Jet Aircraft Propulsion

Prof. Bhaskar Roy, Prof. A M Pradeep Department of Aerospace Engineering, IIT Bombay

1111111

1011111

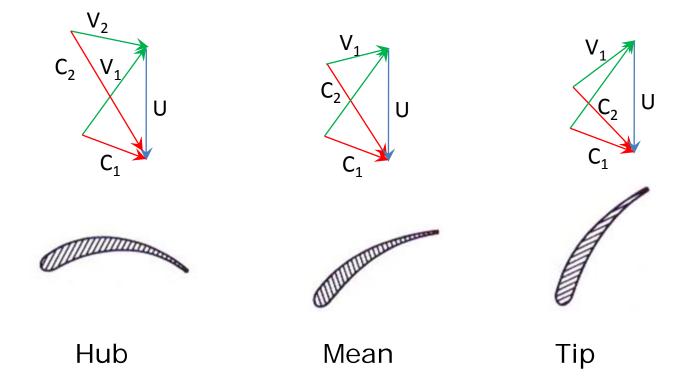
Lect-16

In this lecture...

- Free vortex theory
- Single and multi-stage axial compressor characteristics

Radial equilibrium

- For a realistic design of an axial compressor blade, it is necessary to take into account radial variations in
 - Blade speed, U
 - Axial velocity, C_a
 - Tangential velocity, C_w
 - Static pressure
- Maintain a reasonably uniform flow at the exit of the compressor → uniform radial work input

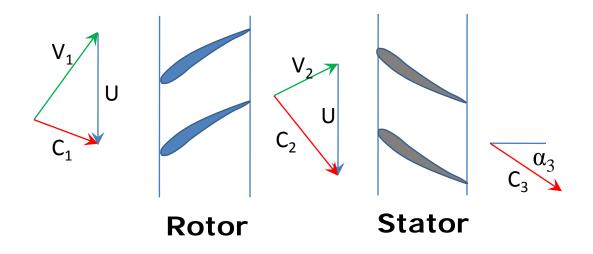

Free vortex design

- Since $\Delta h_0 = U \Delta C_\theta = \Omega r \Delta C_\theta$
- This means that for a given rotational speed, $r\Delta C_{\theta}$ must be a constant.
- One such configuration that satisfies the above is the Free Vortex Design.
- In this approach, the product rC_{θ} is held a constant across the exit of each blade row.
- From the axial velocity and the blade speeds at various radial sections, the velocity triangle can be completed.

Lect-16

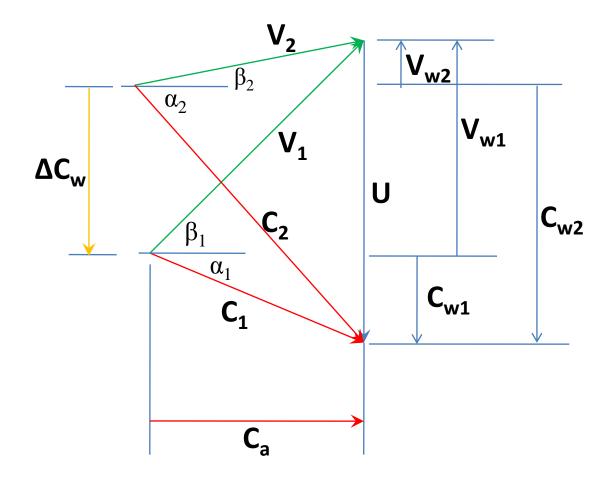
Free vortex design

Free vortex velocity diagrams at the hub, mean and tip sections


Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Free vortex design

- The conditions of radial equilibrium, i.e., the satisfaction of the three-dimensional equations of fluid motion must be considered.
- Possible distributions that satisfy the constant specific radial work criterion are:
 - Free vortex, $rC_{\theta} = a$
 - Forced vortex, $rC_{\theta} = ar^2$
 - Exponential, $rC_{\theta} = ar + b$
 - Constant reaction, $rC_{\theta} = ar^2 + b$


Single stage performance characteristics

 Let us consider a typical axial compressor stage comprising of a set of rotor blades followed by a set of stator blades.

