Advanced Numerical Analysis for Chemical Engineering Final Examination -1 (3 hrs.)
 Instruction: Closed book and closed notes examination.

1. (a) State True of False. Justify your answer.
2. There exists a 4×4 matrix whose row space contains $\left[\begin{array}{llll}1 & 2 & 1 & 1\end{array}\right]^{T}$ and whose null space contains $\left[\begin{array}{llll}1 & -2 & 1 & 1\end{array}\right]^{T} . \quad(2$ marks $)$
3. The rank of a $n \times n$ matrix with every $a_{i j}=c$ where c is a constant is one. (2 marks)
(b) Consider matrix

$$
\mathbf{B}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
-1 & -2 & 1 \\
1 & 2 & -1
\end{array}\right]
$$

1. What is rank of matrix B? Find a basis for the left null space of matrix B (i.e. null space of \mathbf{B}^{T}). (4 marks)
2. Find projection of vector $\mathbf{b}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$ into the row space of matrix B. $(4 \mathrm{marks})$
(c) Consider an $n \times n$ positive symmetric definite matrix A. Matrix A can be expressed as

$$
\mathbf{A}=\boldsymbol{\Psi} \boldsymbol{\Lambda} \boldsymbol{\Psi}^{T}
$$

where $\boldsymbol{\Psi}$ is the matrix containing orthonormal eigen vectors of \mathbf{A} and $\boldsymbol{\Lambda}$ is a diagonal matrix with eigen values of A appearing on it's diagonal. Show that the condition number of matrix $\boldsymbol{\Psi}$ is 1, i.e. $C(\boldsymbol{\Psi})=\mathbf{1} . \quad$ (4 marks)
(d) Prove the following inequalities

$$
\begin{aligned}
\|\mathbf{A B}\| & \leq\|\mathbf{A}\|\|\mathbf{B}\| \\
C(\mathbf{A B}) & \leq C(\mathbf{A}) C(\mathbf{B})
\end{aligned}
$$

for arbitrary matrices \mathbf{A} and \mathbf{B} where $C($.$) represents the condition number.$ (4 marks)

2. Optimization and parameter estimation

(a) An objective function (cost) for design of a 50 stage distillation column is given as

$$
\phi(P, R)=14720(100-P)+6560 R-30 P R-6560-30 P
$$

Using the necessary conditions for optimality, find optimum values of reflux ratio (R) and $\%$ recovery in bottom stream (P) that minimize the $\operatorname{cost} \phi(P, R)$. marks)
(b) Table (1) presents data for distribution of SO_{3} in Hexane. It is desired to fit following model to data

$$
\mathbf{y}=\boldsymbol{\alpha} \mathbf{P}^{\beta}
$$

Calculate least square estimates of model parameters (α, β) by suitably transforming the model and using linear least square method.. (5 marks)

Run No.	P pressure (psia)	y (wt.fr.of Hexane)
1	200	0.85
2	400	0.57
3	600	0.40
4	1200	0.21
5	1600	0.08

Table 1: Reaction Rate Data
(c) Suppose it is desired to estimate the model parameters using the Gauss-Newton method. Perform one iteration of Gauss-Newton step using estimates of (α, β) generated in part (a). (5 marks)

3. ODE-IVP and ODE-BVP

(a) Progress of a chemical reaction in a batch reactor is described by the following set of ODE-IVP

$$
\begin{aligned}
\frac{d \mathbf{x}}{d t} & =\mathbf{A x} \quad ; \quad \mathbf{x}(\mathbf{0})=\left[\begin{array}{ll}
1 & 1
\end{array}\right]^{T} \\
\mathbf{A} & =\left[\begin{array}{ll}
-3 & -1 \\
-1 & -3
\end{array}\right]
\end{aligned}
$$

where $\mathbf{x}(t)$ represents vector of reactor concentrations.

1. Find solution $\mathbf{x}(t)=\exp (A t) \mathbf{x}(\mathbf{0})$ using eigen values and eigen vectors of \mathbf{A}. (3 marks)
2. Comment upon qualitative behavior of solutions based on eigen values of matrix A . ((2 marks)
(b) The steady state behavior of an isothermal tubular reactor with axial mixing, in which a first order irreversible reaction is carried out, is represented by following ODE-BVP

$$
\begin{gathered}
\frac{d^{2} C}{d z^{2}}-\frac{d C}{d z}-6 C=0 \\
\text { At } z=0: \frac{d C}{d z}=C(0)-1 ; \text { At } z=1: \frac{d C}{d z}=0
\end{gathered}
$$

It is desired to solve this problem using the method of orthogonal collocations.

1. For the choice of internal collocation points at $z=0.2$ and $z=0.8$, write down the appropriate algebraic equations to be solved in terms of unknowns. The \mathbf{S} and \mathbf{T} matrices for the given choice of roots are listed below. marks).

$$
\mathbf{S}=\left[\begin{array}{llll}
-7 & 8.2 & -2.2 & 1 \\
-2.7 & 1.7 & 1.7 & -0.7 \\
0.7 & -1.7 & -1.7 & 2.7 \\
-1 & 2.2 & -8.2 & 7
\end{array}\right] \quad ; \mathbf{T}=\left[\begin{array}{llll}
24 & -37.2 & 25.2 & -12 \\
16.4 & -24 & 12 & -4.4 \\
-4.4 & 12 & -24 & 16.4 \\
-12 & 25.2 & -37.2 & 24
\end{array}\right]
$$

2. Rearrange the equations derived in above the standard form $\mathbf{A x}=\mathbf{b}$ where

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{llll}
C_{0} & C_{1} & C_{2} & C_{2}
\end{array}\right]^{T} \\
& C_{0} \equiv C(0), \quad C_{1} \equiv C(0.2), \quad C_{2} \equiv C(0.8), \quad C_{3} \equiv C(1)
\end{aligned}
$$

Is matrix \mathbf{A} diagonally dominant? Suppose it is desired to solve $\mathbf{A x}=\mathbf{b}$ using Gauss-Seidel method. Can you arrive at any conclusion regarding the convergence of Gauss-Seidel method only based on the diagonal dominance of \mathbf{A} ? (3 marks)
(c) It is desired to solve the following scalar ODE-IVP

$$
\frac{d x}{d t}=f(x, t) ; \quad x\left(t_{n}\right)=x(n)
$$

using following multi-step algorithm.

$$
x(n+1)=\alpha_{0} x(n)+\alpha_{1} x(n-1)+h\left[\beta_{0} f(n)+\beta_{-1} f(n+1)\right]
$$

using local polynomial approximation of the form

$$
x^{(n)}(t)=a_{0, n}+a_{1, n} t+a_{2, n} t^{2}+a_{3, n} t^{3}
$$

Find the coefficients $\left(\alpha_{0}, \alpha_{1}, \beta_{0}, \beta_{-1}\right)$ and state the final form of the integration algorithm. (4 marks)
Note: The exactness constraints are given as

$$
\begin{aligned}
\sum_{i=0}^{p} \alpha_{i} & =1 ; \quad(j=0) \\
\sum_{i=0}^{p}(-i)^{j} \alpha_{i}+j \sum_{i=-1}^{p}(-i)^{j-1} \beta_{i} & =1 ; \quad(j=1,2, \ldots \ldots, m)
\end{aligned}
$$

Note : $(i)^{j}=1$ when $i=j=0$

