<u>Chapter 8 Assignment</u> (Answers are in parenthesis)

- 1. Calculate the standard Gibbs free energy change and the equilibrium constant at 298K for the following reaction: $C_2H_5OH(g) + (1/2)O_2(g) \rightarrow CH_3CHO(g) + H_2O(g)$. [- 188.9kJ; 1.4x10³⁸]
- 2. Assuming that ΔH^{0} is constant in the temperature range 298 800 K, estimate the equilibrium constant at 800 K for the reaction of Problem 1. [4.3x10¹⁴]
- 3. Ethanol can be produced according to the reaction: $C_2H_4(g) + H_2O(g) \rightarrow C_2H_5OH(g)$

If an equimolar mixture of ethylene and water vapor is fed to a reactor which is maintained at 1000 K and 1 bar determine the degree of conversion, assuming that the reaction mixture behaves like an ideal solution. Assume the following ideal gas specific heat data: $C_p^{ig} = a + bT + cT^2 + dT^3 + eT^{-2} (J/mol); T(K)$ [0.5]

Species	а	bx10 ³	cx10 ⁶	dx109	ex10 ⁻⁵
C_2H_4	20.691	205.346	- 99.793	18.825	-
H ₂ O	4.196	154.565	- 81.076	16.813	-
C_2H_5OH	28.850	12.055	-	-	1.006

4. Calculate the degree of conversion and the composition of the reaction mixture if N₂(g) and H₂(g) are fed in the mole ratio of 1:5 at 800 K and 100 bar for the synthesis of ammonia. Assume that equilibrium is established and the reaction mixture behaves like an ideal gas. $C_p{}^{ig} = a + bT + cT^2 + dT^3 + eT^{-2}$ (J/mol); T(K) [0.2356]

Species	а	bx10 ³	cx10 ⁶	dx10 ⁹	ex10-5
N_2	20.270	4.930	-	-	0.333
H ₂	27.012	3.509	-	-	0.690
NH ₃	29.747	25.108	-	-	- 1.546

- 5. Calculate the degree of conversion if the feed to an ammonia synthesis reactor is a mixture of $N_2(g)$, $H_2(g)$ and $NH_3(g)$ in the mole ratio 1:3:0.1 at 800 K and 100 bar. Assume that the reaction mixture behaves like an ideal gas. **[0.1235]**
- 6. The following two independent reactions occur in the steam cracking of methane at 1000 K and 1 bar: $CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g)$; and $CO(g) + H_2O(g) \rightarrow CO_2(g) + H_2(g)$. Assuming ideal gas behaviour determine the equilibrium composition of the gas leaving the reactor if an equimolar mixture of CH_4 and H_2O is fed to the reactor, and that at 1000K, the equilibrium constants for the two reactions are 30 and 1.5 respectively. [$\epsilon_1 = 0.8$; $\epsilon_2 = 0.06$]

- 7. Consider the following reaction: $Fe(s) + H_2O(g) \rightarrow FeO(s) + H_2(g)$. Assuming that equilibrium is achieved, determine the fraction of H₂O which decomposes at 1000°C. The equilibrium constant for the reaction at 1000°C is 1.6. **[61.5**%]
- 8. Show that:

$$\left[\frac{\partial \varepsilon_e}{\partial T}\right]_P = \frac{K_y}{RT^2} \frac{d\varepsilon_e}{dK_y} \Delta H^0 \quad \text{and} \quad \left(\frac{\partial \varepsilon_e}{\partial P}\right)_T = \frac{K_y}{P} \frac{d\varepsilon_e}{dK_y} (-\nu)$$

- 9. The gas stream from a sulfur burner is composed of 15-mol-% SO₂, 20-mol-% O₂, and 65-mol-% N₂. This gas stream at 1 bar and 480°C enters a catalytic converter, where the SO₂ is further oxidized to SO₃. Assuming that the reaction reaches equilibrium, how much heat must be removed from the converter to maintain isothermal conditions? Base your answer on 1 mol of entering gas. [Ans: $\epsilon_e = 0.1455$, Q = 14314 J/mol]
- 10. For the cracking reaction:C₃H₈(g)→C₂H₄(g)+CH₄(g); the equilibrium conversion is negligible at 300 K, but becomes appreciable at temperatures above 500 K. For a pressure of 1 bar, determine (a) The fractional conversion of propane at 625 K. (b) The temperature at which the fractional conversion is 85%. [Ans: ε_e = 0.777, T = 647K]
- 11. The following isomerization reaction occurs in the liquid phase: $A \rightarrow B$; where A and B are miscible liquids for which: $G^E / RT = 0.1x_Ax_B$. (a) If $\Delta G_{298}^\circ = -1000 \text{ J/mol}$, what is the equilibrium composition of the mixture at 298°K? [$x_A = 0.3955$] (b) What is the answer for 'a' if one assumes that A and B form an ideal solution? [$x_A = 0.4005$].
- 12. Feed gas to a methanol synthesis reactor is: 75-mol-% H₂, 15-mol-% CO, 5-mol-% CO₂, and 5-mol-% N₂. The system comes to equilibrium at 550 K and 100 bar with respect to the following reactions: $2H_2(g) + CO(g) \rightarrow CH_3OH(g)$; and $H_2(g) + CO_2(g) \rightarrow CO(g) + H_2O(g)$. Assuming ideal gases, determine the composition of the equilibrium mixture. **[Ans:** K₁ = 6.749x10⁻⁴; K₂ = 1.726x10⁻²; ϵ_1 = 0.1186; ϵ_2 = 8.8812x10⁻³].