Chapter 7 Assignment
 (Answers are in parenthesis)

VLE by Raoult's Law

1. Assuming the validity of Raoult's law, do the following calculations for the benzene(1)/toluene(2) system: (a) Given $\mathrm{x}_{1}=0.33$ and $\mathrm{T}=100^{\circ} \mathrm{C}$, find y_{1} and P $\left[\mathrm{P}=109.12 \mathrm{kPa}, y_{1}=0.545\right] ; y_{1}=0.545$ (b) Given $\mathrm{y}_{1}=0.33$ and $\mathrm{T}=100^{\circ} \mathrm{C}$, find x_{1} and $\mathrm{P}\left[\mathrm{T}=92.04 \mathrm{kPa}, x_{1}=0.169\right]$; (c) Given $\mathrm{x}_{1}=0.33$ and $\mathrm{P}=120 \mathrm{kPa}$, find y_{1} and T $\left[\mathrm{T}=103.4 \mathrm{C}, y_{1}=0.542\right]$ (d) Given $\mathrm{y}_{1}=0.33$ and $\mathrm{P}=120 \mathrm{kPa}$, find x_{1} and T . $[\mathrm{T}=$ 109.16C, $\left.x_{1}=0.173\right]$ (e) Given $T=105^{\circ} \mathrm{C}$ and $\mathrm{P}=120 \mathrm{kPa}$, find x_{1} and $\mathrm{y}_{1}\left[\mathrm{x}_{1}=\right.$ $0.33, \mathrm{y}_{1}=0.485$] (f) For part (e) if the overall mole fraction of benzene is $\mathrm{z}_{1}=0.3685$, what molar fraction of the system is vapour? [$\mathrm{V}=\mathbf{0} .231$]
2. Assuming Raoult's law to apply to the system n-pentane(1)/n-heptane(2). (a) What are the values of x_{1} and y_{1} at $\mathrm{T}=55^{\circ} \mathrm{C}$ and $\mathrm{P}=\frac{1}{2}\left(\mathrm{P}_{1}^{\text {sat }}+\mathrm{P}_{2}^{\text {sat }}\right) ?\left[\mathrm{x}_{1}=0.5, \mathrm{y}_{1}=\right.$ 0.915] (b) If we plot vapor molar fraction V vs. overall composition z_{1}, is the plot linear / non-linear? [Linear] (c) For $\mathrm{T}=55^{\circ} \mathrm{C}$ and $\mathrm{z}_{1}=0.5$, If $\mathrm{V}=0.5$ find: $\mathrm{P}, \mathrm{x}_{1}$, and y_{1}.[Approximate values are $P \sim 50 \mathrm{kPa}, \mathrm{x}_{1} \sim 0.2$ and $\mathrm{y}_{1}=0.8$]
3. A single-stage liquid/vapor separation for the benzene(1)/ethylbenzene(2) system must produce phases of the following equilibrium compositions. For x_{1} $=0.35, \mathrm{y}_{1}=0.70$, determine the T and P in the separator. What additional information is needed to compute the relative molar amounts of liquid and vapor leaving the separator? Assume that Raoult's law applies.[T=134C, $\mathbf{P}=\mathbf{2 0 7 k P a}$, need z_{i}]
4. A liquid mixture containing equimolar amounts of benzene(1)/toluene(2) and ethylbenzene(3) is flashed to conditions T and P . For $\mathrm{T}=110^{\circ} \mathrm{C}, \mathrm{P}=90 \mathrm{kPa}$, determine the equilibrium mole fractions $\left\{\mathrm{x}_{\mathrm{i}}\right\}$ and $\left\{\mathrm{y}_{\mathrm{i}}\right\}$ of the liquid and vapor phase formed and the molar fraction V of the vapor formed. Assume that Raoult's law applies. $\left[\mathrm{V}=0.834, \mathrm{x}_{1}=0.143, \mathrm{y}_{1}=0.371, \mathrm{x}_{2}=0.306, \mathrm{y}_{1}=0.339\right]$.
5. A liquid mixture of $25 \mathrm{~mol} \%$ pentane(1), $45 \mathrm{~mol} \%$ hexane(2) and $30 \mathrm{~mol} \%$ heptane(3) initially at high pressure and $69^{\circ} \mathrm{C}$ is partially vaporized by isothermally lowering the pressure to 1atm. Find the relative amounts of liquid and vapour in the system and the compositions. $\left[L=0.564, \mathbf{x}_{1}=0.142, \mathbf{x}_{2}=0.448\right.$, $\left.\mathbf{y}_{1}=0.390, \mathbf{y}_{2}=0.453\right]$ The vapour pressure relations are $\left\{\ln P_{1}^{S}(b a r) ; t\left({ }^{0} K\right)\right\}$: $\ln P_{1}^{S}=10.422-26799 / R T ; \ln P_{2}^{S}=10.456-29676 / R T ; \ln P_{3}^{S}=11.431-35200 / R T$

