## Advanced Numerical Analysis for Chemical Engineering Quiz-2 (1 hrs.)

1. It is desired to apply the method of finite difference to solve the following PDE

$$
\frac{\partial C}{\partial t}=\frac{\partial^{2} C}{\partial z^{2}}
$$

$$
\begin{aligned}
\text { Boundary Conditions } & : C(0, t)=C(1, t)=0 \\
\text { Initial Condition } & : \\
& C(z, 0)=\exp (-0.1 z)
\end{aligned}
$$

where $t$ and $z$ represent dimensionless time and dimensionless length, respectively. Discretize the PDE in the spatial coordinate using the finite difference method and by assuming 3 internal equidistant grid points. Express the resulting system of equations in the following standard form

$$
d \mathbf{x} / d t=A \mathbf{x} \text { with initial condition } \mathbf{x}(0)
$$

where

$$
\mathbf{x}=\left[\begin{array}{llll}
C_{1} & C_{2} & \ldots & C_{5}
\end{array}\right]^{T}
$$

Note: In your answer, clearly define A matrix and state all elements of the initial condition, $\mathbf{x}(0)$.
2. Consider the PDE given in Q. 1 with the following modified boundary conditions

$$
\text { Boundary Conditions : } \frac{d C(0, t)}{d z}=\frac{d C(1, t)}{d z}=0
$$

Descritize (in space) the modified PDE using the method of orthogonal collocations and by assuming two internal collocation points at $z_{1}=0.21$ and $z_{2}=0.79$. Express the resulting system of DAEs in the following standard form

$$
\begin{aligned}
d \mathbf{y} / d t & =\mathbf{B y} \\
\mathbf{D y} & =\overline{\mathbf{0}} \\
\mathbf{y}(0) & : \text { Initial Condition }
\end{aligned}
$$

where

$$
\mathbf{y}=\left[\begin{array}{llll}
C_{1} & C_{2} & \ldots & C_{4}
\end{array}\right]^{T}
$$

Note: (a) In your answer, clearly define matrices $\mathbf{B}, \mathbf{D}$ and state all elements of the initial condition, $\mathbf{y}(0)$.(b) The $\mathbf{S}$ and $\mathbf{T}$ matrices corresponding to the given collocation points are as follows

$$
\mathbf{S}=\left[\begin{array}{llll}
-7 & 8.2 & -2.2 & 1 \\
-2.7 & 1.7 & 1.7 & -0.7 \\
0.7 & -1.7 & -1.7 & 2.7 \\
-1 & 2.2 & -8.2 & 7
\end{array}\right] ; \quad \mathbf{T}=\left[\begin{array}{llll}
24 & -37.2 & 25.2 & -12 \\
16.4 & -24 & 12 & -4.4 \\
-4.4 & 12 & -24 & 16.4 \\
-12 & 25.2 & -37.2 & 24
\end{array}\right]
$$

