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In this lecture ...
• Gas power cycles
• The Carnot cycle and its significance
• Air-standard assumptions
• An overview of reciprocating engines
• Otto cycle: the ideal cycle for spark-

ignition engines
• Diesel cycle: the ideal cycle for 

compression-ignition engines
• Dual cycles
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Gas power cycles
• Study of power cycles of immense 

importance in engineering.
• Actual cycles: irreversibilities (like friction 

etc.),not in thermodynamic equilibrium, 
non-quasi static processes etc.

• For thermodynamic analysis we assume 
none of the above effects present: ideal 
cycles

• Ideal cycle analysis starting point of in-
depth analysis.
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Gas power cycles
• The ideal cycles are internally reversible, 

but, unlike the Carnot cycle, they are not 
necessarily externally reversible.

• Hence, the thermal efficiency of an ideal 
cycle, in general, is less than that of a 
totally reversible cycle operating between 
the same temperature limits.

• But, the thermal efficiency is ideal cycles 
is higher than that of actual cycles.
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Gas power cycles
• Gas power cycles are usually represented 

on P-v and T-s diagrams.
• On these diagrams the area enclosed by 

the process curves represent the net work 
done by the cycle.

• For a cyclic process this is also equal to 
the net heat transferred during the cycle.

• In an ideal power cycle, the only effect 
that can change the entropy of the 
working fluid during a process is heat 
transfer.
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Gas power cycles
• On a T-s diagram, Qin proceeds in the 

direction of increasing entropy and Qout
proceeds in the direction of decreasing 
entropy.

• The difference between areas under Qin
and Qout is the net heat transfer, and 
hence the net work of the cycle.

• The ratio of the area enclosed by the 
cyclic curve to the area under the heat-
addition process curve represents the 
thermal efficiency of the cycle.
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Gas power cycles
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Net heat input, 
QH = area under curve 2-3

Net work output, 
Wnet = (area under curve 2-
3) – (area under curve 1-4)

Hence, thermal efficiency, 
ηth = Wnet/QH



The Carnot cycle and its 
significance

• The Carnot cycle consists of four reversible 
processes:  two reversible adiabatics and 
two reversible isotherms.

• Carnot efficiency is a function of the source 
and sink temperatures.

• The efficiency of a Carnot heat engine     
increases as TH is increased, or as TL is    
decreased.

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay
8

Lect-17

H

L
th T

T
−=1η



The Carnot cycle and its 
significance

• The Carnot cycle serves as a standard 
against which actual cycle performance can 
be compared.

• In practice the source and sink 
temperatures are also limited.

• Source temperature limited by the 
materials that are used in these devices.

• Sink temperature limited by the 
temperature of the medium to which heat is 
rejected like atmosphere, lake, oceans etc.
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Air standard assumptions
• To simplify analysis, the following 

assumptions are made:
1. The working fluid is air, which continuously 

circulates in a closed loop and always behaves 
as an ideal gas.

2. All the processes that make up the cycle are 
internally reversible.

3. The combustion process is replaced by a heat-
addition process from an external source.

4. The exhaust process is replaced by a heat-
rejection process that restores the working 
fluid to its initial state.
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Air standard assumptions
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Overview of reciprocating engines

• Reciprocating engines are one of the most 
commonly used power generating devices.

• These engines can operate on a variety of 
thermodynamic cycles.

• Piston and cylinder form the basic 
components of reciprocating engines, 
besides valves, connecting rods, flywheels 
and several other components.
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Overview of reciprocating engines
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Overview of reciprocating engines
• The minimum volume formed in the 

cylinder when the piston is at TDC is called 
the clearance volume.

• The volume displaced by the piston as it 
moves between TDC and BDC is called the 
displacement volume.

• The ratio of the maximum volume formed 
in the cylinder to the minimum (clearance) 
volume is called the compression ratio, r of 
the engine:
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Overview of reciprocating engines
• Mean Effective Pressure (MEP): is a 

fictitious pressure that, if it acted on the 
piston during the entire power stroke, 
would produce the same amount of net 
work as that produced during the actual 
cycle.

Wnet = MEP x Piston area x Stroke 
= MEP x  Displacement volume
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Overview of reciprocating engines
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The net work output of 
a cycle is equivalent to 
the product of the mean
effective pressure and 
the displacement 
volume.



