

JET AIRCRAFT PROPULSION

a NPTEL-II Video Course for Aerospace Engineering Students

Bhaskar Roy and A M Pradeep Aerospace Engineering Department I.I.T., Bombay

Brief outline of the syllabus

- Introduction to Aircraft Jet Propulsion (BR)
- Jet Engine Cycles: Thermodynamic
 Analysis of real cycles; (AMP)
- Compressors and Turbines; (AMP & BR)
- Combustion Systems (BR)
- Intakes and Propelling Nozzles (AMP)
- Aircraft Engine Installed Performance,
 Sizing & Matching (BR)
- Ramjets, Scramjets & Pulsejets (AMP & BR)

More details are available in the NPTEL Website

Course Pre-requisites

Introduction to Aerospace Propulsion, or

A course in **Engineering Thermodynamics**Additionally: A course in **Fluid Mechanics**would be helpful

Text/References

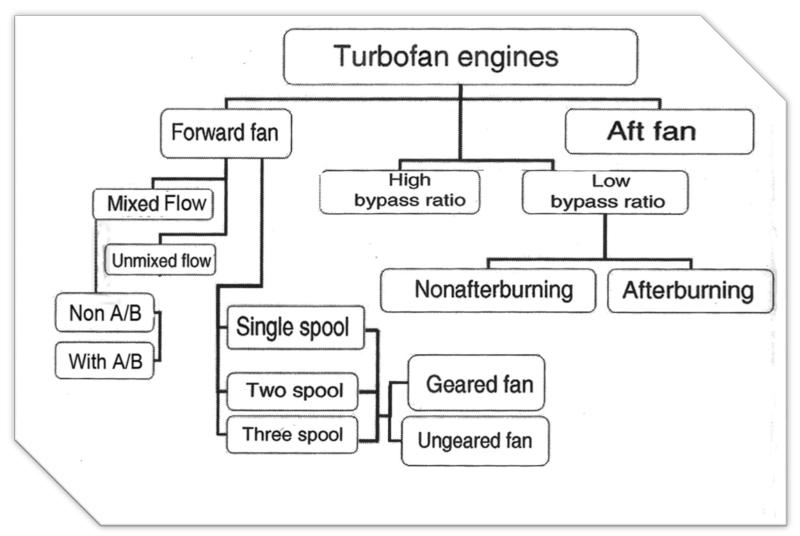
- 1) Kroes Michael J; Wild Thomas W; <u>Aircraft</u> <u>Powerplants</u>; 2010 (7 Ed), Tata-Mcgraw-Hill
- 2) Hill Philip, Peterson Carl, <u>Mechanics and</u> <u>Thermodynamics of Propulsion</u>, 1992, Addison Wesly,.
- 3) Mattingly J D , <u>Elements of Propulsion Gas</u> <u>Turbines and Rockets</u>, 2006, AIAA Education series
- 4) El-Sayed Ahmed, <u>Aircraft Propulsion and gas Turbine</u> <u>Engines</u>, 2008, Taylor and Francis, CRC press
- 5) Saravanamuttoo, H.I.H., Rogers G.F.C., Cohen H.; <u>Gas Turbine Theory</u>, 2001, Pearson
- 6) Roy Bhaskar, *Aircraft Propulsion*, 2008, Elsevier (India),

The Lecture schedules

JET AIRCRAFT PROPULSION

Lect No.	Topic
Lect-1	Intro & Development of Jet Aircraft Propulsion (BR & AMP)
Lect-2	How the Aircraft Jet Engines make Thrust (BR)
Lect-3	Jet Engine Basic Performance Parameters (BR)
Lect-4	Turbojet, Reheat Turbojet and Multi-spool Engines (BR)
Lect-5	Turbofan, Turbo-prop and Turboshaft engines (BR)
Lect-6	Ideal and Real Jules - Brayton cycles (AMP)
Lect-7	Jet engine Cycles for Aircraft propulsion (AMP)
Lect-8	Cycle components and component performances (AMP)
Lect-9	Tute-1 (AMP)
Lect-10	Analysis of aircraft jet engine real cycles (AMP)
Lect-11	Tute-2 (AMP)
Lect-12	Thermodynamics of Compressors (BR)
Lect-13	Thermodynamics of Turbines (BR)

