Jet Aircraft Propulsion

Prof. Bhaskar Roy, Prof. A M Pradeep Department of Aerospace Engineering, IIT Bombay

1111111

1011111

Lect-8

In this lecture...

- Cycle components and component performance
 - Intake
 - Compressor/fan
 - Combustion chamber
 - Turbine
 - Nozzle

Cycle components

- Jet engine cycle has several salient components
 - Air intake/diffuser: decelerates air and delivers it to the compressor
 - Fan: present in turbofan engines, drives the bypass mass flow
 - Compressor: compresses ingested air to high pressure and temperature
 - Combustion chamber: fuel is added here, combustion results in high temperature and pressure at turbine inlet

Cycle components

- Turbine: Combustion products are expanded through the turbine, generates shaft power to drive the compressor
- Nozzle: Turbine exhaust is further expanded through the nozzle, generates thrust
- Afterburner: used in afterburning turbojets, function similar to combustion chamber

Air intake performance

- Inlet losses arise due to wall friction and shock waves (in a supersonic inlet).
- These result in a reduction in total pressure.
- The flow is usually adiabatic as it flows through the intake.
- Performance of intakes are characterised using total pressure ratio and isentropic efficiency.

Lect-8

Air intake performance

Actual and ideal intake processes

Air intake performance

• Isentropic efficiency, $\eta_{d'}$ of the diffuser is

$$\eta_d = \frac{h_{02s} - h_a}{h_{0a} - h_a} \cong \frac{T_{02s} - T_a}{T_{0a} - T_a}$$

• This efficiency can be related to the total pressure ratio (π_d) and Mach number

$$\eta_{d} = \frac{\left(1 + \frac{\gamma - 1}{2}M^{2}\right)\pi_{d}^{(\gamma - 1)/\gamma} - 1}{\left[(\gamma - 1)/2\right]M^{2}}$$

Air intake performance

- During cycle analysis, the value of isentropic efficiency is often calculated based on the Mach number.
- The isentropic efficiency drops drastically as Mach number increases.
- This is because of the presence of shocks and the resultant total pressure losses.
- There are empirical correlations available for estimating the diffuser efficiency as a function of Mach number.

- Compressors are to a high degree of approximation, adiabatic.
- Compressor performance is evaluated using the isentropic efficiency, η_c

$$\eta_{C} = \frac{\text{Ideal work of compression for given pressure ratio}}{\text{Actual work of compression for given pressure ratio}}$$
$$= \frac{w_{ci}}{w_{c}} = \frac{h_{03s} - h_{02}}{h_{03} - h_{02}}$$

Lect-8

Compressor/fan performance

Actual and ideal compression processes

$$\begin{split} \eta_C &= \frac{h_{03s} - h_{02}}{h_{03} - h_{02}} \cong \frac{T_{03s} - T_{02}}{T_{03} - T_{02}} \\ &= \frac{T_{03s} / T_{02} - 1}{T_{03} / T_{02} - 1} = \frac{\left(\frac{P_{03} / P_{02}}{\tau_C}\right)^{(\gamma - 1)/\gamma} - 1}{\tau_C - 1} \\ &= \frac{\left(\frac{\pi_C}{\tau_C}\right)^{(\gamma - 1)/\gamma} - 1}{\tau_C - 1} \end{split}$$

 The isentropic efficiency is thus a function of the total pressure ratio and the total temperature ratio.

- Besides isentropic efficiency, there are other efficiency definitions, stage efficiency and polytropic efficiency that are used in assessing the performance of multistage compressors.
- Stage efficiency will be discussed in detail during the lectures on compressors.
- The three efficiency terms can be related to one another.

• The polytropic efficiency, η_{poly} , is defined as

$$\eta_{poly} = \frac{\text{Ideal work of compression for a differential pressure change}}{\text{Actual work of compression for a differential pressure change}}$$
$$= \frac{dw_i}{dw} = \frac{dh_{0i}}{dh_0} = \frac{dT_{0i}}{dT_0}$$

For an ideal compressor, the isentropic relation gives,

$$T_{0i} = P_{0i}^{(\gamma-1)/\gamma} \times \text{constant. Therefore,}$$
$$\frac{dT_{0i}}{T_0} = \frac{\gamma - 1}{\gamma} \frac{dP_{0i}}{P_0}$$
$$\eta_{poly} = \frac{dT_{0i}}{dT_0} = \frac{dT_{0i}/T_0}{dT_0/T_0} = \frac{\gamma - 1}{\gamma} \frac{dP_{0i}/P_0}{dT_0/T_0}$$

Rewriting the above equation,

$$\frac{dT_0}{T_0} = \frac{\gamma - 1}{\gamma \eta_{poly}} \frac{dP_0}{P_0}$$

Integrating between states 02 and 03,

$$\tau_{\rm C} = \pi_{\rm C}^{(\gamma-1)/(\gamma\eta_{poly})}$$

or, $\eta_{\rm C} = \frac{(\pi_{\rm C})^{(\gamma-1)/\gamma} - 1}{\tau_{\rm C} - 1} = \frac{(\pi_{\rm C})^{(\gamma-1)/\gamma} - 1}{\pi_{\rm C}^{(\gamma-1)/(\gamma\eta_{poly})} - 1}$

The above equation relates the isentropic efficiency with the pressure ratio assuming a constant polytropic efficiency.

