
Advanced Process Control
(Time: 3 hours)

End Semester Examination (40 Marks)
Instructions. Closed Book and Closed Notes examination.

Solution Key

1. Pole placement controller and Kalman predictor design: Consider the following
difference equation

x(k + 1) =

[
1/2 1/2
−1/2 1/2

]
x(k) +

[
−2
2

]
u(k) +

[
2
2

]
w(k)

y(k) =
[

0 1
]
x(k) + v(k)

w(k) ∼ N(0, 1/4) and v(k) ∼ N(0, 1/4)

(a) It is desired to develop a state feedback control law of the form

u(k) = −Gx(k)

Find matrix G such that the poles of (Φ − ΓG) are placed at q = 0.25 ± 0.25j.
(6 marks)
Soln.: Approach 1: Let G =

[
a b

]
. Then, the closed loop matrix is

(Φ− ΓG)

[
1/2 1/2
−1/2 1/2

]
−
[
−2
2

] [
a b

]
=

[
1/2 + 2a 1/2 + 2b
−1/2− 2a 1/2− 2b

]
and the corresponding characteristic equation is

det [λI−(Φ− ΓG)] = 0

(λ− 1/2− 2a)(λ− 1/2 + 2b) + (1/2 + 2b)(1/2 + 2a) = 0

λ2 + [(−1/2− 2a) + (−1/2 + 2b)]λ+ C = 0

λ2 + [−1− 2a+ 2b)]λ+ C = 0

C = −(1/2 + 2a)(−1/2 + 2b) + (1/2 + 2b)(1/2 + 2a)

= −(−1/4 + b− a+ 4ab) + (1/4 + a+ b+ 4ab)

= 1/2 + 2a

λ2 + [−1− 2a+ 2b)]λ+ 1/2 + 2a = 0

The desired characteristic polynomial is

(λ− (1/4)− (1/4)j)(λ− (1/4) + (1/4)j) = 0

(λ− (1/4))2 + (1/16) = 0

λ2 − (λ/2) + 1/8 = 0

1



Equating coeffi cients of the closed loop characteristic polynomial with the desired
characteristic polynomial, we have

1/2 + 2a = 1/8⇒ a = −3/16

[−1− 2a+ 2b)] = −1/2

2(b− a) = 1/2⇒ b = 1/16

or
G =

[
−3/16 1/16

]
=
[
−0.1875 0.0625

]
Approach 2: Transfer function for the given system is

y(k) =
2q

q2 − q + 0.5
u(k)

and the controllable canonical realization becomes

x̃(k + 1) =

[
1 −1/2
1 0

]
x̃(k) +

[
1
0

]
u(k)

y(k) =
[

2 0
]
x̃(k)

The observer designed in the transformed domain

G̃ =
[
−1/2 3/8

]
and the transformation matrix to recover the G is

T =

[
0 1/2

1/2 1/2

]
(b) For the dynamic system described above, set up equations for designing the

steady state Kalman predictor of the form

x̂(k + 1) = Φx̂(k|) + Γu(k) + L [y(k)−Cx̂(k)]

where L represents steady state Kalman gain. (6 marks).
Note: Algebraic Riccati Equations are as follows

P = ΦPΦT + Q− LCPΦT

L = ΦPCT
(
R + CPCT

)−1
where matrix P is of the form

P =

[
a b
b c

]
You are NOT expected to solve the resulting equations. Only state the equations
in terms of unknowns (a,b,c).

2



Soln.: Let

P =

[
a b
b c

]
and

R + CPCT = (1/4) +
[

0 1
] [ a b

b c

] [
0
1

]
= (1/4) + c = (1/4) + c =

4c+ 1

4

ΦPCT =

[
1/2 1/2
−1/2 1/2

] [
a b
b c

] [
0
1

]
=

[
1/2 1/2
−1/2 1/2

] [
b
c

]
=

[
(b+ c)/2
(c− b)/2

]
L =

2

(4c+ 1)

[
(b+ c)
(c− b)

]

Q =

[
2
2

]
(1/4)

