

Prof. Bhaskar Roy, Prof. A M Pradeep Department of Aerospace Engineering, IIT Bombay

LectureNo- 13

In this lecture ...

- Solve problems related to
- First law of thermodynamics for closed and open systems
- Heat engines
- Refrigerators and heat pumps

Problem 1

- A 50 kg iron block at $80^{\circ} \mathrm{C}$ is dropped into an insulated tank that contains $0.5 \mathrm{~m}^{3}$ of liquid water at $25^{\circ} \mathrm{C}$. Determine the temperature when thermal equilibrium is reached.
Specific heat iron: $0.45 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$, specific heat of water: $4.184 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$

חNTRODUQTIONTO AEROSPRGE PROPUISNON
 Solution: Problem 1

Solution: Problem 1

- Assumptions:
- Both water and the iron block are incompressible substances.
- Constant specific heats at room temperature can be used for water and the iron.
- The system is stationary and thus the kinetic and potential energy changes are zero, $\Delta \mathrm{KE}, \triangle \mathrm{PE}=0$ and $\Delta \mathrm{E}=\Delta \mathrm{U}$.
- There are no electrical, shaft, or other forms of work involved.
- The system is well-insulated and thus there is no heat transfer.

Solution: Problem 1

- The energy balance can be expressed as:

$$
\begin{equation*}
\underbrace{E_{\text {in }}-E_{\text {out }}}_{\text {enerove transfer }}=\underbrace{\Delta E_{\text {system }}} \tag{kJ}
\end{equation*}
$$

Net energy transfer
by heat, work and mass

Change in internal, kinetic potential etc. energies

$$
0=\Delta U
$$

$$
\Delta U_{\text {system }}=\Delta U_{\text {iron }}+\Delta U_{\text {water }}=0
$$

$$
\left[\mathrm{mc}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)\right]_{\text {iron }}+\left[\mathrm{mc}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)\right]_{\text {water }}=0
$$

Mass of water, $\mathrm{m}=\mathrm{V} / \mathrm{v}=0.5 \mathrm{~m}^{3} / 0.001 \mathrm{~m}^{3} / \mathrm{kg}$ $=500 \mathrm{~kg}$

Solution: Problem 1

- Substituting the above values,
$(50 \mathrm{~kg})\left(0.45 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}\right)\left(\mathrm{T}_{2}-80^{\circ} \mathrm{C}\right)+(500 \mathrm{~kg})(4.18$ $\left.\mathrm{kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}\right)\left(\mathrm{T}_{2}-25^{\circ} \mathrm{C}\right)=0$

Therefore, $\mathrm{T}_{2}=25.6^{\circ} \mathrm{C}$
This will be the temperature of water and iron after the system attains thermal equilibrium.
Note: The marginal change in the temperature of water. Why is this so?

Problem 2

- A stationary mass of gas is compressed without friction from an initial state of 0.3 m^{3} and 0.105 MPa to a final state of $0.15 \mathrm{~m}^{3}$ and 0.105 MPa . There is a transfer of 37.6 kJ of heat from the gas during the process. What is the change in internal energy of the gas during this process?

Solution: Problem 2

- From the first law for a stationary system,

$$
\mathrm{Q}=\Delta \mathrm{U}+\mathrm{W}
$$

- In this example, the process is a constant pressure process. The work done during such a process is

$$
\begin{aligned}
W & =\int P d V=P\left(V_{2}-V_{1}\right) \\
& =0.105(0.15-0.30)=-15.75 \mathrm{~kJ}
\end{aligned}
$$

Solution: Problem 2

- It is given that the heat transfer from the system is $\mathrm{Q}=-37.6 \mathrm{~kJ}$
- Therefore, $-37.6=\Delta \mathrm{U}-15.75$

$$
\text { or, } \Delta \mathrm{U}=-21.85 \mathrm{~kJ}
$$

- The change in internal energy of the gas is -21.85 kJ (decrease in internal energy during the process)

