as definitions for norm in $\mathbf{C}^{(2)}[a, b]$

Solution: Since we are dealing with real valued functions, for any function to qualify as inner product, it has to satisfy the following four axioms

A1. $\|\mathbf{x}\| \geq 0$ for all $x \in X ;\|\mathbf{x}\|=0$ if and only if $x=\overline{0}$ (zero vector)
A2. $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ for each $x, y \in X$. (triangle inequality).
A3. $\|\alpha \mathbf{x}\|=|\alpha| \cdot\|\mathbf{x}\|$ for all scalars α and each $x \in X$
(a) $\max |\mathbf{x}(t)|+\max \left|\mathbf{x}^{\prime}(t)\right|$

For any non-zero function $x(t)$, axiom $A 1$ is satisfied. Axiom A2 follows from the following inequality

$$
\begin{aligned}
\|\mathbf{x}(t)+\mathbf{y}(t)\| & =\max |\mathbf{x}(t)+\mathbf{y}(t)|+\max \left|\mathbf{x}^{\prime}(t)+\mathbf{y}^{\prime}(t)\right| \\
& \leq[\max |\mathbf{x}(t)|+\max |\mathbf{y}(t)|]+\left[\max \left|\mathbf{x}^{\prime}(t)\right|+\max \left|\mathbf{y}^{\prime}(t)\right|\right] \\
& \leq\left[\max |\mathbf{x}(t)|+\max \left|\mathbf{x}^{\prime}(t)\right|\right]+\left[\max |\mathbf{y}(t)|+\max \left|\mathbf{y}^{\prime}(t)\right|\right] \\
& \leq\|\mathbf{x}(t)\|+\|\mathbf{y}(t)\|
\end{aligned}
$$

It is easy to show that axiom A3 is also satisfied for all scalars α. Thus, given function defines a norm on $C^{(2)}[a, b]$.
(b) $|\mathbf{x}(a)|+\max \left|\mathbf{x}^{\prime}(t)\right|$

For any non-zero function $x(t)$, axiom $A 1$ is satisfied. Axiom A2 follows from the following inequality

$$
\begin{aligned}
\|\mathbf{x}(t)+\mathbf{y}(t)\| & =|\mathbf{x}(a)+\mathbf{y}(a)|+\max \left|\mathbf{x}^{\prime}(t)+\mathbf{y}^{\prime}(t)\right| \\
& \leq[|\mathbf{x}(a)|+|\mathbf{y}(a)|]+\left[\max \left|\mathbf{x}^{\prime}(t)\right|+\max \left|\mathbf{y}^{\prime}(t)\right|\right] \\
& \leq\left[|\mathbf{x}(a)|+\max \left|\mathbf{x}^{\prime}(t)\right|\right]+\left[|\mathbf{y}(a)|+\max \left|\mathbf{y}^{\prime}(t)\right|\right] \\
& \leq\|\mathbf{x}(t)\|+\|\mathbf{y}(t)\|
\end{aligned}
$$

Axiom A3 is also satisfied for any α as

$$
\begin{aligned}
\|\alpha \mathbf{x}(t)\| & =|\alpha \mathbf{x}(a)|+\max \left|\alpha \mathbf{x}^{\prime}(t)\right| \\
& =|\alpha|\left[|\mathbf{x}(a)|+\max \left|\mathbf{x}^{\prime}(t)\right|\right] \\
& =|\alpha| \cdot\|\mathbf{x}\|
\end{aligned}
$$

