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In this lecture ...

• Helmholtz and Gibb’s functions
• Legendre transformations
• Thermodynamic potentials
• The Maxwell relations
• The ideal gas equation of state
• Compressibility factor
• Other equations of state
• Joule-Thomson coefficient
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Helmholtz and Gibbs functions
• We have already discussed about a 

combination property, enthalpy, h.
• We now introduce two new combination 

properties, Helmholtz function, a and the 
Gibbs function, g.

• Helmholtz function, a: indicates the 
maximum work that can be obtained from 
a system. It is expressed as:

a = u – Ts
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Helmholtz and Gibbs functions

• It can be seen that this is less than the 
internal energy, u, and the product Ts is a 
measure of the unavailable energy.

• Gibbs function, g: indicates the maximum 
useful work that can be obtained from a 
system. It is expressed as: 

g = h – Ts
• This is less than the enthalpy.
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Helmholtz and Gibbs functions
• Two of the Gibbs equations that were 

derived earlier (Tds relations) are: 
du = Tds – Pdv
dh = Tds + vdP

• The other two Gibbs equations are:
a = u – Ts
g = h – Ts

• Differentiating,
da = du – Tds – sdT
dg = dh – Tds – sdT

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay
5

Lect-19



Legendre transformations
• A simple compressible system is characterized 

completely by its energy, u (or entropy, s) and 
volume, v:
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Legendre transformations
• Any fundamental relation must be expressed 

in terms of its proper variables to be 
complete. 

• Thus, the energy features entropy, rather 
than temperature, as one of its proper 
variables. 

• However, entropy is not a convenient variable 
to measure experimentally.

• Therefore, it is convenient to construct other 
related quantities in which entropy is a 
dependent instead of an independent variable.
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Legendre transformations
• For example, we define the Helmholtz free 

energy as, a = u – Ts, so that for a simple 
compressible system we obtain a complete 
differential of the form

• This state function is clearly much more 
amenable to experimental manipulation than 
the internal energy.
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Thermodynamic potentials
• State functions obtained by means of 

Legendre transformation of a fundamental 
relation are called thermodynamic 
potentials. Eg. h, s, a and g.

• This is because the roles they play in 
thermodynamics are analogous to the role of 
the potential energy in mechanics.

• Each of these potentials provides a complete 
and equivalent description of the equilibrium 
states of the system because they are all 
derived from a fundamental relation.
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Thermodynamic potentials

State 
Variables

Thermodynamic potentials

(u, v) Entropy, s
(T, v) Helmholtz function, a = u – Ts
(T, P) Gibbs function, g = h – Ts
(s, P) Enthalpy, h = u + Pv
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Using the Legendre transformations discussed 
above, we can summarize the following 
thermodynamic potentials and the corresponding 
state variables.



The Maxwell relations
• The Maxwell relations: equations that 

relate the partial derivatives of properties 
P, v, T, and s of a simple compressible 
system to each other.

• These equations are derived by using the 
exactness of the differentials of the 
thermodynamic properties.

• Maxwell relations can be obtained by 
applying the Legendre transformations for 
the four Gibb’s equations.
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The Maxwell relations
• The Gibb’s equations (for a and g) reduce

to da = – sdT – Pdv
dg = – sdT +vdP

• The four equations discussed above are of 
the form:

• Since, u, h, a, and g are properties and 
they have exact differentials.

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay
12

Lect-19

yx x
N

y
M

NdyMdxdz








∂
∂

=







∂
∂

+=

 where,



The Maxwell relations
• Applying the above to the Gibbs equations, 
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The Maxwell relations
• The Maxwell relations are valuable 

thermodynamic relations as they provide 
a means of measuring changes in entropy 
using P, v and T.

• The Maxwell relations given above are 
limited to simple compressible systems.

• Similar relations can be written just as 
easily for non-simple systems such as 
those involving electrical, magnetic, and 
other effects.
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The ideal gas equation of state

• Any equation that relates the pressure, 
temperature, and specific volume of a 
substance is called an equation of state.

• The simplest and best-known equation of 
state for substances in the gas phase is 
the ideal-gas equation of state, which is

Pv = RT
Where P is the absolute pressure, T is the 
absolute temperature, v is the specific 
volume, and R is the gas constant. 
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Compressibility factor
• Real gases deviate substantially from the 

ideal gas behaviour depending upon the 
pressure and temperature.

