Module I: Introduction and Review of Basic Concepts

[Lecture: 1, 2, 3]

- Quiz I 1. Eigenvalue is associated with
 - a) Square matrix
 - b) Matrix of any dimension
 - c) Row vector
 - d) Column vector

Quiz I 2. Number of eigenvectors associated with every distinct eigenvalue is

- a) One
- b) Two
- c) Infinite
- d) None of these

Quiz I 3. If a square matrix, $A_{n \times n}$ has less than *n* linearly independent eigenvectors, then it can be transformed by similarity transformation to

- a) Diagonal Form
- b) Jordan Form
- c) Either (a) or (b)
- d) None of the above
- Quiz I 4. Equivalence transformation can be applied to
 - a) Square matrix
 - b) Matrix of any dimension
 - c) Row/column vectors
 - d) All of the above

Quiz I 5. Singular value is characteristics of

- a) Square matrix
- b) Matrix of any dimension
- c) Row/column vector
- d) All of the above

Quiz I 6. Singular value is always

- a) Positive
- b) Negative
- c) Zero
- d) Complex

Quiz I 7. Hessian matrix is always

- a) Symmetric
- b) Skew-symmetric
- c) Diagonal
- d) None of the above

Quiz I 8. For a matrix $A_{m \times n}$, where m > n, then the rank of A

- a) Cannot be more than *n*
- b) Is between *m* and *n*
- c) Is equal to *m*
- d) Is always equal to *n*
- Quiz I 9. If the rank of matrix $A_{n \times n}$ is *n*, then it implies that
 - a) $A_{n \times n}$ has *n* linearly independent columns
 - b) $A_{n \times n}$ has *n* linearly independent rows
 - c) None (a) or (b)
 - d) Both (a) and (b)
- Quiz I 10. If one of the eigenvalues of a square matrix $A_{n \times n}$ is zero then it implies that
 - a) Rank of $A_{n \times n}$ is less than n
 - b) Rank of $A_{n \times n}$ is equal to n
 - c) Rank of $A_{n \times n}$ cannot be determined
 - d) None of the above

Quiz I 11. If matrix $A_{n \times n}$ has *n* distinct eigenvalues then its eigenvectors are

- a) Linearly independent
- b) Linearly dependent
- c) Either (a) or (b) depending on its elements
- d) None of the above
- Quiz I 12. Numerical differentiation leads to
 - a) Amplification of noise
 - b) Reduction of noise
 - c) Noise is not affected
 - d) None of the above
- Quiz I 13. Numerical integration leads to
 - a) Amplification of noise
 - b) Reduction of noise
 - c) Noise is not affected
 - d) None of the above

Module II: Static Optimization

[Lecture: 4, 5]

Quiz II 1. Which of the following is true for the sufficient condition for local maximum of J(x) at $x = x^*$ is

a)
$$\left. \frac{dJ}{dx} \right|_{x=x^*} = 0$$

b) $\left. \frac{d^2 J}{dx^2} \right|_{x=x^*} > 0$
c) $\left. \frac{d^2 J}{dx^2} \right|_{x=x^*} < 0$

d) None of these

Quiz II 2. For
$$J(x) = x_1^2 - x_2^2$$
 the point $X = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ is a

- a) Minimum
- b) Maximum
- c) Saddle
- d) None of these

Quiz II 3. The minimum value of the function $J(x) = x_1^2 + x_2^2$ subject to the constraint $x_1 - x_2 = 5$

- a) 0
- b) 6.25
- c) 12.5
- d) 15

Quiz II 4. For the function $J(x) = x_1^2 + x_2^2$ subject to the constraints $x_1 - x_2 \le 5$; $x_1 - x_2 \ge 1$ the point

$$X = \begin{bmatrix} 0.5 & -0.5 \end{bmatrix}^T$$
 is a

- a) Local minima
- b) Global minima
- c) Local Maxima
- d) Global Maxima

Quiz II 5. For the function $J(x) = x_2 - x_1^2$ subject to the constraints $1 - x_1^2 - x_2^2 = 0$ the point $X = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$ is a