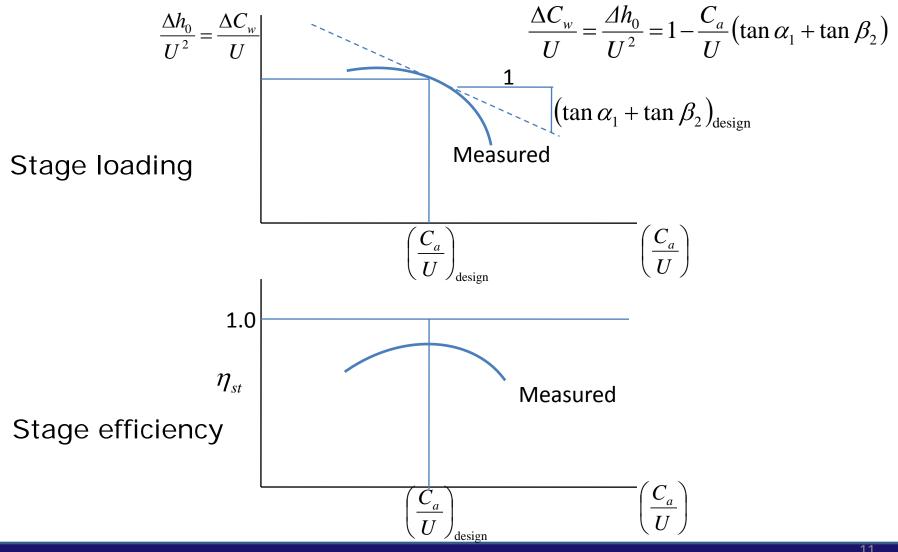
Lect-16

Single stage performance characteristics

Lect-16

Single stage performance characteristics

• From the above velocity triangles,

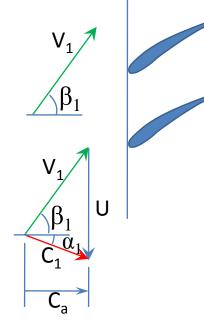

$$C_{w2} = U - C_a \tan \beta_2 \quad and \quad C_{w1} = C_a \tan \alpha$$

Since, $\Delta h_0 = U \Delta C_w$
 $\Delta h_0 = U [U - C_a (\tan \alpha_1 + \tan \beta_2)]$
 $or, \quad \frac{\Delta C_w}{U} = \frac{\Delta h_0}{U^2} = 1 - \frac{C_a}{U} (\tan \alpha_1 + \tan \beta_2)$

Single stage performance characteristics

- Change in the design mass flow rate affects C_a, change in rotor speed affects U.
- Change of either C_a or U changes the inlet angle β_1 at which the flow approaches the rotor.
- The above equation shows that the blade performance depends upon the ratio C_a/U .

Lect-16


Single stage performance characteristics

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect-16

Single stage performance characteristics

Design condition : Normal operation

$$\left(\frac{C_a}{U}\right) = \left(\frac{C_a}{U}\right)_{\text{design}}$$

Off - design condition : Positive incidence flow separation

U

$$\left(\frac{C_a}{U}\right) < \left(\frac{C_a}{U}\right)_{\text{design}}$$

 V_1

$$V_{1}$$

$$\beta_{1}$$

$$V_{1}$$

$$V_{1}$$

$$U$$

$$\beta_{1}$$

$$U$$

$$C_{1}$$

$$C_{1}$$

Off - design condition :

Negative incidence flow separation

$$\left(\frac{C_a}{U}\right) \! > \! \left(\frac{C_a}{U}\right)_{\text{design}}$$

- Let us know consider a multi-stage compressor. Inlet station is denoted by 1 and exit of the compressor by 2.
- Therefore the overall pressure ratio of the compressor is P_{02}/P_{01} .
- The compressor outlet pressure, P_{02} , and the isentropic efficiency, $\eta_{C_{i}}$ depend upon several physical variables

$$P_{02}, \eta_C = f(\dot{m}, P_{01}, T_{01}, \Omega, \gamma, R, \nu, \text{design}, D)$$