Combustion chamber performance

- In a combustion chamber (or burner), there are two possibilities of losses, incomplete combustion and total pressure losses.
- Combustion efficiency can be defined by carrying out an energy balance across the combustor.
- Two different values of specific heat at constant pressure: one for fluid upstream of the combustor and the other for fluid downstream of the combustor.

Lect-8

Combustion chamber performance

Combustion efficiency, η_b $\eta_b = \frac{(\dot{m} + \dot{m}_f)h_{04} - \dot{m}h_{03}}{\dot{m}_f \dot{Q}_f} = \frac{(\dot{m} + \dot{m}_f)c_{p4}T_{04} - \dot{m}c_{p3}T_{03}}{\dot{m}_f \dot{Q}_f}$ $= \frac{(\dot{m} + \dot{m}_f)c_{pg}T_{04} - \dot{m}c_{pa}T_{03}}{\dot{m}_f \dot{Q}_f}$

Where, c_{pg} is the average value for gases downstream of the burner and c_{pa} is the average value for air upstream of the burner.

Combustion chamber performance

- Total pressure losses arise from two effects:
 - viscous losses in the combustion chamber
 - total pressure loss due to combustion at finite Mach number

Combustion chamber pressure loss,

$$\pi_b = \frac{P_{04}}{P_{03}} < 1$$

- Combustion efficiency is usually very high in gas turbine engines.
- In real cycle analysis both these parameters are used.

- The flow in a turbine is also assumed to be adiabatic, though in actual engines there could be turbine blade cooling.
- Isentropic efficiency of the turbine is defined in a manner similar to that of the compressor.

 $\eta_{t} = \frac{\text{Actual work of compression for given pressure ratio}}{\text{Ideal work of compression for given pressure ratio}}$ $= \frac{w_{t}}{w_{ti}} = \frac{h_{04} - h_{05}}{h_{04} - h_{05s}} = \frac{1 - \tau_{t}}{1 - \pi_{t}^{(\gamma - 1)/\gamma}}$

Actual and ideal turbine processes

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

• The polytropic efficiency, η_{poly} , is defined as

$$\eta_{poly} = \frac{\text{Actual turbine work for a differential pressure change}}{\text{Ideal turbine work for a differential pressure change}}$$

$$=\frac{dW}{dW_i}=\frac{dH_0}{dh_{0i}}=\frac{dH_0}{dT_{0i}}$$

For an ideal turbine, the isentropic relation gives,

$$T_{0i} = P_{0i}^{(\gamma-1)/\gamma} \times \text{constant. Therefore,}$$
$$\frac{dT_{0i}}{T_0} = \frac{\gamma - 1}{\gamma} \frac{dP_{0i}}{P_0}$$
$$\eta_{poly} = \frac{dT_0}{dT_{0i}} = \frac{dT_0 / T_0}{dT_{0i} / T_0} = \frac{dT_0 / T_0}{[(\gamma - 1)/\gamma] dP_0 / P_0}$$

Integrating between states 04 and 05,

 $\pi_{t} = \tau_{t}^{\gamma/[(\gamma-1)\eta_{poly}]}$ $or, \eta_{t} = \frac{1 - \tau_{t}}{1 - \tau_{t}^{1/\eta_{poly}}} = \frac{1 - (\pi_{t})^{(\gamma-1)\eta_{poly}/\gamma} - 1}{1 - (\pi_{t})^{(\gamma-1)/\gamma}}$

The above equation relates the isentropic efficiency with the pressure ratio assuming a constant polytropic efficiency.

Nozzle performance

- The flow in the nozzle is also adiabatic.
- However losses in a nozzle could occur due to incomplete expansion (under or overexpansion).
- Friction may reduce the isentropic efficiency.
- The efficiency is defined by

$$\eta_n = \frac{h_{06} - h_7}{h_{06} - h_{7s}}$$

Nozzle performance

Actual and ideal nozzle processes

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Afterburner performance

- Afterburner is thermodynamically similar to a combustion chamber.
- The performance parameters for an afterburner is thus the combustion efficiency and the total pressure loss.
- In case of engines with afterburning, the corresponding performance parameters for an afterburner needs to be taken into account.

Mechanical efficiency

- Mechanical efficiency is sometimes used to account for the loss or extraction of power on that shaft.
- Mechanical efficiency is defined as

$$\eta_m = \frac{\text{power leaving the shaft to compressor}}{\text{power entering the shaft from turbine}} = \frac{\dot{W_c}}{\dot{W_t}}$$

 Mechanical efficiency is less than one due to losses in power that occur from shaft bearings and also power extraction for driving accessories like oil and fuel pumps.

Typical component efficiencies

Component	Figure of merit	Туре	Value
Diffuser	π_d	Subsonic Supersonic	0.95-0.98 0.85-0.95
Compressor	η _c	-	0.85-0.90
Burner	η _b π _b	-	0.96-0.99 0.90-0.95
Turbine	η _t	Uncooled Cooled	0.85-0.92 0.84-0.90
Afterburner	η _{ab} π _{ab}	-	0.96-0.99 0.90-0.95
Nozzle	η _n	-	0.95-0.98
Mechanical	η _m	-	0.96-0.99

In this lecture...

- Cycle components and component performance
 - Intake
 - Compressor/fan
 - Combustion chamber
 - Turbine
 - Nozzle

In the next lecture...

• Tutorial on ideal cycles and component performance.