Non-ideal System VLE

6. For the system ethyl ethanoate(1)/n-heptane(2) at $70^{\circ} \mathrm{C}, \ln \gamma_{1}=0.95 \mathrm{x}_{2}^{2} ; \ln \gamma_{2}=$ $0.95 \mathrm{x}_{1}^{2} ; \mathrm{P}_{1}^{\text {sat }}=79.80 \mathrm{kPa} ; \mathrm{P}_{2}^{\text {sat }}=40.50 \mathrm{kPa}$, (a) Make a BUBL P calculation for $\mathrm{T}=$ $70^{\circ} \mathrm{C}, \mathrm{x}_{1}=0.05$. $\left[\mathrm{P}=47.97 \mathrm{kPa}, \mathrm{y}_{1}=0.196\right]$ (b) Make a DEW P calculation for $\mathrm{T}=$ $70^{\circ} \mathrm{C}, \mathrm{y}_{1}=0.05 .\left[\mathrm{P}=42.19 \mathrm{kPa}, \mathrm{x}_{1}=0.0104\right]$, (c) What is the azeotrope composition and pressure at $\mathrm{T}=70^{\circ} \mathrm{C} ?\left[\mathrm{Paz}^{\mathrm{az}}=47.97 \mathrm{kPa}, \mathrm{x}_{1}{ }^{\mathrm{az}}=\mathrm{y}_{1}{ }^{\mathrm{az}}=0.857\right]$
7. A liquid mixture of cyclohexanone(1)/phenol(2) for which $x_{1}=0.6$ is in equilibrium with its vapor at $144^{\circ} \mathrm{C}$. Determine the equilibrium pressure P and vapor composition y_{1} from the following information: $\ln \gamma_{1}=A x_{2}^{2} ; \ln \gamma_{2}=$ A x_{1}^{2} At $417.15 \mathrm{~K}\left(144{ }^{\circ} \mathrm{C}\right), \mathrm{P}_{1}{ }^{\text {sat }}=75.20$ and $\mathrm{P}_{2}{ }^{\text {sat }}=31.66 \mathrm{kPa}$. The system forms an azeotrope at $417.15 \mathrm{~K}\left(144^{\circ} \mathrm{C}\right)$ for which $\mathrm{x}_{1}{ }^{\mathrm{az}}=\mathrm{y}_{1}{ }^{\mathrm{az}}=0.294$. $\left[\mathbf{P}=\mathbf{3 8 . 1 9 k P a}, \mathbf{y}_{1}=\right.$ 0.844]
8. For the acetone (1)/methanol (2) system a vapor mixture for which $\mathrm{z}_{1}=0.25$ is cooled to temperature T in the two-phase region and flows into a separation chamber at a pressure of 1 bar. If the composition of the liquid product is to be $x_{1}=0.175$, what is the required value of T, and what is the value of y_{1} ? For liquid mixtures of this system to a good approximation: $\ln \gamma_{1}=0.64 x_{2}^{2} ; \ln \gamma_{2}=$ $0.64 \mathrm{x}_{1}^{2}\left[\mathrm{~T}=59.4 \mathrm{C}, \mathrm{y}_{1}=0.307\right]$
9. The following is a rule of thumb: For a binary system in VLE at low pressure, the equilibrium vapor-phase mole fraction y_{1} corresponding to an equimolar liquid mixture is approximately $\mathrm{y}_{1}=P_{1}^{\text {sat }} /\left(P_{1}^{\text {sat }}+P_{2}^{\text {sat }}\right)$; where P_{i} sat is a purespecies vapor pressure. Clearly, this equation is valid if Raoult's law applies. Prove that it is also valid for VLE described by with: $\ln \gamma_{1}=\mathrm{A} \mathrm{x}_{2}^{2}$ and $\ln \gamma_{2}=$ A x_{1}^{2}
10. For a distillation column separating ethyl-ether(1)/ ethanol(2) into essentially pure components at 1 atm , find the range of values of α_{12} (relative volatility).
 P (bar), $\mathrm{T}(\mathrm{K})$, For the liquid phase, $\mathrm{G}^{\mathrm{E}} / \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{RT}=\mathrm{A}_{21} \mathrm{x}_{1}+\mathrm{A}_{12} \mathrm{x}_{2}$, $\mathrm{A}_{12}=0.1665+233.74 / \mathrm{T} ; \mathrm{A}_{21}=0.5908+197.55 / \mathrm{T}$.
$\left[\alpha_{12}\left(x_{1} \rightarrow 1\right)=2.2, \alpha_{12}\left(x_{2} \rightarrow 1\right)=8.64\right]$
11. Find if Benzene(1)/Cyclohexane(2) forms an azeotrope at $77.6^{\circ} \mathrm{C}$. The following data are available for use of Regular Solution theory. At $77.6^{\circ} \mathrm{C}, \mathrm{P}_{1}{ }^{\mathrm{s}}=745 \mathrm{~mm}$ $\mathrm{Hg}, \mathrm{P}_{2}{ }^{\mathrm{s}}=735 \mathrm{~mm} \mathrm{Hg}$. [($\left.\left.\mathbf{x}_{1}\right)^{\mathrm{az}}=0.525\right]$