Multi-stage performance characteristics

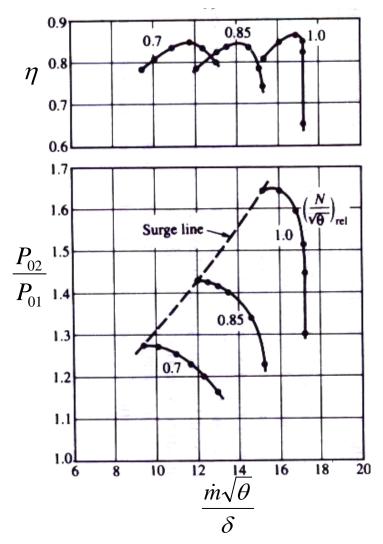
Lect-16

$$P_{02}, \eta_C = f(\dot{m}, P_{01}, T_{01}, \Omega, \gamma, R, \nu, \text{design}, D)$$

In terms of non - dimensionless parameters,

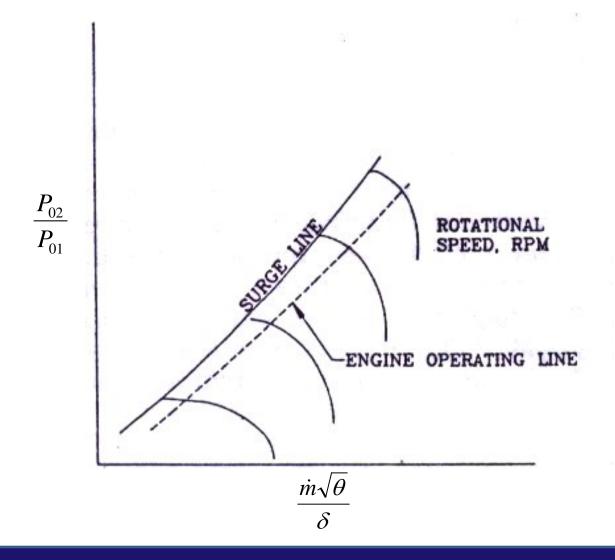
$$\frac{P_{02}}{P_{01}}, \eta_C = f\left(\frac{\dot{m}\sqrt{\gamma RT_{01}}}{P_{01}D^2}, \frac{\Omega D}{\sqrt{\gamma RT_{01}}}, \frac{\Omega D^2}{\nu}, \gamma, \text{design}\right)$$

For a given design, we can assume that γ and ν do not affect the performance significantly. Also, D and Rare fixed. Therefore the above reduces to


$$\frac{P_{02}}{P_{01}}, \eta_C = f\left(\frac{\dot{m}\sqrt{T_{01}}}{P_{01}}, \frac{N}{\sqrt{T_{01}}}\right)$$

Multi-stage performance characteristics

Usually, this is further processed in terms of the standard day pressure and temperature.

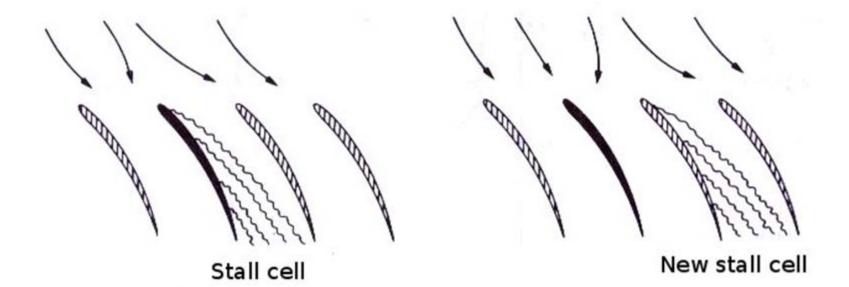

$$\frac{P_{02}}{P_{01}}, \eta_C = f\left(\frac{\dot{m}\sqrt{\theta}}{\delta}, \frac{N}{\sqrt{\theta}}\right)$$

Where, $\theta = \frac{T_{01}}{(T_{01})_{\text{Std. day}}}$ and $\delta = \frac{P_{01}}{(P_{01})_{\text{Std. day}}}$
 $(T_{01})_{\text{Std. day}} = 288.15 \, K \text{ and } (P_{01})_{\text{Std. day}} = 101.325 \, kPa$