- a) Local minima
- b) Global minima
- c) Local Maxima
- d) Global Maxima
- Quiz II 6. Which of the following is true for one of the necessary condition of Kuhn-Tucker condition to minimize J(X) subject to $g_j(X) \le 0$ where λ_j is the Lagrangian multiplier
 - a) $\lambda_i \leq 0$
 - b) $\lambda_i \ge 0$
 - c) $\lambda_i < 0$
 - d) None of these
- Quiz II 7. Which of the following is true for the sufficient condition of Kuhn-Tucker condition To maximize J(X) subject to $g_i(X) \le 0$
 - a) J(X) is strictly convex and all $g_i(X) \le 0$ is convex
 - b) J(X) is strictly concave and all $g_i(X) \le 0$ is convex
 - c) J(X) is convex and all $g_i(X) \le 0$ is convex
 - d) None of these

Module III: Calculus of Variation

[Lecture: 6, 7, 8]

Quiz III 1. Which of the following qualify as functional?

a)
$$J = \int_{0}^{t_{f}} (2x(t)^{2} + 1) dt$$

b) $J = \int_{0}^{t_{f}} (x(t)^{2}) dt$
c) $J = 2t^{2} + 5$
d) All of the above

Quiz III 2. Which of the following definition of differential of the function and variation of the functional are true?

a)
$$\Delta f = \left(\frac{\partial J}{\partial x}\right) \delta x \& df = (\dot{f}) \Delta t$$

b) $\Delta f = \left(\frac{\partial J}{\partial x}\right) \& df = \dot{f}$
c) $df = \left(\frac{\partial J}{\partial x}\right) \delta x \& \Delta f = (\dot{f}) \Delta t$

- d) None of the above
- Quiz III 3. For a function $f(t) = t^2 + 2t$ which pair gives the increment (Δf) and derivative (df) of the function f(t).
 - a) $\Delta f = 2(t+1)\Delta t + (\Delta t)^2$ & $df = 2(t+1)\Delta t$
 - b) $df = 2(t+1)\Delta t + (\Delta t)^2$ & $\Delta f = 2(t+1)\Delta t$
 - c) Both are same if Δt is very small and higher order term in Δt are neglected.
 - d) None of the above.

Quiz III 4. First Variation of the functional $J(x(t)) = \int_{0}^{t_{f}} x(t)^{2} dt$

a)
$$\delta J = \int_{0}^{t_{f}} \left(2x(t)\delta x(t) + \left(\delta x(t)\right)^{2} \right) dt$$

b)
$$\delta J = \int_{0}^{t_{f}} \left(2x(t) + \left(\delta x(t)\right) \right) dt$$

c)
$$\delta J = \int_{0}^{t_{f}} \left(2x(t)\delta x(t) \right) dt$$

- d) None of the above.
- Quiz III 5. For relative minima of the functional J(x(t)) which of the following is/are true?
 - a) $\delta J < 0 \& \delta^2 J > 0$
 - b) $\delta J \ge 0 \& \delta^2 J > 0$
 - c) $\delta J \ge 0 \& \delta^2 J < 0$
 - d) None of the above
- Quiz III 6. According to fundamental theorem of calculus of variation Euler-Lagrange (E-L) Equation is
 - a) Sufficiency Condition for optimality.
 - b) Necessary condition for optimality.
 - c) E-L equations need not be satisfied for optimality
 - d) None of the above
- Quiz III 7. Which of the following expression is correct expression for E-L equation

a)
$$\left(\frac{\partial V}{\partial x}\right) - \left(\frac{\partial V}{\partial \dot{x}}\right) = 0$$

b) $\left(\frac{\partial V}{\partial x}\right) - \frac{d}{dt}\left(\frac{\partial V}{\partial \dot{x}}\right) = 0$
c) $\left(\frac{\partial V}{\partial \dot{x}}\right) - \frac{d}{dt}\left(\frac{\partial V}{\partial x}\right) = 0$

d) None of the above

Module IV: Classical Numerical Methods

[Lecture: 9]

Quiz IV 1. In shooting method the initial guess value of following is needed?

- a) State
- b) Control
- c) Co-state
- d) None of the above

Quiz IV 2. Drawback of shooting method.