• This can be accounted for by using a factor 
known as the Compressibility factor, Z: 

Z = Pv/RT
• For ideal gases, Z=1, whereas for real 

gases Z may be > or < 1. 
• The farther away Z is from unity, the more 

the gas deviates from ideal-gas behaviour.

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay
16

Lect-19



Compressibility factor

• Gases behave differently at different 
pressures and temperatures. 

• But when normalised with respect to the 
critical pressure and temperature, their 
behaviour is the same. 

• Therefore normalising, 
PR = P/Pcr and TR = T/Tcr

where, PR is the reduced pressure and TR is 
the reduced temperature.
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Compressibility factor

• The Z factor is approximately the same for 
all gases at the same reduced temperature 
and pressure.

• This is called the principle of corresponding 
states.

• From experimental data there are 
generalised compressibility charts available 
that can be used for all gases.
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Compressibility factor
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Compressibility factor

• The following observations can be made 
from the generalized compressibility chart:
– At very low pressures (PR«1), gases behave 

as an ideal gas regardless of temperature.
– At high temperatures (TR>2), ideal-gas 

behaviour can be assumed with good 
accuracy regardless of pressure (except 
when PR»1).

– The deviation of a gas from ideal-gas 
behaviour is greatest in the vicinity of the 
critical point.
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Other equations of state
• Though the ideal gas equation is simple, its 

applicability is often limited.
• It is therefore desirable to have an equation 

that can be used without too many limitations.
• Many such equations have been formulated, 

most of which are much more complicated 
than the ideal gas equation.

• The van der Waal’s equation is one of the 
earliest, Beattie-Bridgeman equation is the 
most popular and Benedict-Webb-Rubin 
equation is the most recent and accurate 
equation.
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Other equations of state
• van der Waal’s equation: included two of 

the effects not considered in the ideal-gas 
model, the intermolecular attraction forces, 
a/v2 and the volume occupied by the 
molecules themselves, b.

• The constants a and b can be determined 
for any substance from the critical point 
data alone.
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Other equations of state

• The Beattie-Bridgeman equation, is an 
equation of state based on five 
experimentally determined constants. It is 
expressed as:
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Other equations of state

• The equation of state can be in general 
expressed in a series as:

• This and similar equations are called the 
virial equations of state.

• The coefficients a(T), b(T), c(T), and so on, 
that are functions of temperature alone are 
called virial coefficients. 
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Other equations of state

• These coefficients can be determined 
experimentally or theoretically from 
statistical mechanics.

• As the pressure approaches zero, all the 
virial coefficients will vanish and the 
equation will reduce to the ideal-gas 
equation of state.
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The Joule Thomson coefficient

• There is a pressure drop associated with 
flow through a restriction like valves, 
capillary tube, porous plug etc.

• The enthalpy of the fluid remains a 
constant.

• The temperature of a fluid may increase, 
decrease, or remain constant during a 
throttling process.

• The behaviour of fluids in such flows is 
described by the Joule-Thomson coefficient.
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The Joule Thomson coefficient

• The Joule-Thomson coefficient is defined 
as:

• The Joule-Thomson coefficient is a measure 
of the change in temperature with pressure 
during a constant-enthalpy process.
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The Joule Thomson coefficient
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The Joule Thomson coefficient
• Some h= constant lines on the T-P diagram

pass through a point of zero slope or zero 
Joule-Thomson coefficient. 

• The line that passes through these points is 
called the inversion line, and the temperature 
at a point where a constant-enthalpy line 
intersects the inversion line is called the 
inversion temperature.

• The slopes of the h=constant lines are 
negative (μ<0) at states to the right of the 
inversion line and positive (μ>0) to the left of 
the inversion line.
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The Joule Thomson coefficient
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In this lecture ...

• Helmholtz and Gibb’s functions
• Legendre transformations
• Thermodynamic potentials
• The Maxwell relations
• The ideal gas equation of state
• Compressibility factor
• Other equations of state
• Joule-Thomson coefficient
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In the next lecture ...

• Solve numerical problems 
– Gas power cycles: Otto, Diesel, dual cycles
– Gas power cycles: Brayton cycle, variants 

of Brayton cycle
– Vapour power cycle: Rankine cycle
– Thermodynamic property relations
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