Advanced Process Control
 Mid-semester Examination
 (2 hours and 25 Marks)

1. Consider an ARMA process

$$
\begin{equation*}
v(k)=\alpha v(k-1)+e(k)+\beta e(k-1) \tag{1}
\end{equation*}
$$

where $\{e(k)\}$ is a zero mean white noise process with variance λ^{2}. It can be shown that stochastic process $\{v(k)\}$ has zero mean.
(a) Derive expressions for cross-covariance $r_{v e}(1)=E[v(k) e(k-1)]$
(b) Derive expressions for auto-covariance $r_{v}(1)=E[v(k) v(k-1)]$.
2. Consider Box-Jenkin's model

$$
y(k)=\frac{q^{-1}+0.5 q^{-2}}{\left(1-0.5 q^{-1}\right)\left(1-0.8 q^{-1}\right)} u(k)+\frac{1+0.5 q^{-1}}{\left(1-0.8 q^{-1}\right)} e(k)
$$

Derive one step prediction

$$
\begin{aligned}
\widehat{y}(k \mid k-1) & =[H(q)]^{-1} G(q) u(k)+\left[1-(H(q))^{-1}\right] y(k) \\
y(k) & =\widehat{y}(k \mid k-1)+e(k)
\end{aligned}
$$

and express dynamics of $\widehat{y}(k \mid k-1)$ as a time domain difference equation.
3. Consider a coupled tank system in which dynamics of levels in the two tanks is governed by

$$
\frac{d \mathbf{x}}{d t}=\left[\begin{array}{ll}
-3 & 2 \\
0 & -1
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
-1 \\
1
\end{array}\right] u
$$

where x denotes perturbations in level and u denotes perturbations in inlet flow.
(a) It is desired to control this system (at the setpoint equal to the origin) using a feedback control law of the form

$$
u=-\left[\begin{array}{ll}
\alpha & \beta
\end{array}\right] \mathbf{x}
$$

Determine the state space model (differential equation) that governs the closed loop dynamics in terms of unknowns (α, β). (2 marks)
(b) Determine, if it exists, controller gains $\left[\begin{array}{ll}\alpha & \beta\end{array}\right]$ such that the state transition matrix for the closed loop system has eigenvalues at the roots of the following quadratic equation (4 marks)

$$
\lambda^{2}+11 \lambda+30=0
$$

4. Consider a continuos time linear perturbation model

$$
\begin{gathered}
\frac{d \mathbf{x}}{d t}=\mathbf{A} \mathbf{x}+\mathbf{B u} \\
\mathbf{A}=\left[\begin{array}{ccc}
-2 & 1 / 2 & 1 / 2 \\
1 & -3 / 2 & -1 / 2 \\
1 & 1 / 2 & -5 / 2
\end{array}\right] \text { and } \mathbf{B}=\left[\begin{array}{cc}
-1 & 1 \\
0 & 1 \\
2 & -1
\end{array}\right] \mathbf{u}
\end{gathered}
$$

Eigenvalues of matrix A are -1, -2 and -3 and the continuous time system is asymptotically stable. Suppose discretization of the continuous time system is carried out using the Euler's method i.e. $[\Phi]_{\text {Euler }}=\mathbf{I}+T \mathbf{A}$. Then, find the range of sampling time T for which the discrete time model will retain the stability characteristics of the continuous time system. (7 marks)
Hint: If matrix A is diagonalizable, can you relate eigenvalues of \mathbf{A} with eigenvalues of $[\Phi]_{\text {Euler }}$?