- a) Selection of initial guess for control is difficult
- b) Selection of guess control is complicated
- c) Co-state dynamics is generally unstable for stable plant long duration co-state equation propagation is not good
- d) Both (a) and (b)
- Quiz IV 3. Gradient Method focuses on satisfying

a)
$$\left(\frac{\partial H}{\partial U}\right) = 0$$

b) $\left(\frac{\partial H}{\partial \lambda}\right) = 0$
c) $\left(\frac{\partial H}{\partial X}\right) = 0$

d) None of the above

Module V: Linear Quadratic Regulator (LQR) Theory

[Lecture: 11, 12, 13]

Quiz V 1. For performance index minimization sign of weight on control R should

- a) $R \ge 0$
- b) R > 0
- c) R < 0
- d) $R \leq 0$

Quiz V 2. Select the appropriate choice for condition for optimality of control U

a) $\frac{\partial H}{\partial U} = 0$ b) $\frac{\partial H}{\partial X} = 0$ c) $\frac{\partial H}{\partial \lambda} = 0$ d) $\frac{\partial J}{\partial U} = 0$

Quiz V 3. Which of the following are true in performance index given by

$$J = X^{T}(t_{f})S(t_{f})X(t_{f}) + \frac{1}{2}\int_{t_{0}}^{t_{f}} \left(X^{T}QX + U^{T}RU\right)dt$$

- a) $S(t_f) \ge 0, Q \ge 0$ and $R \ge 0$
- b) $S(t_f) > 0, Q > 0$ and $R \ge 0$
- c) $S(t_f) \ge 0, Q \ge 0$ and R > 0
- d) $S(t_f), Q$ can take any sign and R > 0

- Quiz V 4. Boundary condition on Riccati coefficient P in differential Riccati equation for X_f free condition is.
 - a) $S(t_f)X(t_f)$
 - b) $S(t_f)$
 - c) $X(t_f)$
 - d) $X(t_f)^T S(t_f) X(t_f)$
- Quiz V 5. Which of the following conditions are necessary for stability of LQR solution where $Q = C^T C$
 - a) Riccati coefficient P(t) must be positive definite
 - b) [A, C] Pair must be completely observable
 - c) [A, B] Pair must be completely controllable
 - d) All of the above
- Quiz V 6. Which of the following are true for use of Quadratic cost function

$$J = \frac{1}{2} \int_{t_0}^{t_f} \left(X^T Q X + U^T R U \right) dt$$

- a) Makes further algebra simple
- b) Renders control U Linear in terms of state
- c) Both (a) and (b)
- d) No specific advantage

Quiz V 7. Optimal value of cost function $J^*(x^*(t),t)$

a)
$$J^{*}(x^{*}(t),t) = 0$$

b) $J^{*}(x^{*}(t),t) = \frac{1}{2}x^{*T}(t_{f})P(t_{f})x^{*}(t_{f})$
c) $J^{*}(x^{*}(t),t) = \frac{1}{2}x^{*T}(t)P(t)x^{*}(t)$

d) None of the above

Quiz V 8. The Riccati equation for LQR problem with prescribed degree of stability

- a) $PA + A^T P PBR^{-1}B^T P + Q = 0$
- b) $P(e^{\alpha t}A) + (A^T e^{\alpha t})P PBR^{-1}B^TP + Q = 0$
- c) $P(A+\alpha I)+(A^T+\alpha I)P-PBR^{-1}B^TP+Q=0$
- d) None of the above

Quiz V 9. For Linear quadratic tracking problem, let $X = \begin{bmatrix} X_T & X_N \end{bmatrix}^T$ where X_T : are "m" states which track a signal r_c and X_N : are "n" non tracking states and $Q = \begin{bmatrix} Q_T & 0_{m \times m} \\ 0_{n \times n} & Q_N \end{bmatrix} Q_T, Q_N$ being the weight on states X_T, X_N respectively. Then the performance index is defined as.

a)
$$J = \frac{1}{2} \int_{t_0}^{t_f} (X^T Q X + U^T R U) dt$$

b) $J = \frac{1}{2} \int_{t_0}^{t_f} (X_T^T Q_T X_T + X_N^T Q_N X_N + U^T R U) dt$
c) $J = \frac{1}{2} \int_{t_0}^{t_f} \left(\begin{bmatrix} X_T - r_c \\ X_N \end{bmatrix}^T Q \begin{bmatrix} X_T - r_c \\ X_N \end{bmatrix} + U^T R U \right) dt$

- d) None of the above
- Quiz V 10. LQR solution of systems with parameter inaccuracy the robustness of the controller is ensured because.
 - a) ∂p is identified and used in final control expression
 - b) Control U(t) is independent of p or ∂p
 - c) Due to integral feedback term
 - d) None of the above