[
2 2

]
=

[
1 1
1 1

]
ΦPΦT =

[
1/2 1/2
−1/2 1/2

] [
a b
b c

] [
1/2 −1/2
1/2 1/2

]
=

[
(1/2)(a+ b) (1/2)(b+ c)
1/2(b− a) 1/2(c− b)

] [
1/2 −1/2
1/2 1/2

]
=

[
(1/4)(a+ 2b+ c) (1/4)(c− a)

1/4(c− a) 1/4(c− 2b+ a)

]

LCPΦT =
2

(4c+ 1)

[
(b+ c)
(c− b)

] [
0 1

] [ a b
b c

] [
1/2 −1/2
1/2 1/2

]
=

2

(4c+ 1)

[
(b+ c)
(c− b)

] [
b c

] [ 1/2 −1/2
1/2 1/2

]
=

2

(4c+ 1)

[
(b+ c)
(c− b)

] [
(1/2)(b+ c) (1/2)(c− b)

]
=

2

(4c+ 1)

[
(1/2)(b+ c)2 (1/2)(c2 − b2)
(1/2)(c2 − b2) (1/2)(c− b)2

]

[
a b
b c

]
=

[
(1/4)(a+ 2b+ c) (1/4)(c− a)

1/4(c− a) 1/4(c− 2b+ a)

]
+

[
1 1
1 1

]
− 2

(4c+ 1)

[
(1/2)(b+ c)2 (1/2)(c2 − b2)
(1/2)(c2 − b2) (1/2)(c− b)2

]
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We arrive at the following three equations in three unknowns

a = (1/4)(a+ 2b+ c) + 1− (b+ c)2

(4c+ 1)

b = (1/4)(c− a) + 1− (c2 − b2)
(4c+ 1)

c = 1/4(c− 2b+ a) + 1− (b− c)2
(4c+ 1)

which have to be solved simultaneously.

2. Stability, State Estimation and State Realization

(a) Consider the following difference equation representing dynamic behavior of a
satellite.

x(k + 1) =

[
1 T
0 1

]
x(k) +

[
(T 2)/2
T

]
u(k)

y(k) =
[

1 0
]
x(k)

where T represents the sampling interval. Is this system observable and reachable
for any choice of the sampling time T ? (4 marks)
Soln.: Observability matrix for the system is

Wo =

[
C
CΦ

]
=

[
1 0
1 T

]

Det(Wo) = T 6= 0 for any T > 0

Rank(Wo) = 2 for any T > 0

and the system is observable fo0r any choice of sampling time T > 0.
Reachability matrix for the system is

Wc =
[

Γ ΦΓ
]

=

[
T 2/2 3T 2/2
T T

]

Det(Wc) = −T 3 6= 0 for any T > 0

Rank(Wc) = 2 for any T > 0

and the system is reachable for any choice of sampling time T > 0.

(b) Consider a discrete time system

x(k + 1) =

[
0.5 1
−0.5 0.5

]
x(k)

4



Determine whether the following function below qualifies to be a Lyapunov func-
tion for this system. (5 marks)

V [x(k)] = [x2(k)]2 + [x1(k) + 2x2(k)]2

Soln.: Approach 1: Since V [x(k)] is expressed as sum of two squares,

V [x(k)] > 0 for any x(k) 6= 0

can be expressed as follows

V [x(k)] = [x1(k)]2 + 4x1(k)x2(k) + 5 [x2(k)]2

= x(k)T
[

1 2
2 5

]
x(k)

∆V (x) = x(k)T
[
ΦTPΦ−P

]
x(k)

ΦTPΦ−P =

[
1/2 −5/4
−5/4 17/4

]
−
[

1 2
2 5

]
=

[
−1/2 −13/4
−13/4 −3/4

]
Checking definiteness of matrix ΦTPΦ−P:
Method 1: Find eigenvalues of

(
ΦTPΦ−P

)
det
[
λI− (ΦTPΦ−P)

