Jet Aircraft Propulsion

Prof. Bhaskar Roy, Prof. A M Pradeep Department of Aerospace Engineering, IIT Bombay

1111111

1012012

Lecture 35

Installed performance of Engines

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

- Engine design process ends with sizing of the engine to achieve the required thrust for a given airflow ($\dot{\mathbf{m}}_{o}$) through the engine, at the design point.
- When a powerplant is installed or attached to the body of the aircraft and flown with it the <u>Installed</u> <u>thrust</u> (T_F) as experienced by the aircraft, comes out to be different from the design <u>uninstalled thrust</u> (F) computed or bench tested for the isolated engine.
- The difference between T_F and F is often quite significant and may vary from one operating point to another of the engine or the aircraft.

lect 35

- The *uninstalled thrust, F* represents only the result of the internal flow of air inside the engine.
- Installing the engine outside the fuselage induces aerodynamic forces (D_{engine}) that adds to the aircraft drag ($D_{a/c}$).
- This is the "self-drag" of the engine (for external mounting of the engine).
- The installed thrust, T, must be the sum of uninstalled thrust, **F** and self-drag, D_{engine} , which is determined along with the initial engine size, (i.e. uninstalled thrust estimation).
- Thus very presence of the engine, its inlet, nozzle and exhaust stream actually influence the flow over the entire aircraft it is affects the instantaneous thrust.

- From fundamental science, the engine performances favor higher bypass ratios, but the larger diameters and the resulting installation penalties prevent the final benefits.
- For high performance aircraft such as a fighter aircraft the engine is likely to be buried within the fuselage.
- The engine designer will be allowed to influence those parts that are believed to generate the bulk of the installation penalties, i.e. those affected by the inlet and exhaust flows.
- The inlet and nozzle external losses will be expressed as fraction of the uninstalled thrust, **F**.

lect 35

Installed Thrust available for flying

$$T_F = F - \Phi_{inlet} F - \Phi_{nozzle} F$$

Flying thrust available is less than Engine Design Thrust

Or,
$$F = T_F / (1 - \Phi_{inlet} - \Phi_{nozzle}) > T_F$$

Where, Φs are the drag fractions of design thrust

$$\Phi_{inlet} = \frac{D_{inlet}}{F} \qquad \Phi_{nozzle} = \frac{D_{nozzle}}{F}$$

D_{inlet} : Drag due to engine inlet D_{nozzle} : Drag due to engine nozzle

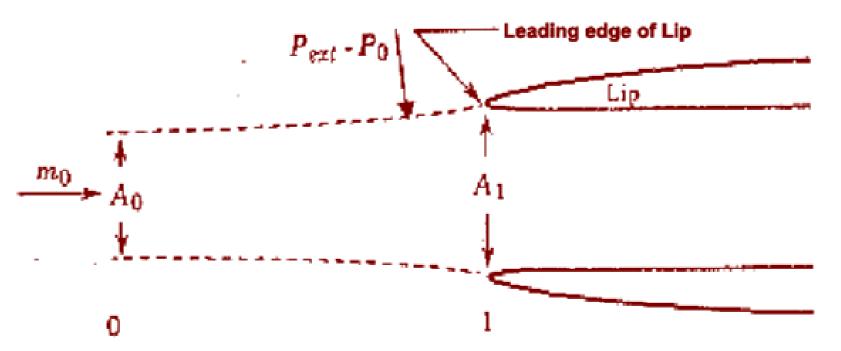
Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

- Note that $\Phi_{\text{inlet}} \& \Phi_{\text{nozzle}}$ will vary with flight condition and throttle setting for any engine, and vary from aircraft to aircraft slightly even for the same engine.
- Once the means of computing $\phi_{inlet} & \phi_{nozzle}$ as a function of flight conditions (altitude, attitude and velocity) and throttle settings is found, the off-design computation method is used to "size" the engine.
- Starting from the "design point" engine and "mass flow", the engine is "flown" (i.e. simulated) off-design at each critical flight condition at maximum power in accordance with the rated requirement.
- Next, either the engine mass flow (or the size) is adjusted until the required and the available thrust are equal at all flight conditions.

For each flight condition $\dot{m}_0 = \frac{F}{(F/\dot{m}_0)} = \frac{T_F}{(F/\dot{m}_0)(1 - \Phi_{inlet} - \Phi_{nozzle})}$

For a climbing and accelerating (general) flight

$$\dot{m}_{0} == \frac{W}{(F/\dot{m}_{0})(1 - \Phi_{inlet} - \Phi_{nozzle})} \left[\frac{(D_{a/c} + D_{eng})}{W} + \frac{1}{g} \frac{dV}{dt} + \frac{1}{V} \frac{dh}{dt} \right]$$


In order to find which of the flight conditions is most "demanding", each $\dot{\mathbf{m}}_0$ is multiplied by the relevant ($\dot{\mathbf{m}}_{odesign} / \dot{\mathbf{m}}_{o-off-design}$) as obtained from engine off-design calculations. The largest product corresponds to the largest design of the engine, and hence the required engine size.