(c) $|\mathbf{x}(a)| \max |\mathbf{x}(t)|$

Consider a non-zero function $x(t)$ in $C^{(2)}[a, b]$ such that $x(a)=0$ and $\max |\mathbf{x}(t)| \neq$ 0 . Then, axiom A1 is NOT satisfied for any vector $x(t)$ in $C^{(2)}[a, b]$ and the above function does not qualify to be a norm on $C^{(2)}[a, b]$.
3. Show that function $\langle\mathbf{x}, \mathbf{y}\rangle_{W}: R^{n} \times R^{n} \rightarrow R$ defined as

$$
\langle\mathbf{x}, \mathbf{y}\rangle_{W}=\mathbf{x}^{T} W \mathbf{y}
$$

defines an inner product on when W is a symmetric positive definite matrix.
Solution: For $\langle\mathbf{x}, \mathbf{y}\rangle_{W}=\mathbf{x}^{T} W \mathbf{y}$ to qualify as inner product, it must satisfy the following axioms

A1. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$
A2. $\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$
A3. $\langle\lambda \mathbf{x}, \mathbf{y}\rangle=\lambda\langle\mathbf{x}, \mathbf{y}\rangle$ and $\langle\mathbf{x}, \lambda \mathbf{y}\rangle=\lambda\langle\mathbf{x}, \mathbf{y}\rangle$
A4. $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$ and $\langle\mathbf{x}, \mathbf{x}\rangle=0$ if and only if $x=\overline{0}$.
We have, $\langle\mathbf{x}, \mathbf{y}\rangle_{W}=\mathbf{x}^{T} W \mathbf{y}$ and $\langle\mathbf{y}, \mathbf{x}\rangle_{W}=\mathbf{y}^{T} W \mathbf{x}$.Since W is symmetric, i.e. $W^{T}=$ $W,\left[\mathbf{x}^{T} W \mathbf{y}\right]^{T}=\mathbf{y}^{T} W^{T} \mathbf{x}=\mathbf{y}^{T} W \mathbf{x}$. Thus, axiom A1 holds for any $\mathbf{x}, \mathbf{y} \in R^{n}$.
$\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle_{W}=(\mathbf{x}+\mathbf{y})^{T} W \mathbf{z}=\mathbf{x}^{T} W \mathbf{z}+\mathbf{x}^{T} W \mathbf{z}=\langle\mathbf{x}, \mathbf{z}\rangle_{W}+\langle\mathbf{y}, \mathbf{z}\rangle_{W}$. Thus, axiom A2 holds for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in R^{n}$.
$\langle\lambda \mathbf{x}, \mathbf{y}\rangle=(\lambda \mathbf{x})^{T} W \mathbf{y}=\lambda\left(\mathbf{x}^{T} W \mathbf{y}\right)=\lambda\langle\mathbf{x}, \mathbf{y}\rangle$
$\langle\mathbf{x}, \lambda \mathbf{y}\rangle=\mathbf{x}^{T} W(\lambda \mathbf{y})=\lambda\left(\mathbf{x}^{T} W \mathbf{y}\right)=\lambda\langle\mathbf{x}, \mathbf{y}\rangle$. Thus, axiom A3 holds for any $\mathbf{x}, \mathbf{y} \in R^{n}$.

Since W is positive definite, it follows that $\langle\mathbf{x}, \mathbf{x}\rangle_{W}=\mathbf{x}^{T} W \mathbf{x}>0$ if $x \neq \overline{\mathbf{0}}$ and $\langle\mathbf{x}, \mathbf{x}\rangle_{W}=\mathbf{x}^{T} W \mathbf{x}=0$ if $x=\overline{\mathbf{0}}$. Thus, axiom A4 holds for any $\mathbf{x} \in R^{n}$.

Since all four axioms are satisfied, $\langle\mathbf{y}, \mathbf{x}\rangle_{W}=y^{T} W x$ is a valid definition of an inner product.
4. The triangle inequality asserts that, for any two vectors \mathbf{x} and \mathbf{y} belonging to an inner product space

$$
\|\mathbf{x}+\mathbf{y}\|_{2} \leq\|\mathbf{y}\|_{2}+\|\mathbf{x}\|_{2}
$$

After squaring both the sides and expanding,reduce this to Schwartz inequality. Under what condition Schwartz inequality becomes an equality?