Overview of reciprocating engines

• Two types of reciprocating engines: Spark 
Ignition (SI) engines and Compression 
Ignition (CI) engines

• SI engines: the combustion of the air–fuel 
mixture is initiated by a spark plug.

• CI engines, the air–fuel mixture is self-
ignited as a result of compressing the 
mixture above its self-ignition temperature.
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Otto cycle 

• Otto cycle is the ideal cycle for spark-
ignition reciprocating engines.

• Named after Nikolaus A. Otto, who built a 
successful four-stroke engine in 1876 in 
Germany.

• Can be executed in two or four strokes.
• Four stroke: Intake, compression, power 

and exhaust stroke
• Two stroke: Compression and power 

strokes.
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Otto cycle 

• Otto cycle consists of four processes:
– Isentropic compression (1-2)
– Isochoric (constant volume) heat addition (2-3)
– Isentropic expansion (3-4)
– Isochoric (constant volume) heat rejection (4-1)

• All the processes are internally reversible.
• Currently we shall analyse the ideal Otto 

cycle.
• Practical implementation and the actual 

cycle will be discussed in later chapters.
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Otto cycle 
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Otto cycle 

• Applying energy balance and assuming KE 
and PE to be zero: 
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Otto cycle 
• The thermal efficiency of the ideal Otto 

cycle under the cold air standard 
assumptions becomes: 
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Otto cycle 
• Substituting these equations into the 

thermal efficiency relation and simplifying: 
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Diesel cycle 
• The Diesel cycle is the ideal cycle for CI 

reciprocating engines proposed by Rudolph 
Diesel in the 1890s.

• In SI, the air–fuel mixture is compressed to a 
temperature that is below the autoignition
temperature of the fuel, and the combustion 
process is initiated by firing a spark plug. 

• In CI engines, the air is compressed to a 
temperature that is above the autoignition
temperature of the fuel, and combustion 
starts on contact as the fuel is injected into 
this hot air.
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Diesel cycle 
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Diesel cycle 
• Diesel cycle consists of four processes:

– Isentropic compression (1-2)
– Isobaric (constant pressure) heat addition (2-3)
– Isentropic expansion (3-4)
– Isochoric (constant volume) heat rejection (4-1)

• All the processes are internally reversible.
• Thermodynamically the Otto and Diesel 

cycles differ only in the second process (2-
3).

• For Otto cycle, 2-3: constant volume and 
for Diesel cycle, 2-3: constant pressure.  
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Diesel cycle 

• Applying energy balance and assuming KE 
and PE to be zero: 
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Diesel cycle 
• The thermal efficiency of the ideal Diesel 

cycle under the cold air standard 
assumptions becomes: 

• The cutoff ratio rc, as the ratio of the 
cylinder volumes after and before the 
combustion process: rc =v3/v2
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Diesel cycle 
• Substituting these equations into the 

thermal efficiency relation and simplifying:

• The quantity in the brackets is always >0 
and therefore ηth,Diesel > ηth,Otto for the same 
compression ratios.
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Dual cycle 
• Approximating heat addition by a constant 

pressure or constant volume process is too 
simplistic. 

• Modelling the heat addition process by a 
combination of constant pressure and 
constant volume processes: dual cycle.

• The relative amounts of heat added during 
the two processes can be appropriately 
adjusted.

• Both Otto and Diesel cycle can be obtained 
as a special case of the dual cycle. 
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Dual cycle 
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In this lecture ...
• Gas power cycles
• The Carnot cycle and its significance
• Air-standard assumptions
• An overview of reciprocating engines
• Otto cycle: the ideal cycle for spark-

ignition engines
• Diesel cycle: the ideal cycle for 

compression-ignition engines
• Dual cycles

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay
32

Lect-17



In the next lecture ...

• Stirling and Ericsson Cycles
• Brayton Cycle: The Ideal Cycle for Gas-

Turbine Engines
• The Brayton Cycle with Regeneration
• The Brayton Cycle with Intercooling, 

Reheating, and Regeneration
• Rankine Cycle: The Ideal Cycle for Vapor

Power Cycles
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