Module VII: Overview of Flight Dynamics

[Lecture: 15, 16, 17]

- Quiz VII 1. Steady and constant level flight with zero angle of attack is attained when The
 - a) Lift balances the weight
 - b) Thrust balances weight
 - c) Thrust balances the drag
 - d) Both (a) and (c)
- Quiz VII 2. Rolling motion is created by applying
 - a) Symmetric deflection in the same direction of the ailerons
 - b) Differential force on the ailerons
 - c) Rotation about Z-axis due to rudder deflection
 - d) None of the above
- Quiz VII 3. In tailless aircrafts the combination of elevator and ailerons is known as
 - a) Rudder
 - b) Spoiler
 - c) Elevons
 - d) Flaps
- Quiz VII 4. Coefficient of lift (C_L) at zero angle of attack is zero for
 - a) Cambered airfoil
 - b) Symmetric airfoil
 - c) Both (a) and (b)
 - d) Neither (c) and (d)
- Quiz VII 5. Force balance equations give the
 - a) Translational dynamics
 - b) Rotational dynamics
 - c) Longitudinal dynamics
 - d) Lateral dynamics

Quiz VII 6. Longitudinal motion is mainly controlled using

- a) Rudder
- b) Elevators
- c) Ailerons
- d) None of the above

Quiz VII 7. Phugoid mode of a stable aircraft is typically

- a) Undamped
- b) Lightly damped
- c) Heavily damped
- d) Critically damped

Quiz VII 8. Directional motion is mainly controlled by

- a) Rudder and ailerons
- b) Rudder and elevators
- c) Rudder
- d) Flaps
- Quiz VII 9. Lateral dynamic instabilities are controlled by
 - a) Rudder and elevators
 - b) Ailerons and flaps
 - c) Elevator and ailerons
 - d) Rudder and ailerons

Quiz VII 10. Choose the correct statement

- a) Moments about the aerodynamic centre is constant with varying angle of attack
- b) Moments about the centre of gravity is constant with varying angle of attack
- c) The centre of pressure location does not vary with angle of attack
- d) Both (a) and (c)

Quiz VII 11. For longitudinal stability

- a) Aircraft centre of gravity should be ahead of the aerodynamic centre
- b) Aircraft centre of gravity should be behind the aerodynamic centre
- c) Aircraft centre of gravity should lie on the aerodynamic centre
- d) Location of the centre of gravity does not matter

<u>Module IX: State Dependent Riccati Equation and θ – D</u> <u>Designs</u>

[Lecture: 19]

- Quiz IX 1. For SDRE design out of three necessary conditions which of the condition is always satisfied (or asymptotically)
 - a) $\dot{\lambda} = -\left(\frac{\partial H}{\partial X}\right)$ b) $\frac{\partial H}{\partial U} = 0$ c) $\dot{X} = \left(\frac{\partial H}{\partial \lambda}\right)$
 - d) Both (a) and (b)
- Quiz IX 2. If $A_1(X)$ and $A_2(X)$ are two SDC parameterizations, then another SDC parameterization can be constructed as
 - a) $\alpha(X)A_1(X) + [1 \alpha(X)]A_2(X), \quad 0 \le \alpha(X) \le 1$
 - b) $\alpha(X)A_1(X) + [1 \alpha(X)]A_2(X), \ \alpha(X) \ge 1$
 - c) $[1-\alpha(X)]A_1(X) + \alpha(X)A_2(X), 0 \le \alpha(X) \le 1$
 - d) Both (a) and (c)

Quiz IX 3. Quiz X.3 For the function $f(x) = \cos x$ the SDC parameterization is

a)
$$\left(\frac{\cos x}{x}\right)x$$

b) $\left(\frac{\cos x - 1}{x}\right)x + 1$
c) $1 - \left(\frac{x}{2!} - \frac{x^3}{4!}\right)x$

d) None of these

Quiz IX 4. Which of the statement is not true about SDRE design

- a) Can directly handle unstable and/or nonminimum phase system
- b) Can preserve beneficial nonlinearities
- c) Cannot be used to design servo systems
- d) Can incorporate hard bound on state and control

Quiz IX 5. $\theta - D$ method solves

- a) Riccati equation online
- b) Riccati equation offline
- c) A set of Lyapunov equations online
- d) A set of Lyapunov equations offline

Module X: Dynamic Programming and Adaptive Critic Design

[Lecure: 20, 21]

- Quiz X 1. Bellman's principle of optimality simply states that any portion of the optimal Trajectory is
 - a) Suboptimal
 - b) Not optimal
 - c) Optimal
 - d) None of these

Quiz X 2. The Hamilton-Jacobi-Bellman (HJB) equation is defined as

- a) $\frac{\partial V}{\partial t} + H = 0$ b) $\frac{\partial V}{\partial t} + H_{opt} = 0$
- c) Both (a) and (b)
- d) None of these

Quiz X 3. For the optimal cost function the HJB equation is

- a) Necessary and sufficient
- b) Necessary
- c) Sufficient
- d) None of these

Quiz X 4. SNAC is computationally faster compare to AC because of

- a) Elimination of training of action networks
- b) Elimination of iterative training between action and critic networks
- c) Both (a) and (b)
- d) None of the above

Quiz X 5. For the Approximate dynamic programming costate equation on optimal path is obtained as

a)
$$\lambda_{k} = \frac{\partial \psi_{k}}{\partial X_{k}} + \left(\frac{\partial X_{k+1}}{\partial U_{k}}\right)^{T} \lambda_{k+1}$$

b) $\lambda_{k} = \frac{\partial \psi_{k}}{\partial X_{k}} + \left(\frac{\partial X_{k+1}}{\partial X_{k}}\right)^{T} \lambda_{k+1}$
c) $\lambda_{k} = \frac{\partial X_{k+1}}{\partial X_{k}} + \left(\frac{\partial \psi_{k}}{\partial X_{k}}\right)^{T} \lambda_{k+1}$

d) None of these

Quiz X 6. For the problem minimize

$$J = \frac{1}{2} \int_{0}^{t_{f} \to \infty} (x^{2} + u^{2}) dt \text{ subject to } \dot{x} = -x^{3} + u, \ x(0) = x_{0} \text{ the optimal control is}$$

a)
$$u_{opt} = x^3 + \sqrt{x^6 + x^2}$$

b) $u_{opt} = x^3 - \sqrt{x^6 - x^2}$
c) $u_{opt} = x^3 - \sqrt{x^4 + x^2}$
d) $u_{opt} = x^3 - \sqrt{x^6 + x^2}$

Quiz X 7. For the problem minimize $\mathbf{1}^{t_f}$

$$J = \frac{1}{2} \int_{0}^{7} (x^{2} + u^{2}) dt$$
 subject to $\dot{x} = -x^{3} + u$, $x(0) = x_{0}$ the optimal control is

a)
$$u_{opt} = -x + x^3$$

b) $u_{opt} = x^3 - \sqrt{x^6 - x^2}$

- c) None of these
- d) Difficult to solve

Quiz X 8. For the problem minimize $t_f \rightarrow \infty$

$$J = \frac{1}{2} \int_{0}^{1} (x^{2} + u^{2}) dt$$
 subject to $\dot{x} = -x^{3} + u$, $x(0) = x_{0}$ the optimal control is

a) $u_{opt} = -(x - x^3) - \sqrt{(1 - x^2)^2 + 1}$ b) $u_{opt} = -(x - x^3) + x\sqrt{(1 - x^2)^2 + 1}$

c)
$$u_{opt} = -(x - x^3) - x\sqrt{(1 - x^2)^2 + 1}$$

d)
$$u_{opt} = -(x - x^3) - x \sqrt{(1 - x^2)^2}$$

Module XI: Advanced Numerical Techniques for Optimal <u>Control</u>

[Lecture: 22, 23, 24, 25]