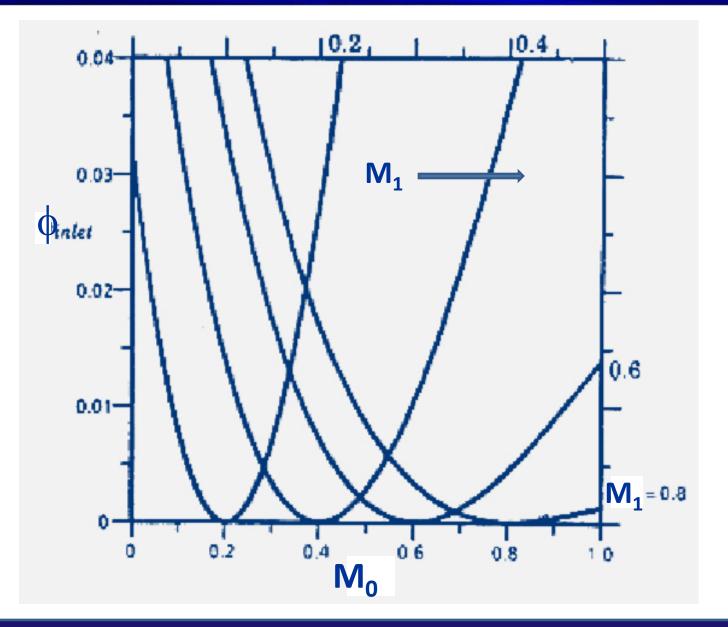
- This newly re-sized engine will be too large for all other flight conditions and performance at the other operating conditions must be obtained by throttling \dot{m}_{0^7} , T_{04} (Turbine entry temperature) and T_{07} (nozzle temperature) until a new installed thrust is arrived at.
- This process needs to be completed before the installed behavior of the engine, i.e. its installed thrust and its installed fuel consumption rate is known with acceptable accuracy.

Subsonic Inlet Drag

There is always a positive drag acting on the stream tube which encloses the air entering the engine intake

$$D_{add} = \int (P_{ext} - P_0) dA$$

This is known is "additive drag" (D_{add}) and is given as :

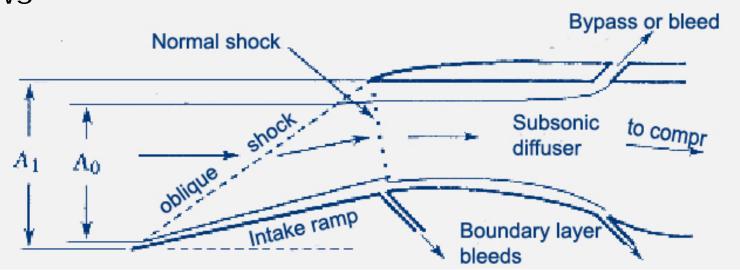

$$D_{add} = P_1 A_1 (1 + \gamma M_1^2) - P_0 A_0 \left(\frac{A_1}{A_0} + \gamma M_0^2\right)$$

Inlet Drag fraction

$$\Phi_{inlet} = \frac{D_{add}}{F} = \frac{D_{add}}{\dot{m}_0 (F / \dot{m}_0)} = \frac{\left(\frac{M_0}{M_1}\right) \left(\sqrt{\frac{T_1}{T_0}}\right) (1 + \gamma M_1^2) - P_0 A_0 \left(\frac{A_1}{A_0} + \gamma M_0^2\right)}{\frac{Fg}{\dot{m}_0} \frac{\gamma M_0}{a_0}}$$

Which can be evaluated for any set of values of M_0 , M_1 , a_0 and F/\dot{m}_0

11



Conclusions on Intake installation drag:

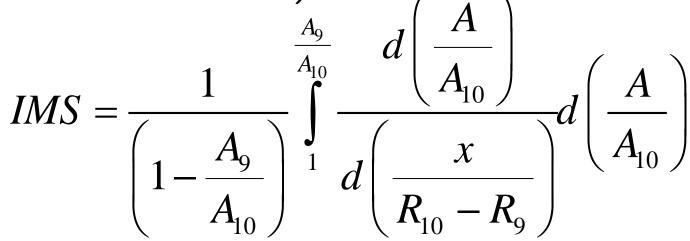
- Φ_{inlet} is not large if M_0 is near M_1 and the entering stream tube experiences no change in flow area.
- \bullet For the usual range of subsonic flight, it is desirable to keep M_1 in the vicinity of 0.4-0.6
- High values of Φ_{inlet} occur at $M_0=0$, at Take off, is in the range of 0.5-1.