]
= 0

λ2 +
5

4
λ− 163

16
= 0

Roots of this equation are

λ1 = −3.8774 and λ2 = 2.6274

Thus,
(
ΦTPΦ−P

)
is an indefinite matrix and V [x(k)] does not qualify to be a

Lyapunov function.
Method 2: Check for positive definiteness of -

(
ΦTPΦ−P

)
−
[
ΦTPΦ−P

]
=

[
1/2 13/4
13/4 3/4

]
Checking determinant of the minors

1/2 > 0

(1/2)(3/4)− (169/16) < 0

Thus, −
[
ΦTPΦ−P

]
is indefinite and V [x(k)] does not qualify to be a Lyapunov

function.
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Approach 2: Alternatively, V [x(k)] can be expressed as follows

V [x(k)] = [x1(k)]2 + 4x1(k)x2(k) + 5 [x2(k)]2

= x(k)T
[

1 4
0 5

]
x(k)

and the procedure outlined in Approach 1 can be be followed. The conclusions
reached regarding suitability of V [x(k)] as Lyapunov function through this choice
of representing P matrix are identical to that of Approach 1.

(c) For the following model identified from input-output data

y(k) =
q − 1

(q − 0.5)(q − 0.4)
u1(k) +

2q + 1

(q − 0.4)
u2(k) +

(q + 0.6)

(q − 0.5)
e(k)

where {e(k)} is a zero mean white noise sequence with variance 0., derive state
realization

x(k + 1) = Φx(k) + Γu(k) + Le(k)

y(k) = Cx(k) + Du(k)+e(k)

in the observable canonical form . (7 marks)
Soln.:Given transfer function can be expressed as follows

y(k) =
q − 1

(q − 0.5)(q − 0.4)
u1(k) +

(2q + 1)(q − 0.5)

(q − 0.4)(q − 0.5)
u2(k)

+
(q + 0.6)(q − 0.4)

(q − 0.5)(q − 0.4)
e(k)

A(q) = (q − 0.5)(q − 0.4) = q2 − 0.9q + 0.2

(2q + 1)(q − 0.5) = 2q2 − 0.5

(q + 0.6)(q − 0.4) = q2 + 0.2q − 0.24

y(k) =
q − 1

A(q)
u1(k) +

2q2 − 0.5

A(q)
u2(k)

+
q2 + 0.2q − 0.24

A(q)
e(k)

Since degree of denominator and numerator polynomials are identical for the
transfer function w.r.t. u2(k), it can be re-written as follows

2q2 − 0.5

A(q)
=

2q2 − 0.5

q2 − 0.9q + 0.2
− 2 + 2

=
0.18q − 0.9

q2 − 0.9q + 0.2
+ 2
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Similarly,

q2 + 0.2q − 0.24

A(q)
=

q2 + 0.2q − 0.24

q2 − 0.9q + 0.2
− 1 + 1

=
1.1q − 0.44

q2 − 0.9q + 0.2
+ 1

Thus, the given model can be rewritten as follows

ỹ(k) =
q − 1

A(q)
u1(k) +

0.18q − 0.9

A(q)
u2(k)

+
1.1q − 0.44

A(q)
e(k)

y(k) = ỹ(k) + 2u2(k) + e(k)

Observable canonical realization for ỹ(k) can be written by observing coeffi cients
of transfer functions

x(k + 1) =

[
0.9 1
−0.2 0

]
x(k) +

[
1 0.18
−1 −0.9

] [
u1(k)
u2(k)

]
+

[
1.1
−0.44

]
e(k)

ỹ(k) =
[

1 0
]
x(k)

y(k) =
[

1 0
]
x(k) +

[
0 2

] [ u1(k)
u2(k)

]
+ e(k)

3. Predictive Control and Model Matching Control Design

(a) It is desired to develop a conventional MPC type predictive controller using a
model of form

x(k + 1) =

[
1 1/2
1/2 1

]
x(k) +

[
2
4

]
u(k)

y(k) =
[

1 −1
]
x(k) + e(k)

and open loop observer

x̂(k) = Φx̂(k − 1) + Γu(k − 1)

e(k) = y(k)− Cx̂(k)

using two step ahead predictions and control horizon equal to two.