- Quiz XI.1. Multiple shooting method philosophy of the transcription method requires which of the following constraints on the intermediate grid points
 - a) Continuity of the state value at the grid points
 - b) Slope of the state profile should match at the grid points
 - c) Both (a) and (b)
 - d) No such restrictions are needed at the grid points
- Quiz XI.2. Which of the following options are true regarding transcription method philosophy
 - a) Dynamics is handled in continues domain along with static optimization techniques
 - b) Discrete Dynamics is used with dynamic optimization techniques
 - c) Equivalent static optimization problem is posed for a discretized dynamic system
 - d) None of the above
- Quiz XI.3. Choose the appropriate argument for selection of test function $\chi_n = \delta(t t_n)$ in pseudospectral transcription method
 - a) This selection simplifies the inner product of the two continues function $\langle \chi_n, R \rangle$
 - b) The inner product $\langle \chi_n, R \rangle$ gives residue at each point t_n , where n = 1, 2...N
 - c) $\chi_n = \delta(t t_n)$ is a arbitrary selection
 - d) None of the above
- Quiz XI.4. Choose the appropriate option, in descending order of accuracy of selection method of the collocation point for pseudospectral transcription method
 - a) Gauss Radau, Gauss, uniform, Gauss Lobatto
 - b) Gauss Lobatto, Gauss Radau, Gauss, Uniform
 - c) Uniform, Gauss, Gauss Radau, Gauss Lobatto
 - d) Uniform, Gauss Radau, Gauss, Gauss Lobatto

- Quiz XI.5. In pseudospectral method the approximation of the state vector \vec{X} is chosen such as to minimize which of the following residual norm
 - a) $||R|| = ||\hat{X} X||$
 - b) $\|R\| = \|\dot{X} f\|$
 - c) Both (a) and (b)
 - d) None of the above
- Quiz XI.6. Choose appropriate option/s for merits of the Model predictive static programming control philosophy
 - a) No Approximation of the system Dynamics
 - b) Terminal constraints are met as hard constraints
 - c) Provides are closed form control expression
 - d) Both (a) and (b)
- Quiz XI.7. Which of the following argument are true for sensitivity matrix B_k
 - a) Sensitivity matrix gives the information of final time output deviation (ΔY_N) for every small control deviation dU_k at each time step $k = 1, 2 \cdots N 1$
 - b) B_k can be calculated recursively
 - c) $\sum_{k=1}^{N-1} B_k dU_k = dY_N$ forms a under constrained problem and one can aim at

meeting additional objectives

- d) All of the above
- Quiz XI.8. Which are true for Guess control history for MPSP method
 - a) Should be a stabilizing control solution
 - b) Any control history can be considered
 - c) Zero control
 - d) Must be judiciously selected depending on the problem statement.
 - e) None of the above

Quiz XI.9. Optimal control for MPSP method with augmented cost function is defined as

a)
$$\frac{\partial J}{\partial U_k} = 0$$

b) $\frac{\partial J}{\partial dU_k} = 0$

c)
$$\frac{\partial J}{\partial (U_k - dU_k)} = 0$$

- d) None of the above
- Quiz XI.10. In MPSP control derivation the quantity dX_1 is taken zero, which of the following reason are true
 - a) dX_1 is small quantity and hence neglected
 - b) X_1 is deterministic and dX_1 is undefined
 - c) dX_1 is the deviation at time t_0 or k = 1. Since initial conditions are specified and there is no error in first term
 - d) None of the above
- Quiz XI.11. Choose the appropriate choices for merits of MPSP over ADP is/are
 - a) Formulation is simple
 - b) No approximation of system dynamics
 - c) Dynamic optimization is converted to static optimization where costate λ is constant
 - d) All of the above

Module XII: LQ Observer and Kalman Filter Design

[Lecture: 26, 27, 28, 29, 30]

- Quiz XII.1. The necessary and sufficient condition for the existence of the observer Gain
 - a) The system should be controllable
 - b) The system should not be controllable
 - c) The system should not be observable
 - d) The system should be observable
- Quiz XII.2. Which of the following is true for the Kalman filter
 - a) Kalman filter is a band filter circuit
 - b) Kalman filter is a high-pass filter circuit
 - c) Kalman filter is a low-pass filter circuit
 - d) Kalman filter is an algorithm
- Quiz XII.3. Initial value of error covariance matrix
 - a) Does not affect steady state estimation accuracy
 - b) Does affect the convergence time
 - c) Does not affect on performance
 - d) None of these
- Quiz XII.4. Which are the correct assumptions of Kalman filter
 - a) $X(0) \square (\tilde{X}_0, P_0), w(t) \square (0, Q)$ and $v(t) \square (0, R)$ are mutually orthogonal
 - b) w(t) and v(t) are uncorrelated white noise
 - c) Q is Positive semi definite and R is Positive definite
 - d) All of the above
- Quiz XII.5. In Kalman filter, gain at any time
 - a) Depend on current state
 - b) Depend on current measurement
 - c) Independent on current state and measurement
 - d) None of these