Supersonic Inlet Drag

The supersonic inlet drag is estimated to be equal to the momentum change of the bypass and bleed flows

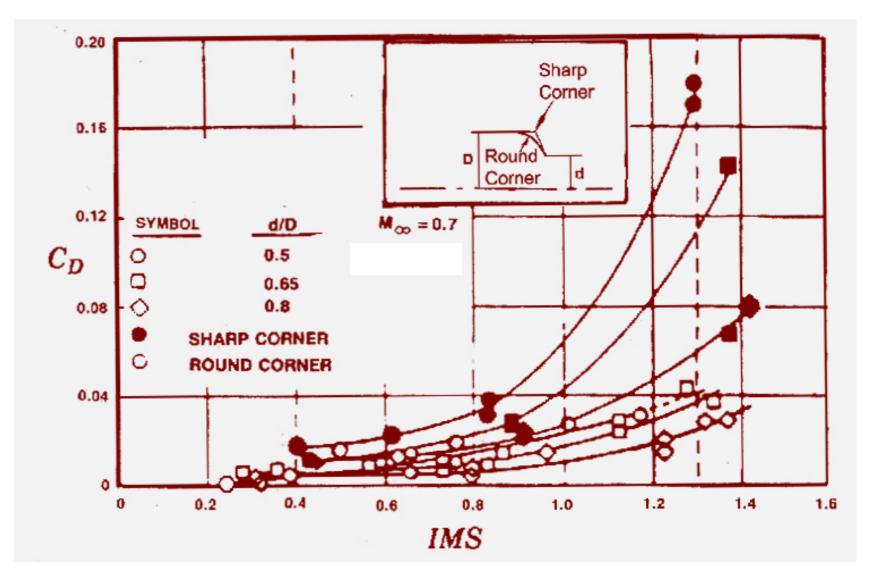
Supersonic Inlet Flow Model

Lect 35

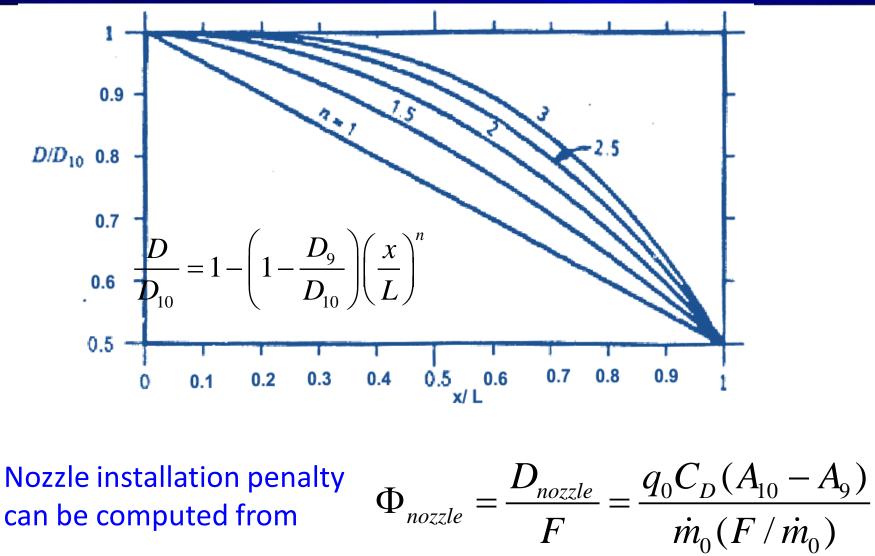

$$\Phi_{inlet} = \frac{\left(A_{1} / A_{0} - 1\right) \left(M_{0} - \sqrt{\frac{2}{\gamma + 1} + \frac{(\gamma - 1)M_{0}^{2}}{\gamma + 1}}\right)}{\left(Fg / \dot{m}_{0}a_{0}\right)}$$

Once A_1 has been selected, this equation can be directly evaluated at any given flight condition (P_0 , T_0 and M_0) and engine power setting (i.e. A_0 and F.g/m₀). Note that ϕ_{inlet} approaches zero when (i) M_0 approaches unity and (ii) when A_0 approaches A_1 (sized), so that ϕ_{inlet} can useful when it is evaluated far from both the conditions.

Exhaust Nozzle Drag


For predicting the exhaust nozzle pressure drag in subsonic and supersonic conditions correlation method has been developed based on "*integral mean slope*"

"integral mean slope" is defined by the equation (Integral mean slope captures the slope of the nozzle external surface contour)



For Quick Practical solution

$$IMS \cong 1.8 \left(\frac{D_{10} - D_9}{L} \right) \left(1 - \frac{D_9}{D_{10}} \right)$$

Next Class :

Problem solving for Engine matching and Tutorials

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay