Introduction to Aerospace Propulsion

Prof. Bhaskar Roy, Prof. A M Pradeep Department of Aerospace Engineering, IIT Bombay

Lecture No-17

COLUMN TWO IS NOT

ROFING

In this lecture ...

- Gas power cycles
- The Carnot cycle and its significance
- Air-standard assumptions
- An overview of reciprocating engines
- Otto cycle: the ideal cycle for sparkignition engines
- Diesel cycle: the ideal cycle for compression-ignition engines
- Dual cycles

- Study of power cycles of immense importance in engineering.
- Actual cycles: irreversibilities (like friction etc.), not in thermodynamic equilibrium, non-quasi static processes etc.
- For thermodynamic analysis we assume none of the above effects present: ideal cycles
- Ideal cycle analysis starting point of indepth analysis.

- The ideal cycles are internally reversible, but, unlike the Carnot cycle, they are not necessarily externally reversible.
- Hence, the thermal efficiency of an ideal cycle, in general, is less than that of a totally reversible cycle operating between the same temperature limits.
- But, the thermal efficiency is ideal cycles is higher than that of actual cycles.

- Gas power cycles are usually represented on *P*-*v* and *T*-*s* diagrams.
- On these diagrams the area enclosed by the process curves represent the net work done by the cycle.
- For a cyclic process this is also equal to the net heat transferred during the cycle.
- In an ideal power cycle, the only effect that can change the entropy of the working fluid during a process is heat transfer.

- On a T-s diagram, *Q_{in}* proceeds in the direction of increasing entropy and *Q_{out}* proceeds in the direction of decreasing entropy.
- The difference between areas under Q_{in} and Q_{out} is the net heat transfer, and hence the net work of the cycle.
- The ratio of the area enclosed by the cyclic curve to the area under the heataddition process curve represents the thermal efficiency of the cycle.

Net heat input,

 Q_H = area under curve 2-3

Net work output, W_{net} = (area under curve 2-3) – (area under curve 1-4)

Hence, thermal efficiency, $\eta_{th} = W_{net}/Q_H$

Lect-17

The Carnot cycle and its significance

- The Carnot cycle consists of four reversible processes: two reversible adiabatics and two reversible isotherms.
- Carnot efficiency is a function of the source and sink temperatures.

$$\eta_{th} = 1 - \frac{T_L}{T_H}$$

• The efficiency of a Carnot heat engine increases as T_H is increased, or as T_L is decreased.

The Carnot cycle and its significance

- The Carnot cycle serves as a standard against which actual cycle performance can be compared.
- In practice the source and sink temperatures are also limited.
- Source temperature limited by the materials that are used in these devices.
- Sink temperature limited by the temperature of the medium to which heat is rejected like atmosphere, lake, oceans etc.

Air standard assumptions

- To simplify analysis, the following assumptions are made:
 - 1. The working fluid is air, which continuously circulates in a closed loop and always behaves as an ideal gas.
 - 2. All the processes that make up the cycle are internally reversible.
 - 3. The combustion process is replaced by a heataddition process from an external source.
 - 4. The exhaust process is replaced by a heatrejection process that restores the working fluid to its initial state.

Lect-17

Air standard assumptions

Overview of reciprocating engines

- Reciprocating engines are one of the most commonly used power generating devices.
- These engines can operate on a variety of thermodynamic cycles.
- Piston and cylinder form the basic components of reciprocating engines, besides valves, connecting rods, flywheels and several other components.

Overview of reciprocating engines

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect-17

Overview of reciprocating engines

- The minimum volume formed in the cylinder when the piston is at TDC is called the clearance volume.
- The volume displaced by the piston as it moves between TDC and BDC is called the displacement volume.
- The ratio of the maximum volume formed in the cylinder to the minimum (clearance) volume is called the compression ratio, r of the engine: $r = \frac{V_{\text{max}}}{V_{\text{min}}} = \frac{V_{BDC}}{V_{TDC}}$

Overview of reciprocating engines

 Mean Effective Pressure (MEP): is a fictitious pressure that, if it acted on the piston during the entire power stroke, would produce the same amount of net work as that produced during the actual cycle.

 $W_{net} = MEP \ x \ Piston \ area \ x \ Stroke$ $= MEP \ x \ Displacement \ volume$ $MEP = \frac{W_{net}}{V_{max} - V_{min}} = \frac{W_{net}}{v_{max} - v_{min}}$

Overview of reciprocating engines

$$W_{net} = MEP \ x \ (V_{max} - V_{min})$$

The net work output of a cycle is equivalent to the product of the mean effective pressure and the displacement volume.

Lect-17

Overview of reciprocating engines

- Two types of reciprocating engines: Spark Ignition (SI) engines and Compression Ignition (CI) engines
- SI engines: the combustion of the air-fuel mixture is initiated by a spark plug.
- CI engines, the air-fuel mixture is selfignited as a result of compressing the mixture above its self-ignition temperature.

Otto cycle

- Otto cycle is the ideal cycle for sparkignition reciprocating engines.
- Named after Nikolaus A. Otto, who built a successful four-stroke engine in 1876 in Germany.
- Can be executed in two or four strokes.
- Four stroke: Intake, compression, power and exhaust stroke
- Two stroke: Compression and power strokes.

Otto cycle

- Otto cycle consists of four processes:
 - Isentropic compression (1-2)
 - Isochoric (constant volume) heat addition (2-3)
 - Isentropic expansion (3-4)
 - Isochoric (constant volume) heat rejection (4-1)
- All the processes are internally reversible.
- Currently we shall analyse the ideal Otto cycle.
- Practical implementation and the actual cycle will be discussed in later chapters.