Quiz XII.6. In Kalman filter, gain

- a) Should be high if measurement noise is less
- b) Should be high if initial state error are high
- c) Should be low if state model is perfect
- d) All of these
- Quiz XII.7. In Kalman Filter, the value of state covariance matrix Q
 - a) Value of Q high mean in state
 - b) Value of Q high help in convergence of estimate
 - c) Q have no effect on convergence
 - d) If state model is perfect then Q should be small
- Quiz XII.8. In Kalman filter, gain
 - a) Increase if value of P increases
 - b) Increase if value of Q increases
 - c) Increase if value of R decreases
 - d) All of above
- Quiz XII.9. In Kalman filter
 - a) Observability condition should be satisfied
 - b) Controllability condition should be satisfied
 - c) Detect ability condition is sufficient
 - d) None of these
- Quiz XII.10. Which of the following is true for the Kalman filter
 - a) The initial condition of the state, process noise and measurement noise are mutually orthogonal
 - b) The process noise and measurement noise are uncorrelated white noise
 - c) The process noise covariance matrix is positive-semi definite
 - d) The measurement noise covariance matrix is positive-semi definite
- Quiz XII.11. Which of the following is Not true for the continuous-discrete time Kalman filter design
 - a) It works based on the continuous-time prediction and discrete-time correction mechanism
 - b) It is practically useful because the measurement is available at discrete-time steps
 - c) It facilitates only the usage of uniform time-step
 - d) All the above

- Quiz XII.12. Which of the following is Not true for the Extended Kalman filter (EKF) Design
 - a) The EKF is a cure for every nonlinear system
 - b) Linearization can introduce significant error
 - c) The EKF is not truly optimum
 - d) No general convergence is guaranteed
- Quiz XII.13. Which of the following is true for the Kalman filter (KF) design of nonlinear systems
 - a) KF design of nonlinear systems works like the KF design of linear systems
 - b) KF design of nonlinear systems (like EKF) is truly optimum
 - c) The Gaussian input of the nonlinear system does not always produce a Gaussian output
 - d) None of these

Module XIII: Integrated Estimation, Guidance and Control

[Lecture: 31, 32]

- Quiz XIII.1. Partial Integrated guidance and control (PIGC) operates in two loop structure which is as follows
 - a) Commanded latax and body rates are generated in outer and inner loop respectively
 - b) Commanded body rates and fin deflections are generated in outer and inner loop respectively
 - c) Commanded fin deflections and body rates are generated in outer and inner loop respectively
 - d) None of these
- Quiz XIII.2. Nonlinear control design approaches are evolving but are seldom used because of
 - a) They takes lot of effort and tuning to make it work
 - b) They don't have good robustness evaluation tools
 - c) Sometimes they become over conservative (sluggish)
 - d) Both (b) and (c)
- Quiz XIII.3. The major advantages and drawbacks of Single loop IGC design are
 - a) Works very well for large perturbations about the collision triangle
 - b) Design tuning is very difficult
 - c) Control attempts to alter the translational dynamics directly
 - d) Both (b) and (c)
- Quiz XIII.4. The Integrated Estimation and Guidance (IEG) uses the following in the estimation process
 - a) Time to go only
 - b) ZEM only
 - c) Time to go as well as ZEM
 - d) None

Quiz XIII.5. In PIGC

- a) Body rates are output of PIGC
- b) Fin deflections are output of PIGC
- c) Acceleration demands are output of PIGC
- d) None of these

Quiz XIII.6. In IGC

- a) Control and Guidance work in synergy for a common goal
- b) Subsystem weight like actuator can be reduces
- c) Control demand can be reduced for the same performance
- d) Fin deflections are the output of IGC

Module XIV: Linear Quadratic Guassian Design

[Lecture: 33]

- Quiz XIV.1. Problem of LQG design is
 - a) Loss of controllability
 - b) Loss of observability
 - c) Loss of robustness
 - d) None of these

Quiz XIV.2. The neighboring optimum paths exist in a weak sense, if $\left[P(t)-R(t)Q^{-1}(t)R^{T}(t)\right]$ is finite and

