Advanced Numerical Analysis for Chemical Engineering Quiz -1 (1 hrs.)

1. Consider a continuously operated fermenter described by the following equations

$$
\begin{gather*}
\frac{d X}{d t}=-D X+\mu X \tag{1}\\
\frac{d S}{d t}=D\left(S_{f}-S\right)-\frac{1}{Y_{X / S}} \mu X \tag{2}\\
\frac{d P}{d t}=-D P+(\alpha \mu+\beta) X \tag{3}\\
\mu=\frac{\mu_{m}\left(1-\frac{P}{P_{m}}\right) S}{K_{m}+S+\frac{S^{2}}{K_{i}}} \tag{4}
\end{gather*}
$$

where X : effluent cell-mass or biomass concentration, S : substrate concentration, P : product concentration, D : dilution rate, S_{f} : feed substrate concentration, $Y_{X / S}$: cell-mass yield, α and β :yield parameters for the product, μ_{m} : maximum specific growth rate, P_{m} : product saturation constant, K_{m} :substrate saturation constant, K_{i} : substrate inhibition constant.
(a) The vectors of state (dependent) variable (\mathbf{x}) and input (independent) variables (\mathbf{u}) for this problem are defined as (2 mark)
(a) $\mathbf{x}=\left[\begin{array}{lll}X & S_{f} & P\end{array}\right]^{T} ; \mathbf{u}=\left[\begin{array}{ll}D & S\end{array}\right]^{T}$
(b) $\mathbf{x}=\left[\begin{array}{lll}X & S & P\end{array}\right]^{T} ; \mathbf{u}=\left[\begin{array}{ll}D & S_{f}\end{array}\right]^{T}$
(c) $\mathbf{x}=\left[\begin{array}{lll}\mu & S & P\end{array}\right]^{T} ; \mathbf{u}=\left[\begin{array}{ll}X & S_{f}\end{array}\right]^{T}$
(d) $\mathbf{x}=\left[\begin{array}{lll}\mu & S & P\end{array}\right]^{T} ; \mathbf{u}=\left[\begin{array}{ll}D & S_{f}\end{array}\right]^{T}$
(b) Consider a situation where D and S_{f} are fixed at $D=0.16$ and $S_{f}=23$ and values of $\left(Y_{X / S}, \alpha, \beta, \mu_{m}, P_{m}, K_{m}, K_{i}\right)$ are given. It is desired to estimate X, S and P when all the transients have vanished and the system has come to a steady state. The resulting set of equations can be classified as (1.5 marks)
(a) ODE-Initial Value Problem (b) ODE-Boundary Value Problem (c) Nonlinear Algebraic Equations (d) Differential Algebraic Equations (e) Linear Algebraic Equations
(c) Consider a situation where at $t=0$ we have $X=7.0, S=25, P=24$ and values of $\left(Y_{X / S}, \alpha, \beta, \mu_{m}, P_{m}, K_{m}, K_{i}\right)$ are given. From $t=0$ to 100 , we change $D(t)$ as $D(t)=0.16+0.02 \sin (0.2 t)$ while holding $S_{f}=23$. It is desired to find time variation of $X(t), S(t)$ and $P(t)$ as a function of time over [0, 100]. The resulting set of equations can be classified as (1.5 marks)
(a) ODE-Initial Value Problem (b) ODE-Boundary Value Problem (c) Nonlinear Algebraic Equations (d) Differential Algebraic Equations (e) Linear Algebraic Equations
2. Let X represent set of continuous functions on interval $0 \leq t \leq 1$ with inner product defined as

$$
\langle\mathbf{x}(t), \mathbf{y}(t)\rangle=\int_{0}^{1} t(1-t) \mathbf{x}(t) \mathbf{y}(t) d t
$$

Given a set of four linearly independent vectors

$$
\mathbf{x}^{(1)}(t)=1 ; \quad \mathbf{x}^{(2)}(t)=t
$$

find orthonormal set of vectors $\mathbf{e}^{(1)}(t)$ and $\mathbf{e}^{(2)}(t) . \quad$ (5 marks)
3. Show that in $C[-1,1]$ the following function

$$
\langle f(t), g(t)\rangle=\begin{gathered}
\max \\
t
\end{gathered}|x(t) y(t)|
$$

cannot define an inner product. (5 marks)

