Advanced Process Control
 Computing Examination I (2.5 hours)

Consider linear perturbation model

$$
\begin{aligned}
& \frac{d \mathbf{x}}{d t}=\left[\begin{array}{cccc}
-\frac{1}{62} & 0 & \frac{1}{23} & 0 \\
0 & -\frac{1}{90} & 0 & \frac{1}{30} \\
0 & 0 & -\frac{1}{23} & 0 \\
0 & 0 & 0 & -\frac{1}{30}
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{cc}
\frac{7}{84} & 0 \\
0 & \frac{1}{16} \\
0 & \frac{1}{21} \\
\frac{1}{32} & 0
\end{array}\right] \mathbf{u}(t) \\
& \mathbf{y}(t)=\left[\begin{array}{cccc}
0.5 & 0 & 0 & 0 \\
0 & 0.5 & 0 & 0
\end{array}\right] \mathbf{x}(t)
\end{aligned}
$$

- Step 1: Convert the continuous time model into a discrete time model of the form

$$
\begin{align*}
\mathbf{x}(k+1) & =\Phi \mathbf{x}(k)+\Gamma \mathbf{u}(k) \tag{1}\\
\mathbf{y}(k) & =C \mathbf{x}(k) \tag{2}
\end{align*}
$$

where $\Phi=e^{\mathbf{A} T} \quad$ and $\quad \Gamma=[\Phi-\mathbf{I}] \mathbf{A}^{-1} \mathbf{B}$ with sampling interval of $T=5$ units.
Note: MATLAB command to compute $e^{\mathbf{M}}$, where M represents a matrix, is ' $\operatorname{expm}(\mathbf{M})^{\prime}$

- Step 2: Generation of data for system identification

Simulate the plant in open loop for $\mathrm{k}=1,2, \ldots 500$ samples using the following set of equations

$$
\begin{align*}
\mathbf{x}(k+1) & =\Phi \mathbf{x}(k)+\Gamma[\mathbf{u}(k)+\mathbf{w}(k)] \tag{3}\\
\mathbf{y}(k) & =C \mathbf{x}(k)+\mathbf{v}(k) \tag{4}
\end{align*}
$$

Here, $\mathbf{w}(k)$ and $\mathbf{v}(k)$ are zero mean Gaussian white noise sequences with

$$
\operatorname{Cov}[\mathbf{w}(k)]=\left[\begin{array}{cc}
(0.06)^{2} & 0 \\
0 & (0.08)^{2}
\end{array}\right] \quad \text { and } \quad \operatorname{Cov}[\mathbf{v}(k)]=\left[\begin{array}{cc}
(0.05)^{2} & 0 \\
0 & (0.04)^{2}
\end{array}\right]
$$

Generate $\mathbf{u}(k)$ PRBS input signal using following sequence of MATLAB commands $u k=\operatorname{zeros}(2,500) ;$
$S k=\operatorname{sign}(\operatorname{randn}(2,50))$;
$j k=0 ; u k 1=0.5 ; u k 2=-0.6 ;$
for $k=1: 500$

$$
\begin{aligned}
& \text { if }(\operatorname{rem}(k, 10)==0) \\
& j k=j k+1 ; \\
& \quad u k 1=0.5^{*} S k(1, j k) ; \quad u k 2=0.6^{*} S k(2, j k) ;
\end{aligned}
$$

end
$u k(1, k)=u k 1 ; u k(2, k)=u k 2 ;$
end

- Step 3: Using data generated in Step 2 for output 1, develop a 2 'th order ARX model of the form

$$
\begin{aligned}
y(k)= & -a_{1} y(k-1)-a_{2} y(k-2)+b_{1} u_{1}(k-1)+b_{2} u_{1}(k-2) \\
& +\beta_{1} u_{2}(k-1)+\beta_{2} u_{2}(k-2)+e(k)
\end{aligned}
$$

Parameters of this model can be identified using the following algorithm

$$
\begin{gathered}
\mathbf{M}=\left[\begin{array}{cccccc}
-y(2) & -y(1) & u_{1}(2) & u_{1}(1) & u_{2}(2) & u_{2}(1) \\
-y(3) & -y(2) & u_{1}(3) & u_{1}(2) & u_{2}(3) & u_{2}(2) \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
-y(N-1) & -y(N-2) & u_{1}(N-1) & u_{1}(N-2) & u_{2}(N-1) & u_{2}(N-2)
\end{array}\right] \\
\mathbf{Y}=\left[\begin{array}{lllll}
y(3) & y(4) & \ldots & y(N-1) & y(N)
\end{array}\right]^{T} \\
\boldsymbol{\theta}=\left[\begin{array}{llllll}
a_{1} & a_{2} & b_{1} & b_{2} & \beta_{1} & \beta_{2}
\end{array}\right]^{T} \\
\widehat{\boldsymbol{\theta}}=\left[\begin{array}{lll}
\left.\mathbf{M}^{T} \mathbf{M}\right]^{-1} \mathbf{M}^{T} \mathbf{Y}
\end{array}\right.
\end{gathered}
$$

- Step 4: Graphical presentation of results

Figure 1: Find predicted output as

$$
\widehat{\mathbf{Y}}=\mathbf{M} \widehat{\theta}
$$

and compare vectors $\widehat{\mathbf{Y}}$ and \mathbf{Y} in same figure.
Figure 2 and 3: Plot input sequences $u k(1,:)$ and $u k(2,:)$ using MATLAB function 'stairs'

Figure 4: Compute model residual vector

$$
\mathbf{E}=\mathbf{Y}-\widehat{\mathbf{Y}}
$$

and plot it.