Problem 3

- Air at a temperature of $15^{\circ} \mathrm{C}$ passes through a heat exchanger at a velocity of $30 \mathrm{~m} / \mathrm{s}$ where its temperature is raised to $800^{\circ} \mathrm{C}$. It then passes through a turbine with the same velocity of 30 m / s and expands until the temperature falls to $650^{\circ} \mathrm{C}$. On leaving the turbine, the air is taken at a velocity of $60 \mathrm{~m} / \mathrm{s}$ to a nozzle where it expands until its temperature has fallen to $500^{\circ} \mathrm{C}$. If the air flow rate is $2 \mathrm{~kg} / \mathrm{s}$, find (a) rate of heat transfer from the heat exchanger (b) the power output from the turbine (c) velocity at nozzle exit assuming no heat loss
- Assume $\mathrm{c}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$

Solution: Problem 3

Solution: Problem 3

- Applying the energy equation across 1-2 (heat exchanger)

$$
\dot{Q}-\dot{W}=\dot{m}\left[h_{2}-h_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2}+g\left(z_{2}-z_{1}\right)\right]
$$

For a heat exchanger, this reduces to,

$$
\begin{aligned}
\dot{Q}_{1-2} & =\dot{m}\left(h_{2}-h_{1}\right)=\dot{m} c_{p}\left(T_{2}-T_{1}\right) \\
& =2 \times 1.005 \times(1073.16-288.16)=1580 \mathrm{~kJ} / \mathrm{s}
\end{aligned}
$$

- The rate of heat exchanger to the air in the heat exchanger is $1580 \mathrm{~kJ} / \mathrm{s}$

Solution: Problem 3

- The energy equation the turbine 2-3

$$
\begin{aligned}
\dot{W} & =\dot{m}\left[h_{2}-h_{3}+\frac{V_{2}^{2}-V_{3}^{2}}{2}\right] \\
\dot{W} & =2 \times\left[1005 \times(1073.16-923.16)+\frac{\left(30^{2}-60^{2}\right)}{2}\right] \\
& =298.8 \mathrm{~kW}
\end{aligned}
$$

- The power output from the turbine is 298.8 kW

Solution: Problem 3

- For the nozzle (3-4)

$$
\begin{aligned}
& \frac{V_{3}^{2}}{2}+h_{3}=\frac{V_{4}^{2}}{2}+h_{4} \\
& \frac{60^{2}}{2}+1.005 \times(923.16)=\frac{V_{4}^{2}}{2}+1.005 \times(773.16) \\
& \therefore V_{4}=554 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

- The velocity at the exit from the nozzle is $554 \mathrm{~m} / \mathrm{s}$.

Problem 4

- Heat is transferred to a heat engine from a heat source at a rate of 80 MW . If the rate of waste heat rejection to sink is 50 MW, determine the net power output and the thermal efficiency for this heat engine.

Solution: Problem 4

Solution: Problem 4

- We know that the net power output is the difference between the heat input and the heat rejected (cyclic device)

$$
\begin{aligned}
\mathrm{W}_{\text {net, out }} & =\mathrm{Q}_{H}+\mathrm{Q}_{\mathrm{L}} \\
& =80-50 \mathrm{MW}=30 \mathrm{MW}
\end{aligned}
$$

- The net work output is 30 mW .
- The thermal efficiency is the ratio of the net work output and the heat input.

$$
\eta_{\text {th }}=\mathrm{W}_{\text {net, out }} / \mathrm{Q}_{\mathrm{H}}=30 / 80=0.375
$$

- The thermal efficiency is 0.375 or 37.5%

Problem 5

- The food compartment of a refrigerator is maintained at $4^{\circ} \mathrm{C}$ by removing heat from it at a rate of $360 \mathrm{~kJ} / \mathrm{min}$. If the required power input to the refrigerator is 2 kW , determine (a) the coefficient of performance of the refrigerator and (b) the rate of heat rejection to the room that houses the refrigerator.