Lect-14	Axial Compressors : Two dimensional analytical model (AMP)
Lect-15	Cascade analysis; Loss and Blade performance estimation (AMP)
Lect-16	Free Vortex theory; Single and Multi-stage characteristics; (AMP)
Lect-17	Tutes – 3 (AMP)
Lect-18	Elements of centrifugal compressor (AMP)
Lect-19	Centrifugal Compressor Characteristics : Surging, Choking (AMP)
Lect-20	Axial flow turbines; Turbine Blade 2-D (cascade) analysis (BR)
Lect-21	Multi-staging of Axial Turbine; Turbine Cooling Technology (BR)
Lect-22	Radial Turbine Aerodynamics & Thermodynamics; Losses and efficiency (BR)
Lect-23	Tutes – 4 (BR)

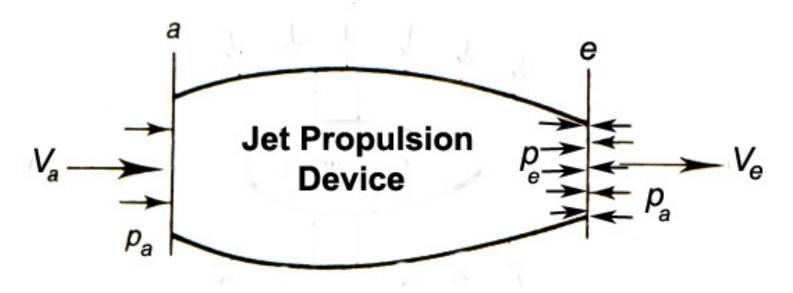

Lect-24	Types of combustion chambers: mechanism & parameters (BR)
Lect-25	Pr. Loss, Combustion efficiency; Combustion intensity (BR)
Lect-26	Practical combustion system ; Stability, Fuel injection (BR)
Lect-27	Intakes for Powerplant: Transport/ Military Aircraft (AMP)
Lect-28	Subsonic, Transonic, Supersonic Intake Designs (AMP)
Lect-29	Nozzle : fixed and variable geometry nozzles (AMP)
Lect-30	C-D nozzle and their uses (AMP)
Lect-31	Tute-5 (AMP)

Lect-32	Engine Off Design Operations (BR)
Lect-33	Aircraft Engine component matching: Dimensional analysis (BR)
Lect-34	Engine component matching and Sizing (BR)
Lect-35	Installed Performance of Engine (BR)
Lect-36	Tute-6 (BR)

Lect-37	Use of Ramjets and Pulsejets in Aircraft propulsion (BR)
Lect-38	Thermodynamic Cycle & Performance Parameters of Ramjet Engines (AMP)
Lect-39	Flow in Diffusers, Combustors and Nozzles (AMP)
Lect-40	Design/Performance of Ramjet-Scramjet Engines (BR)
Lect-41	Tute – 7 (BR)
Lect-42	Future of Aircraft Propulsion (BR & AMP)

Basic Aircraft Jet Engine types Aircraft Jet Engines unducted ducted Turbojet Turbofan Turboprop Turboshaft propfan fan engines Single Afterburning propeller fan Next slide Counterrotating Non after propfan burning Propeller / Rotor driven by tree turbine Propeller / Rotor on compressor shaft

