Introduction to Aerospace Propulsion

Prof. Bhaskar Roy, Prof. A M Pradeep Department of Aerospace Engineering, IIT Bombay

Lecture No-2

COLUMN TWO IS NOT

ROFING

Felix Du Temple de la Croix – Monoplane 1857

Lect-2

Thrust for Flight

In normal cruise flight L=W and T=D as force equilibrium

Unpowered airplanes

George Cayle's design (early 19th century)

Samuel P Langley's Airplane (late 19th century)

Langley's Airplane no Flight

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lorin's 1908 patent.

Lorin's 1913 patent.

Lorin's Patent Drawings

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Guillaume's Patent of a Jet Engine

Lect-2

1921 Guillaume patent.

Wrights' engine

First Flight 1903 Dec

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Wright's propeller 1903

Wright's Propeller 1910

2 years, 4 months and 3 days before the successful flights of the Wright brothers, a monoplane took to the air at early dawn on August 14, 1901, at Bridgeport, Conn, USA carrying the inventor, Gustave Whitehead, a distance of $\frac{1}{2}$ mile.

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

• For the first fifty years of flight all flight vehicles were using propellers as the only means of propulsion through air.

- After I world war a high powered committee in USA had decided that flight with jet propulsion was not possible.
- As a result NACA (precursor to present NASA) was entrusted in 1940's with creating a large number of propeller blade airfoil shapes.

Propeller Blade uses airfoil shapes

A propeller uses a type of airfoil (similar to a wing) that turns and accelerates air. As the blades of the propeller rotate they create lifting forces (just as a wing does), in the horizontal plane instead of the vertical as with the wings. Thus, the propeller creates a propulsive action force perpendicular to its plane of rotation, that moves the aircraft forward in air as a reaction. **Propellers can either "pull" the aircraft from the** the front of the wings / fuselage (Tractor), or "push" it from behind (Pusher).

Lect-2

INTRODUCTION TO AEROSPACE PROPULSION

								Propeller
	0006	2206	2306	2406	2506	2606	2706	- Blada
\sim	0009	2209	2309	2409	2509	2609	2709	Diaue
\sim	0012	2212	2312	2412	2512	2612	2712	airfoil
\sim	0015	2215	2315	2415	2515	2615	2715	ahanaa
\sim	0018	2218	2318	2418	2518	2618	2718	snapes
\sim	0021			2421	2521	2621	2721	(NACA)
-	>	4206	4306	4406	4506	4606	4706	
	0025	4209	4309	4409	4509	4609	4709	
		4212	4312	4412	4512	4612	4712	
		4215	4315	4415	4515	4615	4715	
		4218		4418	4518	4618	4718	
				4421	4521	4621	4721	
		6206	6306	6406	6506	6606	6706	
		6209	6309	6409	6509	6609	6709	
18		6212	6312	6412	6512	6612	6712	
		6215	6315	6415	6515	6615	6715	
		6218	6318	6418	6518	6618	6718	
		6221		6421	6521	6621	6721	

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Propeller undergoing a wind tunnel testing Pusher Propeller

Tractor type propeller

Lect-2

V

Radial

Opposed cylinder

Opposed Piston

IC (piston) Engine – multi-cylinder arrangements for Aircraft Propulsion

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Н

Х

Opposed cylinder

Lect-2

V-type

Radial

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

<u>Jet Engines</u> 1930s - 40s

Heinkel He 178 First Jet engine powered aircraft

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

21

4000 3000 Turbo-props Piston-props Thrust, kN 2000 1000 Turbojets 0 0.25 0.5 0.75Flight Mach no.

Comparison of various kinds of Aircraft Powerplants

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

100 Prop-fans 80 Turbo-prop engine ²ropulsive Efficiency, % TUNOTA 60 40 Tutojets 20 0.25 0.75 1.0 0.5 Flight Mach no.

Comparison of various kinds of Aircraft Powerplants

Lect-2

Propulsive efficiency is a measure of end usage of available energy for final thrust creation. It is not same as the thermal or overall efficiencies of an engine Modern aircraft powerplant designers are using Prop-fans or Prop-jets that enable usage of propellers for high thrust and high efficiency at low Mach number flights (for take-off and climb) and then use essentially jet propulsion for cruise at high Mach number and high altitude

The Thurst generation

$F = \frac{dM_{t}}{dt} = \frac{d(mV)}{dt} = m\frac{dv}{dt} = \frac{m}{dt}dv = \dot{m}.dv$

- High mass activation(air), m Propellers – low dV
- High change of momentum, dV Jet engines
 Iow mass activation, m
- Propellers typically operate on air mass flows 30 to 40 times more than that of a jet engine.

A modern propeller

Lect-2

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect-2

Prop-Fan uses a basic engine

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Modern Jet Engine

Abbreviation :

NACA : National Advisory Committee for Aeronautics, USA

NASA: National Aeronautics and Space Administration, USA

ISRO : Indian Space Research Organisation, India

HAL : Hindustan Aeronautics Limited, India