# Advanced Process Control Quiz 

## One hour Close Book Examination

## - Linear Perturbation Models

- Continuous Time

$$
\begin{align*}
\frac{d \mathbf{x}}{d t} & =\mathbf{A} \mathbf{x}+\mathbf{B u}+\mathbf{H d}  \tag{1}\\
\mathbf{y}(t) & =\mathbf{C x}(t) \tag{2}
\end{align*}
$$

- Discrete Time

$$
\begin{align*}
\mathbf{x}(k+1) & =\boldsymbol{\Phi} \mathbf{x}(k)+\boldsymbol{\Gamma} \mathbf{u}(k)  \tag{3}\\
\mathbf{y}(k) & =\mathbf{C x}(k) \tag{4}
\end{align*}
$$

- Discretization methods
- Exact method

$$
\begin{aligned}
\mathbf{\Phi} & =\Psi \exp (\Lambda t) \Psi^{-1} \\
\Gamma & =\int_{0}^{T} \exp (\mathbf{A} \tau) \mathbf{B} d \tau=(\mathbf{\Phi}-\mathbf{I}) \mathbf{A}^{-1} \mathbf{B}
\end{aligned}
$$

- Euler method

$$
\mathbf{\Phi}=\mathbf{I}+T \mathbf{A} \quad \text { and } \quad \Gamma=T \mathbf{B}
$$

- Frobenious norm of a $(n \times m)$ matrix $\mathbf{A}$ with elements $a_{i j}$ is given as

$$
\|\mathbf{A}\|_{F}=\left[\sum_{i} \sum_{j}\left|a_{i j}\right|^{2}\right]^{1 / 2}
$$

1. Dynamic model for a mechanical system (single link manipulator with flexible joints) is given by

$$
\begin{aligned}
I \frac{d^{2} \theta_{1}}{d t^{2}}+M g L \sin \left(\theta_{1}\right)+\kappa\left(\theta_{1}-\theta_{2}\right) & =0 \\
J \frac{d^{2} \theta_{2}}{d t^{2}}-\kappa\left(\theta_{1}-\theta_{2}\right) & =U
\end{aligned}
$$

where $u$ represents manipulated torque input and $(I, J, M, L, \kappa)$ represent model parameters.
(a) Defining state variables as

$$
\mathbf{X}_{1}=\theta_{1}, \mathbf{X}_{2}=\frac{d \theta_{1}}{d t}, \mathbf{X}_{3}=\theta_{2}, \mathbf{X}_{4}=\frac{d \theta_{4}}{d t}
$$

and measured outputs as

$$
\mathbf{Y}_{1}=\mathbf{X}_{1}, \mathbf{Y}_{2}=\mathbf{X}_{3}
$$

rearrange the dynamic model in the standard form

$$
\begin{aligned}
& \frac{d \mathbf{X}_{i}}{d t} \\
&=\mathbf{C X}
\end{aligned} \mathbf{f}_{i}(\mathbf{X}, U) \quad \text { for } \quad i=1,2,3,4
$$

where $\mathbf{f}_{i}(\mathbf{X}, U)$ represents i'th elements of function vector $\mathbf{F}(\mathbf{X}, U)$ and $\mathbf{C}$ represents observation matrix that relates states to the measured outputs. (4 points)
Hint: Note that $d \mathbf{X}_{1} / d t=\mathbf{X}_{2}$ and a similar relationship exists between $\mathbf{X}_{3}$ and $\mathbf{X}_{4}$.
(b) Find the Jacobian matrices

$$
\mathbf{A}=\left[\frac{\partial \mathbf{F}}{\partial \mathbf{X}}\right] \quad \text { and } \quad \mathbf{B}=\left[\frac{\partial \mathbf{F}}{\partial U}\right]
$$

appearing in the linear perturbation model (1-2). Express elements of these matrices in terms of the steady state vector $\overline{\mathbf{X}}=\left[\begin{array}{llll}\overline{\mathbf{X}}_{1} & \overline{\mathbf{X}}_{2} & \overline{\mathbf{X}}_{3} & \overline{\mathbf{X}}_{4}\end{array}\right]^{T}$ and steady state input $\bar{U}$
2. Consider a continuos time linear perturbation model with

$$
\mathbf{A}=\left[\begin{array}{ll}
-3 & 2 \\
0 & -1
\end{array}\right] ; \mathbf{B}=\left[\begin{array}{ll}
-1 & 1 \\
1 & 1
\end{array}\right]
$$

(a) Diagonalize matrix $\mathbf{A}$ as $\mathbf{A}=\Psi \Lambda \Psi^{-1}$ using eigen values and eigen vectors of $\mathbf{A}$. Comment upon the asymptotic stability behavior of the unforced system using eigen values of matrix A. (4 points)
(b) It is desired to convert the given continuous time model to a discrete time model of the form (3-4) using the exact method. Find matrices $\Phi, \Gamma$ for the discrete time linear model with $T=1$ using exact method and report eigen values of $\Phi$. (4 points)
(c) Suppose discretization of the continuous time system is carried out using the Euler's method i.e. $[\Phi]_{\text {Euler }}=\mathbf{I}+T \mathbf{A}$. Find the error in discretization caused by Euler's approximation

$$
\Delta \Phi=[\Phi]_{\text {Exact }}-[\Phi]_{\text {Euler }}
$$

and find the Frobenious norm of error matrix $\Delta \Phi$. (3 points)