Solution: Problem 5

Problem 5

- COP of the refrigerator, $\mathrm{COP}_{\mathrm{R}}=$ Desired effect/work input $=\mathrm{Q}_{\mathrm{L}} / \mathrm{W}_{\text {net, in }}$

$$
=(360 / 60 \mathrm{~kJ} / \mathrm{s}) / 2=3
$$

- The COP of the refrigerator is 3 (3 kJ of heat is removed per kJ of work supplied).
- The rate of heat rejection can be obtained by applying the first law of thermodynamics
$\mathrm{Q}_{\mathrm{H}}=\mathrm{Q}_{\mathrm{L}}+\mathrm{W}_{\text {net, in }}=6 \mathrm{~kW}+2 \mathrm{KW}=8 \mathrm{~kW}$

Problem 6

- A heat engine is used to drive a heat pump. The heat transfers from the heat engine and the heat pump are rejected to the same sink. The efficiency of the heat engine is 27% and the COP of the heat pump is 4 . Determine the ratio of the total heat rejection rate to the heat transfer to the heat engine.

Solution: Problem 6

Solution: Problem 6

- The efficiency of the heat engine, η $\eta=$ Net work output/heat input $=W / Q_{1}$

$$
W=0.27 Q_{1}
$$

- $\mathrm{COP}_{\mathrm{HP}}=$ desired effect/work input

$$
=\mathrm{Q}_{4} / \mathrm{W}=4 \text { or, } \mathrm{W}=\mathrm{Q}_{4} / 4
$$

- Therefore, $0.27 \mathrm{Q}_{1}=\mathrm{Q}_{4} / 4$

$$
\text { or, } \mathrm{Q}_{4} / \mathrm{Q}_{1}=1.08
$$

Solution: Problem 6

- We know that $\eta=1-\mathrm{Q}_{2} / \mathrm{Q}_{1}=0.27$

$$
\text { Or, } \mathrm{Q}_{2} / \mathrm{Q}_{1}=0.73
$$

- Hence, $\left(\mathrm{Q}_{2}+\mathrm{Q}_{4}\right) / \mathrm{Q}_{1}=1.08+0.73=1.81$
- The ratio of the total heat rejection rate $\left(Q_{2}+Q_{4}\right)$ to the heat transfer to the heat engine $\left(Q_{1}\right)$ is 1.81 .

Exercise Problem 1

- A mass of 8 kg gas expands within a flexible container as per $\mathrm{pv}^{1.2}=$ constant. The initial pressure is 1000 kPa and the initial volume is $1 \mathrm{~m}^{3}$. The final pressure is 5 kPa . If the specific internal energy of the gas decreases by $40 \mathrm{~kJ} / \mathrm{kg}$, find the heat transfer in magnitude and direction.
- Ans: +2615 kJ

Exercise Problem 2

- Air at $10^{\circ} \mathrm{C}$ and 80 kPa enters the diffuser of a jet engine steadily with a velocity of $200 \mathrm{~m} / \mathrm{s}$. The inlet area of the diffuser is $0.4 \mathrm{~m}^{2}$. The air leaves the diffuser with a velocity that is very small compared with the inlet velocity.
- Determine (a) the mass flow rate of the air and (b) the temperature of the air leaving the diffuser.
- Ans: $78.8 \mathrm{~kg} / \mathrm{s}, 303 \mathrm{~K}$

Exercise Problem 3

- A refrigerator is maintained at a temperature of $2^{\circ} \mathrm{C}$. Each time the door is opened, 420 kJ of heat is introduced inside the refrigerator, without changing the temperature of the refrigerator. The door is opened 20 times a day and the refrigerator operates at 15% of the ideal COP. The cost of work is Rs. 2.50 kWh . Determine the monthly bill for this refrigerator if the atmosphere is at $30^{\circ} \mathrm{C}$.
- Ans: Rs. 118.80

Exercise Problem 4

- An automobile engine consumes fuel at a rate of $28 \mathrm{~L} / \mathrm{h}$ and delivers 60 kW of power to the wheels. If the fuel has a heating value of $44,000 \mathrm{~kJ} / \mathrm{kg}$ and a density of $0.8 \mathrm{~g} / \mathrm{cm}^{3}$, determine the efficiency of this engine.
- Ans: 21.9\%

I n the next lecture ...

- The Carnot cycle
- The reversed Carnot cycle
- The Carnot principles
- The thermodynamic temperature scale
- Carnot heat engine
- Quality of energy
- Carnot refrigerator and heat pump