- a) $H_{UU}(t) < 0$ and Q(t) < 0
- b) $H_{UU}(t) < 0$ and Q(t) > 0
- c) $H_{UU}(t) > 0$ and Q(t) > 0
- d) $H_{UU}(t) > 0$ and Q(t) < 0

Module XV: Constrained Optimal Control

[Lecture: 34, 35, 36]

- Quiz XV.1. Necessary condition/conditions for constrained control problem is/are
 - a) $\dot{\lambda} = -\left(\frac{\partial H}{\partial X}\right)$ b) $\frac{\partial H}{\partial U} = 0$ c) $H(X, U^*, \lambda) \le H(X, U, \lambda)$ d) Both (a) and(c)
- Quiz XV.2. If the final time is fixed and the Hamiltonian (H) does not depend on time explicitly, then along the optimal trajectory
 - a) $H(X^*, U^*, \lambda^*) = \text{Constant}$
 - b) $H(X^*, U^*, \lambda^*) = 0$
 - c) Can't say
 - d) None of these
- Quiz XV.3. If the final time is free and the Hamiltonian (H) does not depend on time explicitly, then along the optimal trajectory
 - a) $H(X^*, U^*, \lambda^*) = \text{Constant}$
 - b) $H(X^*, U^*, \lambda^*) = 0$
 - c) Can't say
 - d) None of these
- Quiz XV.4. For NTOC system if all the n+1 eigenvalues of the system are real, then U^* switch from +1 to -1 or vice versa at most
 - a) n-1 times
 - b) *n* times
 - c) n+1 times
 - d) n+2 times

Quiz XV.5. The neighboring optimum paths exist in a weak sense, if $\left[P(t)-R(t)Q^{-1}(t)R^{T}(t)\right]$ is finite and

- a) $H_{UU}(t) < 0$ and Q(t) < 0
- b) $H_{UU}(t) < 0$ and Q(t) > 0
- c) $H_{UU}(t) > 0$ and Q(t) > 0
- d) $H_{UU}(t) > 0$ and Q(t) < 0

Module XVI: Optimal Control of Distributed Parameter Systems

- Quiz XVI.1. System dynamics truncation philosophy is utilized in which of the following control method of Distributed parameter systems
 - a) Approximate and Design
 - b) Design and Approximate
 - c) Both (a) and (b)
 - d) None of the above
- Quiz XVI.2. Optimal Nonlinear Dynamic Inversion solution for distributed parameter systems, which of the arguments is/are true for control *U*
 - a) As $X \to X^* : U \to 0$
 - b) As $X \to X^* : U \to U^*$
 - c) As $X \to X^*$ there is no particular bound on control U
 - d) None of the above
- Quiz XVI.3. For class of diffusion problem with linear initial profile x(0, y), which of the following arguments are true regarding the solution accuracy of the problem
 - a) Dependent on the number of grid points on the spatial domain
 - b) Independent of the grid points since the spatial derivative of the initial profile is constant/zero
 - c) Dependent on the grid points up to some extent and then invariant with further increase of number of grid points
 - d) None of the above

- Quiz XVI.4. For discrete actuator case of the Optimal Nonlinear Dynamic Inversion solution for distributed parameter systems, a modified discrete point error dynamics $\dot{E} + KE$ is considered to solve which of the following short comings
 - a) Resulting continues control from continues actuator case is difficult to implement
 - b) Singularity in the control for the special case where weight on the control actuation $\begin{bmatrix} r_1 & r_2 \dots r_{M-1} & r_M \end{bmatrix}$ and grid point width $\begin{bmatrix} w_1 & w_2 \dots w_{M-1} & w_M \end{bmatrix}$, are selected such that $r_1w_1 = r_2w_2 = \dots = r_Mw_M$
 - c) Both (a) and (b)
 - d) None of the above
- Quiz XVI.5. In SNAC Solution of the distributed parameter systems, which of the following arguments are true regarding state profile generated for Neural Network training
 - a) State profile need to be continues
 - b) State profile need to be continues and bounded
 - c) Need to be bounded but need not be continues
 - d) None of the above
- Quiz XVI.6. Which of the following philosophy are used to generate the state profile for NN training for SNAC solution of distributed parameter systems
 - a) Bound on L_{∞} norm
 - b) Bound on L_2 norm
 - c) Bound on the total Energy content of the systems
 - d) All of the above