Species(i)	$\mathbf{V}_{\mathbf{i}}(\mathbf{c c} / \mathbf{m o l e})$	$\delta_{\mathbf{i}}(\mathbf{c a l} / \mathbf{c c})^{\mathbf{1 / 2}}$
Benzene	89	9.2
Cyclohexane	109	8.2

High Pressure VLE and Henry's Law

12. A vapour mixture contains $20 \mathrm{~mol} \%$ methane, $30 \mathrm{~mol} \%$ ethane, and rest propane, at $30^{\circ} \mathrm{C}$. Determine the dew composition. $\left[\mathbf{x}_{1}=0.0247, \mathbf{x}_{2}=\mathbf{0 . 1 6 4 8}\right]$
13. A liquid mixture of $50 \mathrm{~mol} \%$ pentane and $50 \mathrm{~mol} \%$ heptane initially at low temperature is heated at a constant pressure of 1 atm until $50 \mathrm{~mol} \%$ of the liquid is vapourized. Calculate the relevant compositions and the temperature.[$\mathbf{x}_{1}=$ $0.274, \mathrm{y}_{1}=0.726, \mathrm{~T}=341.7^{0} \mathrm{~K}$]
14. A vapor mixture of 40 mole percent ethylene and 60 mole percent propylene at 40 C and 500 kPa is isothermally compressed. Determine the pressure at which condensation begins and the composition of the first drop of liquid that forms. [2.65MPa]
15. A liquid mixture of 25 mole percent ethylene and 75 mole percent propylene at 40C is kept in a piston-cylinder assembly. The piston exerts a constant pressure of 1 MPa . Compute the bubble temperature and composition. [$-8.5^{\circ} \mathrm{C}$]
16. A system formed of methane (1) and a light oil(2) at 200 K and 30 bar consists of a vapour phase containing $95 \mathrm{~mol}-\%$ methane and a liquid phase containing oil and dissolved methane. The fugacity of the methane is given by Henry's law, and at the temperature of interest Henry's constant is $\mathrm{H}_{1}=200$ bar. Assuming ideal solution in gas phase estimate the equilibrium mole fraction of methane in the liquid phase. Use virial EOS for gas phase. [0.118]
17. Using PR-EOS: Compute the dew pressure for methane (1) / butane (2) system at 310 K with $\mathrm{y}_{1}=0.80$ [Dew $\mathbf{P}=\mathbf{2 3 . 6}$ bar, $\mathbf{x}_{\mathbf{1}}=\mathbf{0 . 1 0 9 4}$]