i. At sampling instant k, derive two step ahead future predictions using the
model with the initial condition as x̂(k) and arrange the predictions in fol-
lowing matrix equation

Y(k) =

[
ŷ(k + 1|k)
ŷ(k + 2|k)

]
= Sx̂(k) + GU(k) + Le(k)

where matrices S, G are L are obtained using given model matrices (Φ,Γ, C)
and

U(k) =

[
u(k|k)

u(k + 1|k)

]
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(3 marks)
Soln.: In the conventional MPC formulation, to carry out predictions given
future inputs

{u(k|k),u(k + 1|k)}
, the model equations are used as follows

x̂(k + 1|k) = Φx̂(k) + Γu(k|k)

x̂(k + 2|k) = Φx̂(k + 1|k) + Γu(k + 1|k)

= Φ2x̂(k) + ΦΓu(k|k) + Γu(k + 1|k)

Using model residue e(k) for compensating model plant mismatch, output
predictions become

ŷ(k + 1|k) = CΦx̂(k) + CΓu(k|k) + e(k)

ŷ(k + 2|k) = CΦ2x̂(k) + CΦΓu(k|k) + CΓu(k + 1|k) + e(k)

[
ŷ(k + 1|k)
ŷ(k + 2|k)

]
=

[
CΦ
CΦ2

]
x̂(k) +

[
I
I

]
e(k)

+

[
CΓ 0
CΦΓ CΓ

] [
u(k|k)

u(k + 1|k)

]
ii. Let

R(k) =

[
r(k + 1)
r(k + 2)

]
define vector of future setpoints. Then, a control law that minimizes two
norm of the future prediction error

E(k) = R(k)−Y(k)

is given by setting future error E(k) = 0. Thus, find vector U(k) that will
meet constraint R(k) = Y(k) at each sampling instant. (3 marks).
Soln.: Substituting the values[

ŷ(k + 1|k)
ŷ(k + 2|k)

]
=

[
0.5 −0.5
0.25 −0.25

]
x̂(k) +

[
1
1

]
e(k)

+

[
−2 0
−1 −2

]
U(k)

Using constraint
R(k) = Y(k)

it follows that[
−2 0
−1 −2

]
U(k) = R(k)−

[
0.5 −0.5
0.25 −0.25

]
x̂(k)−

[
1
1

]
e(k)

8



U(k) =

[
−0.5 0
0.25 −0.5

]
R(k)−

[
−0.25 0.25

0 0

]
x̂(k)

−
[
−0.5
−0.25

]
e(k)

(b) Consider process governed by

x(k + 1) = Φx(k) + Γu(k) (1)

y(k) = Cx(k) (2)

Further assume that number of manipulated inputs equals the number of con-
trolled outputs. It is desired to arrive at a state feedback control law such that
the output dynamics is governed by

y(k + 1) = Ay(k) + (I−A)r(k) (3)

where r(k) represents the setpoint.

i. Find u(k) as a function of x(k) such that the dynamics of y(k) generated by
combining equations (1)-(2) exactly matches dynamics of y(k) given by (3).
Does it yield a state feedback control law? (4 marks)
Soln.: Combining model equations

Cx(k + 1) = y(k + 1) = CΦx(k) + CΓu(k)

= Ay(k) + (I−A)r(k)

= ACx(k) + (I−A)r(k)

CΓu(k) = [AC−CΦ] x(k) + (I−A)r(k)

Since number of inputs are equal to the number of outputs, if matrix CΓ is
invertible, then it follows that

u(k) = [CΓ]−1 {[AC−CΦ] x(k) + (I−A)r(k)}

Note: In general, matrices C and Γ are NOT square matrices and hence not
invertible. Thus, any solution that involves inverses of these matrices is not
acceptable as no mention was made in the question regarding the dimensions
of these matrices.

ii. Is there any condition that needs to be satisfied by some of the model matrices
for such control law to exist? (2 marks)

• Soln.

Rank(CΓ) = No. of Manipulated Inputs

= No. of Controlled Outputs

[AC−CΦ] 6= [0] (i.e. Null Matrix)
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