Otto cycle

Ideal Otto cycle on *P*-*v* and *T*-*s* diagrams

Otto cycle

 Applying energy balance and assuming KE and PE to be zero:

$$(q_{in} - q_{out}) + (w_{in} - w_{out}) = \Delta u$$

The heat transfer to and from the working fluid can be written as :

$$q_{in} = u_3 - u_2 = c_v (T_3 - T_2)$$
$$q_{out} = u_4 - u_1 = c_v (T_4 - T_1)$$

Otto cycle

 The thermal efficiency of the ideal Otto cycle under the cold air standard assumptions becomes:

$$\eta_{th,Otto} = \frac{w_{net}}{q_{in}} = 1 - \frac{q_{out}}{q_{in}} = 1 - \frac{T_4 - T_1}{T_3 - T_2} = 1 - \frac{T_1(T_4 / T_1 - 1)}{T_2(T_3 / T_2 - 1)}$$

Processes 1 - 2 and 3 - 4 are isentropic and

$$v_2 = v_3 \text{ and } v_4 = v_1.$$

Therefore, $\frac{T_1}{T_2} = \left(\frac{v_2}{v_1}\right)^{\gamma - 1} = \left(\frac{v_3}{v_4}\right)^{\gamma - 1} = \frac{T_4}{T_3}$

Otto cycle

 Substituting these equations into the thermal efficiency relation and simplifying:

$$\eta_{th,Otto} = 1 - \frac{1}{r^{\gamma - 1}}$$
where, $r = \frac{V_{\text{max}}}{V_{\text{min}}} = \frac{V_1}{V_2} = \frac{v_1}{v_2}$ is the compression ratio.
And γ is the ratio of specific heats c_p / c_y .

Diesel cycle

- The Diesel cycle is the ideal cycle for CI reciprocating engines proposed by Rudolph Diesel in the 1890s.
- In SI, the air-fuel mixture is compressed to a temperature that is below the autoignition temperature of the fuel, and the combustion process is initiated by firing a spark plug.
- In CI engines, the air is compressed to a temperature that is above the autoignition temperature of the fuel, and combustion starts on contact as the fuel is injected into this hot air.

Diesel cycle

Ideal Diesel cycle on *P*-*v* and *T*-*s* diagrams

Diesel cycle

- Diesel cycle consists of four processes:
 - Isentropic compression (1-2)
 - Isobaric (constant pressure) heat addition (2-3)
 - Isentropic expansion (3-4)
 - Isochoric (constant volume) heat rejection (4-1)
- All the processes are internally reversible.
- Thermodynamically the Otto and Diesel cycles differ only in the second process (2-3).
- For Otto cycle, 2-3: constant volume and for Diesel cycle, 2-3: constant pressure.

Diesel cycle

 Applying energy balance and assuming KE and PE to be zero:

$$(q_{in} - q_{out}) + (w_{in} - w_{out}) = \Delta u$$

The heat transfer to and from the working fluid can be written as :

$$q_{in} = P_2(v_3 - v_2) + (u_3 - u_2) = h_3 - h_2 = c_p(T_3 - T_2)$$
$$q_{out} = u_4 - u_1 = c_v(T_4 - T_1)$$

Diesel cycle

 The thermal efficiency of the ideal Diesel cycle under the cold air standard assumptions becomes:

$$\eta_{th,Otto} = \frac{w_{net}}{q_{in}} = 1 - \frac{q_{out}}{q_{in}} = 1 - \frac{T_4 - T_1}{\gamma(T_3 - T_2)}$$
$$= 1 - \frac{T_1(T_4 / T_1 - 1)}{\gamma T_2(T_3 / T_2 - 1)}$$

• The cutoff ratio r_c , as the ratio of the cylinder volumes after and before the combustion process: $r_c = v_3/v_2$

Diesel cycle

 Substituting these equations into the thermal efficiency relation and simplifying:

$$\eta_{th,Diesel} = 1 - \frac{1}{r^{\gamma-1}} \left[\frac{r_c^{\gamma} - 1}{\gamma(r_c - 1)} \right]$$

Where, *r*, is the compression ratio = $\frac{V_{\text{max}}}{V_{\text{min}}}$

• The quantity in the brackets is always >0 and therefore $\eta_{th,Diesel} > \eta_{th,Otto}$ for the same compression ratios.

Dual cycle

- Approximating heat addition by a constant pressure or constant volume process is too simplistic.
- Modelling the heat addition process by a combination of constant pressure and constant volume processes: dual cycle.
- The relative amounts of heat added during the two processes can be appropriately adjusted.
- Both Otto and Diesel cycle can be obtained as a special case of the dual cycle.

Dual cycle

What will this cycle look like on T-s diagram?

What is the thermal efficiency of such a cycle?

Ideal dual cycle on *P*-*v* diagram

In this lecture ...

- Gas power cycles
- The Carnot cycle and its significance
- Air-standard assumptions
- An overview of reciprocating engines
- Otto cycle: the ideal cycle for sparkignition engines
- Diesel cycle: the ideal cycle for compression-ignition engines
- Dual cycles

In the next lecture ...

- Stirling and Ericsson Cycles
- Brayton Cycle: The Ideal Cycle for Gas-Turbine Engines
- The Brayton Cycle with Regeneration
- The Brayton Cycle with Intercooling, Reheating, and Regeneration
- Rankine Cycle: The Ideal Cycle for Vapor Power Cycles