Aircraft Turbofan Engines



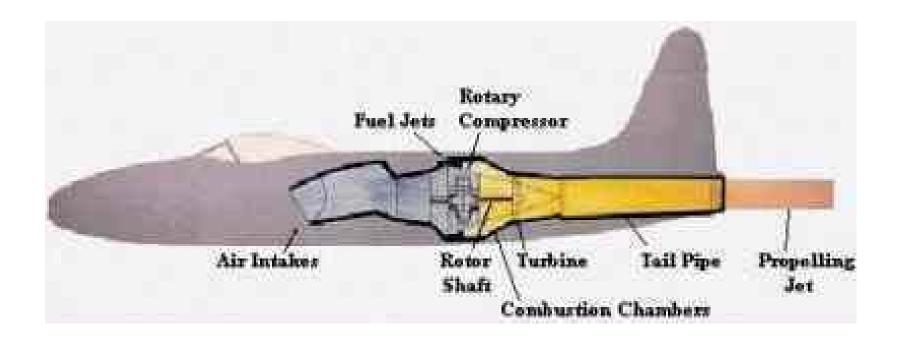
Development of Aircraft Jet Engines

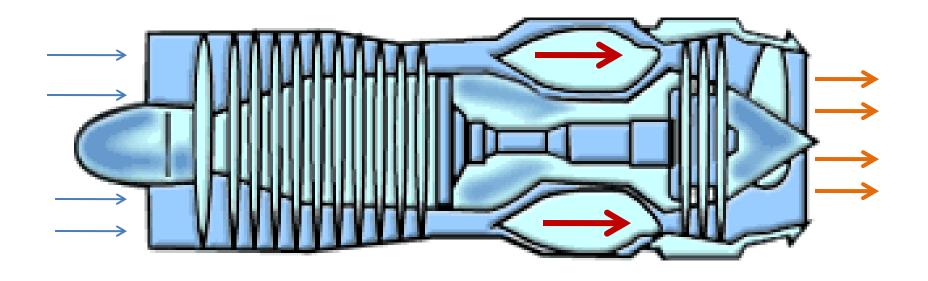
- <u>Sir Isaac Newton</u> in the 18th century was the first to theorize that a rearward-directed acceleration could propel a machine forward at a great speed. This theory was based on his own <u>third law of motion</u>.
- As the hot air blasts backwards through the jet nozzle the aeroplane moves forward.

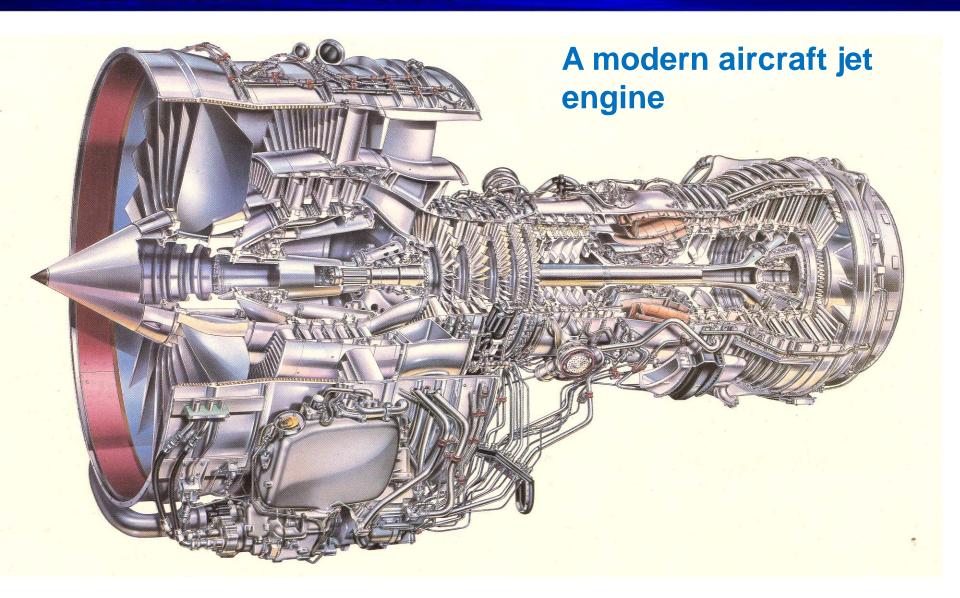
- In 1920's a high powered committee in USA, working under NACA, produced a report that stated that a jet engine was not a feasible proposition. So very little work was done in USA on jet engine development till world war II.
- Frank Whittle patented his jet engine in England 1930. He later developed it in USA.
- Dr Hans Von Ohain patented his jet engine in Germany in 1936. It flew in 1939. He also late worked in USA

How Jet Propulsion works

- The key to a practical jet engine was the gas turbine, used to extract energy from the engine itself to drive the <u>compressor</u>.
- The gas turbine was not an idea developed in the 1930s: the patent for a stationary turbine was granted to John Barber in England in 1791.
- The first gas turbine to successfully run was built in 1903 by Norwegian engineer Ægidius Elling. Limitations in design and practical engineering and metallurgy prevented such engines reaching manufacture.


Whittle's jet engine that flew




Heinkel Engine by Von Ohain that flew

A typical Gas Turbine based jet engine