Solution: Squaring both the sides, we have

$$
\begin{gathered}
\|\mathbf{x}+\mathbf{y}\|_{2}^{2}=\langle\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle \leq\left[\|\mathbf{y}\|_{2}+\|\mathbf{x}\|_{2}\right]^{2} \\
\langle\mathbf{x}, \mathbf{x}\rangle+\langle\mathbf{y}, \mathbf{y}\rangle+2\langle\mathbf{x}, \mathbf{y}\rangle \leq\|\mathbf{y}\|_{2}^{2}+\|\mathbf{x}\|_{2}^{2}+2\|\mathbf{y}\|_{2}\|\mathbf{x}\|_{2} \\
\|\mathbf{y}\|_{2}^{2}+\|\mathbf{x}\|_{2}^{2}+2\langle\mathbf{x}, \mathbf{y}\rangle \leq\|\mathbf{y}\|_{2}^{2}+\|\mathbf{x}\|_{2}^{2}+2\|\mathbf{y}\|_{2}\|\mathbf{x}\|_{2}
\end{gathered}
$$

Since, $\|\mathbf{y}\|_{2}^{2}+\|\mathbf{x}\|_{2}^{2} \geq 0$ for any $\mathbf{x}, \mathbf{y} \in X$, the above inequality reduces to

$$
\begin{equation*}
\langle\mathbf{x}, \mathbf{y}\rangle \leq\|\mathbf{y}\|_{2}\|\mathbf{x}\|_{2} \tag{1}
\end{equation*}
$$

The triangle inequality also implies that

$$
\begin{gathered}
\|\mathbf{x}-\mathbf{y}\|_{2}^{2}=\langle\mathbf{x}-\mathbf{y}, \mathbf{x}-\mathbf{y}\rangle \leq\left[\|\mathbf{y}\|_{2}+\|\mathbf{x}\|_{2}\right]^{2} \\
\langle\mathbf{x}, \mathbf{x}\rangle+\langle\mathbf{y}, \mathbf{y}\rangle-2\langle\mathbf{x}, \mathbf{y}\rangle \leq\|\mathbf{y}\|_{2}^{2}+\|\mathbf{x}\|_{2}^{2}+2\|\mathbf{y}\|_{2}\|\mathbf{x}\|_{2} \\
\|\mathbf{y}\|_{2}^{2}+\|\mathbf{x}\|_{2}^{2}-2\langle\mathbf{x}, \mathbf{y}\rangle \leq\|\mathbf{y}\|_{2}^{2}+\|\mathbf{x}\|_{2}^{2}+2\|\mathbf{y}\|_{2}\|\mathbf{x}\|_{2}
\end{gathered}
$$

Since, $\|\mathbf{y}\|_{2}^{2}+\|\mathbf{x}\|_{2}^{2} \geq 0$ for any $\mathbf{x}, \mathbf{y} \in X$, the above inequality reduces to

$$
-\langle\mathbf{x}, \mathbf{y}\rangle \leq\|\mathbf{y}\|_{2}\|\mathbf{x}\|_{2}
$$

i.e.

$$
\begin{equation*}
-\|\mathbf{y}\|_{2}\|\mathbf{x}\|_{2} \leq\langle\mathbf{x}, \mathbf{y}\rangle \tag{2}
\end{equation*}
$$

Combining inequalities (1) and (2), we arrive at the Cauchy-Schwartz inequality

$$
\begin{equation*}
-\|\mathbf{y}\|_{2}\|\mathbf{x}\|_{2} \leq\langle\mathbf{x}, \mathbf{y}\rangle \leq\|\mathbf{y}\|_{2}\|\mathbf{x}\|_{2} \tag{3}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{y}\|_{2}\|\mathbf{x}\|_{2} \tag{4}
\end{equation*}
$$

The Cauchy-Schwartz inequality reduces to equality when $\mathbf{y}=\alpha \mathbf{x}$.

