Advanced Process Control (Time: 3 hours) End Semester Examination (40 Marks) Instructions. Closed Book and Closed Notes examination.

1. **Pole placement controller and Kalman predictor design:** Consider the following difference equation

$$\mathbf{x}(k+1) = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} -2 \\ 2 \end{bmatrix} u(k) + \begin{bmatrix} 2 \\ 2 \end{bmatrix} w(k)$$
$$y(k) = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{x}(k) + v(k)$$
$$w(k) \sim N(0, 1/4) \text{ and } v(k) \sim N(0, 1/4)$$

(a) It is desired to develop a state feedback control law of the form

$$u(k) = -G\mathbf{x}(k)$$

Find matrix G such that the poles of $(\Phi - \Gamma G)$ are placed at $q = 0.25 \pm 0.25j$. (6 marks)

(b) For the dynamic system described above, **set up equations** for designing the steady state Kalman predictor of the form

$$\widehat{\mathbf{x}}(k+1) = \Phi \widehat{\mathbf{x}}(k|) + \Gamma \mathbf{u}(k) + \mathbf{L} [y(k) - \mathbf{C} \widehat{\mathbf{x}}(k)]$$

where **L** represents steady state Kalman gain. (6 marks). **Note:** Algebraic Riccati Equations are as follows

$$\mathbf{P} = \Phi \mathbf{P} \Phi^T + \mathbf{Q} - \mathbf{L} \mathbf{C} \mathbf{P} \Phi^T$$
$$\mathbf{L} = \Phi \mathbf{P} \mathbf{C}^T \left(\mathbf{R} + \mathbf{C} \mathbf{P} \mathbf{C}^T \right)^{-1}$$

where matrix \mathbf{P} is of the form

$$\mathbf{P} = \left[\begin{array}{cc} a & b \\ b & c \end{array} \right]$$

You are NOT expected to solve the resulting equations. Only state the equations in terms of unknowns (a,b,c).

2. Stability, State Estimation and State Realization

(a) Consider the following difference equation representing dynamic behavior of a satellite.

$$\mathbf{x}(k+1) = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} (T^2)/2 \\ T \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}(k)$$

where T represents the sampling interval. Is this system observable and reachable for any choice of the sampling time T? (4 marks) (b) Consider a discrete time system

$$\mathbf{x}(k+1) = \begin{bmatrix} 0.5 & 1\\ -0.5 & 0.5 \end{bmatrix} \mathbf{x}(k)$$

Determine whether the following function below qualifies to be a Lyapunov function for this system (5 marks)

$$V[\mathbf{x}(k)] = [x_2(k)]^2 + [x_1(k) + 2x_2(k)]^2$$

(c) For the following model identified from input-output data

$$y(k) = \frac{q-1}{(q-0.5)(q-0.4)}u_1(k) + \frac{2q+1}{(q-0.4)}u_2(k) + \frac{(q+0.6)}{(q-0.5)}e(k)$$

where $\{e(k)\}\$ is a zero mean white noise sequence with variance 0., derive state realization

$$\mathbf{x}(k+1) = \mathbf{\Phi}\mathbf{x}(k) + \mathbf{\Gamma}u(k) + \mathbf{L}e(k)$$
$$\mathbf{y}(k) = \mathbf{C}\mathbf{x}(k) + \mathbf{D}u(k) + e(k)$$

in the observable canonical form . (7 marks)

3. Predictive Control and Model Matching Control Design

(a) It is desired to develop a conventional MPC type predictive controller using a model of form

$$\mathbf{x}(k+1) = \begin{bmatrix} 1 & 1/2 \\ 1/2 & 1 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} 2 \\ 4 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 1 & -1 \end{bmatrix} \mathbf{x}(k) + e(k)$$

and open loop observer

$$\widehat{\mathbf{x}}(k) = \Phi \widehat{\mathbf{x}}(k-1) + \Gamma u(k-1) e(k) = y(k) - C \widehat{\mathbf{x}}(k)$$

using two step ahead predictions and control horizon equal to two.

i. At sampling instant k, derive two step ahead future predictions using the model with the initial condition as $\hat{\mathbf{x}}(k)$ and arrange the predictions in following matrix equation

$$\mathbf{Y}(k) = \begin{bmatrix} \widehat{\mathbf{y}}(k+1|k) \\ \widehat{\mathbf{y}}(k+2|k) \end{bmatrix} = \mathbf{S}\widehat{\mathbf{x}}(k) + \mathbf{GU}(k) + \mathbf{L}e(k)$$

where matrices **S**, **G** are **L** are obtained using given model matrices (Φ, Γ, C) and

$$\mathbf{U}(k) = \left[\begin{array}{c} u(k|k) \\ u(k+1|k) \end{array} \right]$$

(3 marks)

ii. Let

$$\mathbf{R}(k) = \left[\begin{array}{c} \mathbf{r}(k+1) \\ \mathbf{r}(k+2) \end{array} \right]$$

define vector of future setpoints. Then, a control law that minimizes two norm of the future prediction error

$$\mathbf{E}(k) = \mathbf{R}(k) - \mathbf{Y}(k)$$

is given by setting future error $\mathbf{E}(k) = \overline{\mathbf{0}}$. Thus, find vector $\mathbf{U}(k)$ that will meet constraint $\mathbf{R}(k) = \mathbf{Y}(k)$ at each sampling instant. (3 marks).

(b) Consider process governed by

$$\mathbf{x}(k+1) = \Phi \mathbf{x}(k) + \mathbf{\Gamma} \mathbf{u}(k) \tag{1}$$

$$\mathbf{y}(k) = \mathbf{C}\mathbf{x}(k) \tag{2}$$

Further assume that number of manipulated inputs equals the number of controlled outputs. It is desired to arrive at a state feedback control law such that the output dynamics is governed by

$$\mathbf{y}(k+1) = \mathbf{A}\mathbf{y}(k) + (\mathbf{I} - \mathbf{A})\mathbf{r}(k)$$
(3)

where $\mathbf{r}(k)$ represents the setpoint.

- i. Find $\mathbf{u}(k)$ as a function of $\mathbf{x}(k)$ such that the dynamics of $\mathbf{y}(k)$ generated by combining equations (1)-(2) exactly matches dynamics of $\mathbf{y}(k)$ given by (3). Does it yield a state feedback control law? (4 marks)
- ii. Is there any condition that needs to be satisfied by some of the model matrices for such control law to exist? (3 marks)
 Justify your answers in each case.