Advanced Numerical Analysis for Chemical Engineering Mid-Term Examination (2 hrs.)

1. Tube side output temperature measurements, $\left(\begin{array}{llll}T_{1} & T_{2} & \ldots & T_{n}\end{array}\right)$, have been collected from a shell and tube heat exchanger system operating at a steady state operating point. It is desired to fit a model of the form

$$
T_{i}=\beta+e_{i}
$$

using this data where constant β is an unknown parameter and e_{i} represents the approximation error.
(a) Show that the least square estimate of parameter β can be obtained by projecting vector \mathbf{U}

$$
\mathbf{U}=\left[\begin{array}{llll}
T_{1} & T_{2} & \ldots & T_{n}
\end{array}\right]^{T}
$$

on vector

$$
\mathbf{a}=\left[\begin{array}{llll}
1 & 1 & \ldots & 1
\end{array}\right]^{T}
$$

Also, show that the least square estimate of β correspond to the mean of the temperature data. (2 marks)
(b) The horizontal line $T=3$ is closest to vector $\mathbf{U}=\left[\begin{array}{lll}1 & 2 & 6\end{array}\right]^{T}$. Check that the vector

$$
\mathbf{p}=\left[\begin{array}{lll}
3 & 3 & 3
\end{array}\right]^{T}
$$

is perpendicular to error vector, $\mathbf{e}=\mathbf{U}-\mathbf{p}$, and find the projection matrix $\mathbf{P}_{r}=$ $A\left(A^{T} A\right)^{-1} A^{T}$, which generates the projection vector \mathbf{p} from vector \mathbf{U}. Also, state what is rank of the projection matrix $\mathbf{P}_{r} . \quad$ (3 marks)
2. Relative height of a terrain (in meters) is measured at four corners $(1,0),(0,1),(-1,0)$ and $(0,-1)$ of a square field and was found to be $0,1,3$, and 4 meters, respectively. Find the plane that gives best fit to four points in the least square sense. The equation for the plane is given as follows

$$
h=\alpha+\beta x+\delta y
$$

In other words, find the least square estimates of parameters (α, β, δ) using the given data. Also, show that, at the center of the square, we have $\widehat{h}=\widehat{\alpha}+\widehat{\beta} x+\widehat{\delta} y=$ mean of heights at the four corners. (6 marks)
3. Consider the following coupled differential equations characterize a system

$$
\begin{aligned}
& \frac{d^{2} u}{d z^{2}}-u \frac{d v}{d z}=5 u \sin (v) \quad \text { for } 0<z<1 \\
& \frac{d^{2} v}{d z^{2}}+v \frac{d u}{d z}=u v^{2} \quad \text { for } 0<z<1
\end{aligned}
$$

together with following boundary conditions

$$
\begin{aligned}
& z=0: u(0)=0 \text { and } v(0)=1 \\
& z=1: d u(1) / d z=0 \text { and } d v(1) / d z=2(v(1)-10)
\end{aligned}
$$

Obtain a set of nonlinear algebraic equations using orthogonal collocation with 2 collocation points and arrange them in generic form $F(\mathbf{x})=\overline{0}$. What is vector \mathbf{x} in this case? (6 marks)

Note: The collocation points are at $z_{1}=0.21$ and $z_{2}=0.79$ and the corresponding \mathbf{S} and \mathbf{T} matrices are as follows

$$
\mathbf{S}=\left[\begin{array}{llll}
-7 & 8.2 & -2.2 & 1 \\
-2.7 & 1.7 & 1.7 & -0.7 \\
0.7 & -1.7 & -1.7 & 2.7 \\
-1 & 2.2 & -8.2 & 7
\end{array}\right] ; \quad \mathbf{T}=\left[\begin{array}{llll}
24 & -37.2 & 25.2 & -12 \\
16.4 & -24 & 12 & -4.4 \\
-4.4 & 12 & -24 & 16.4 \\
-12 & 25.2 & -37.2 & 24
\end{array}\right]
$$

4. Find an approximate solution of ODE-BVP

$$
\begin{gathered}
\frac{d^{2} u}{d z^{2}}+z u=1 \\
\text { B.C. }: u(0)=u(1)=0
\end{gathered}
$$

using Gelarkin's method and following form of the approximate solution

$$
\widehat{u}(z)=a z(1-z)+b z^{2}(1-z)
$$

(8 marks)
Note: (a) Inner product is defined as

$$
\langle f(z), g(z)\rangle=\int_{0}^{1} f(z) g(z) d z
$$

(b) Gelarkin's Method: Given approximate solution as linear combination of basis functions

$$
\left\{\widehat{u}^{(1)}(z), \widehat{u}^{(2)}(z), \ldots, \widehat{u}^{(m)}(z)\right\}
$$

solve for the following set of m algebraic equations simultaneously

$$
\left\langle\widehat{u}^{(i)}(z), \mathbf{L} \widehat{u}(z)-f(z)\right\rangle=0 \quad \text { for } i=1,2, \ldots m
$$