Lect-16

Lect-16

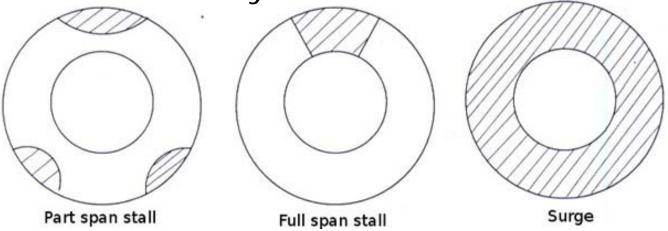
Multi-stage performance characteristics


17

- Axial compressors suffer from two possible modes of unstable operation
 - Rotating stall: non-axisymmetric, aperiodic
 - Surge: axisymmetric, periodic
- Rotating stall: progression around the blade annulus of a stall pattern, in which one or more adjacent blade passages are instantaneously stalled, then are cleared for unstalled flow as the stall cell progresses.
- Rotating stall causes alternate loading and unloading of the blades: fatigue failure.

Lect-16

Multi-stage performance characteristics

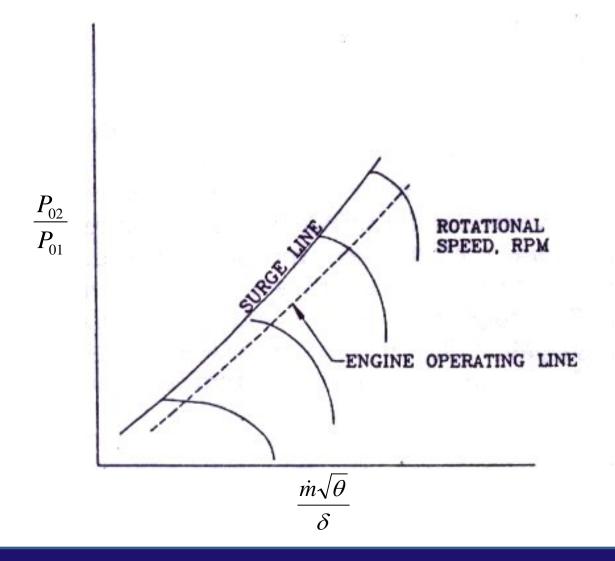


Propagation of rotating stall

Lect-16

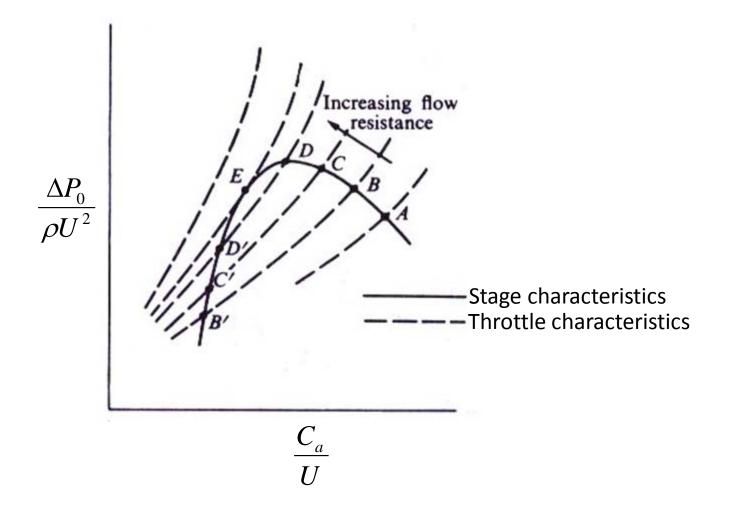
Multi-stage performance characteristics

- Rotating stall often precedes surge.
- The stall patterns move in a direction opposite to that of the rotor revolution.
- The stall frequency can be as high as 50% of the rotor frequency.
- Rotating stall may be initiated by an incoming flow non-uniformity.



Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

- Surge line denotes the locus of unstable operation of the compressor.
- Surge is characterised by violent, periodic oscillations in the flow.
- Surge might lead to flame blow-out in the combustion chamber.
- Surge can lead to substantial damage to compressors and must be avoided.
- The operating line of the compressor is therefore kept slightly away from the surge line: surge margin.


Lect-16

Multi-stage performance characteristics

22

Lect-16

In this lecture...

- Free vortex theory
- Single and multi-stage axial compressor characteristics

In the next lecture...

- Tutorial
 - Axial compressors