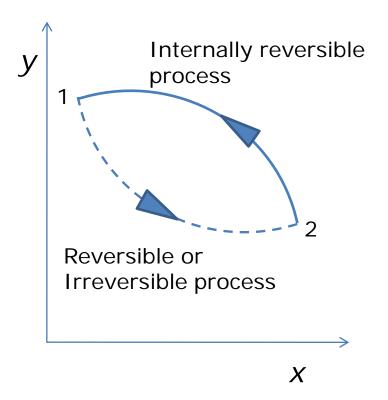
Introduction to Aerospace Propulsion

Prof. Bhaskar Roy, Prof. A M Pradeep Department of Aerospace Engineering, IIT Bombay

Lecture No-12

COLUMN TWO IS NOT


ROFING

In this lecture...

- Entropy change of a system and entropy generation
- Increase of entropy principle
- TdS equations
- Entropy change in liquids and solids and ideal gases
- Third law of thermodynamics and absolute entropy
- Entropy and energy transfer
- Entropy balance

Lect-12

Entropy change and entropy generation

 Consider a cycle made up of two processes (1-2 and 2-1)

$$\oint \frac{\delta Q}{T} \le 0 \quad \text{(Clausius inequality)}$$
$$or, \int_{1}^{2} \frac{\delta Q}{T} + \int_{2}^{1} \left(\frac{\delta Q}{T}\right)_{\text{int.rev}} \le 0$$

Lect-12

Entropy change and entropy generation

• The second integral is equal to entropy change during that process.

$$\int_{1}^{2} \frac{\delta Q}{T} + (S_{1} - S_{2}) \le 0$$

or, $S_{2} - S_{1} \ge \int_{1}^{2} \frac{\delta Q}{T}$ which can be written as $dS \ge \frac{\delta Q}{T}$

• Here, the equality holds for an internally reversible process and the inequality for an irreversible process.

Lect-12

Entropy change and entropy generation

- The entropy change of a closed system during an irreversible process is greater than the integral of *dQ/T* evaluated for that process.
- In the limiting case of a reversible process, these two quantities become equal.
- Note: *T* in these relations is the temperature at the boundary where the differential heat *dQ* is transferred between the system and the surroundings.

Lect-12

Entropy change and entropy generation

- Inequality sign: entropy change of a closed system during an irreversible process is always greater than the entropy transfer.
- Some entropy is generated or created during an irreversible process, and this generation is entirely due to the irreversibilities.
- This entropy generated during a process is called entropy generation and is denoted by S_{gen.}

INTRODUCTION TO AEROSPACE PROPULSION Lect-12 Entropy change and entropy generation

$$\Delta S_{sys} = S_2 - S_1 = \int_1^2 \frac{\delta Q}{T} + S_{gen}$$

- The entropy generation S_{gen} is always a positive quantity or zero.
- Its value depends on the process, and thus it is not a property of the system.
- For an isolated system (or simply an adiabatic closed system), the heat transfer is zero.

$$\Delta S_{isolated} \ge 0$$

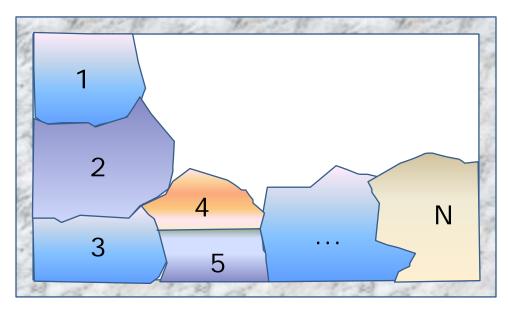
Increase of entropy principle

- The entropy of an isolated system during a process always increases or, in the limiting case of a reversible process, remains constant.
- This is known as the increase of entropy principle.
- In the absence of any heat transfer, entropy change is due to irreversibilities only, and their effect is always to increase entropy.

Increase of entropy principle

- The entropy of the universe is continuously increasing.
- No entropy is generated during reversible processes.
- The increase of entropy principle does not imply that the entropy of a system cannot decrease.
- The entropy change of a system can be negative during a process, but entropy generation cannot.

Increase of entropy principle


- >0 Irreversible process $S_{gen} = 0$ Reversible process <0 Impossible process
- A system and its surroundings form an isolated system.

$$S_{gen} = \Delta S_{total} = \Delta S_{system} + \Delta S_{surroundings} \ge 0$$

Increase of entropy principle

- Processes can occur in a certain direction only, not in any direction.
- A process must proceed in the direction that complies with the increase of entropy principle, that is, $S_{gen} \ge 0$.
- Entropy is a non-conserved property, and there is no such thing as the conservation of entropy principle.
- Entropy is conserved during the idealized reversible processes only and increases during all actual processes.

Increase of entropy principle

The entropy change of an isolated system is the sum of the entropy changes of its components, and is always greater than zero.

$$\Delta S_{total} = \sum_{i=1}^{N} \Delta S_i > 0$$

TdS equations

• From the first law for an internally reversible process, we know that

$$\delta Q_{\text{int } rev} - \delta W_{\text{int } rev, out} = dU$$

Since, $\delta Q_{int rev} = TdS$ and $\delta W_{int rev,out} = PdV$ TdS = dU + PdV or, Tds = du + Pdv

• This is known as the first TdS equation.

TdS equations

• From the definition of enthalpy, we know that, h = u + Pv

or, dh = du + Pdv + vdP

since, Tds = du + Pdv,

Tds = dh - vdP

• This is known as the second TdS equation.

TdS equations

- Since the TdS equations are property relations, they are therefore independent of the type of the processes.
- The *Tds* relations are hence, valid for both reversible and irreversible processes and for both closed and open systems.

Lect-12

Entropy change of liquids and solids

- Liquids and solids can be approximated as incompressible substances since their specific volumes remain nearly constant during a process.
- Thus, dv = 0 for liquids and solids.

$$ds = \frac{du}{T} = \frac{c \, dT}{T} \quad (\because c_p = c_v = c \text{ and } du = c dT)$$
$$s_2 - s_1 = \int_1^2 c(T) \frac{dT}{T} \cong c_{avg} \ln \frac{T_2}{T_1} \quad (\text{kJ/kg. K})$$

Entropy change of ideal gases

• For ideal gases we know that,

 $du = c_v dT$, P = RT / vFrom the *TdS* relations,

$$ds = c_v \frac{dT}{T} + R \frac{dv}{v}$$

• The entropy change for a process, $s_2 - s_1 = \int_{1}^{2} c_v(T) \frac{dT}{T} + R \ln \frac{v_2}{v_1}$

Entropy change of ideal gases

If we use these relations, $dh = c_p dT$, v = RT / PThen, from the TdS relations, $s_2 - s_1 = \int_{1}^{2} c_p(T) \frac{dT}{T} - R \ln \frac{P_2}{P_1}$

• Usually, we assume average values of c_p and c_v in the above equations and thus can replace $c_p(T)$ with $c_{p,av}$ and $c_v(T)$ with $c_{v,av}$.

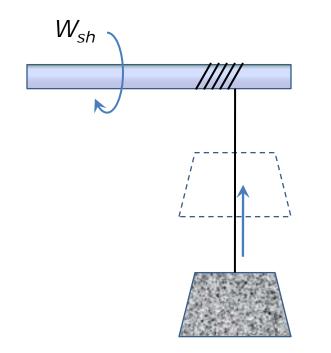
Lect-12

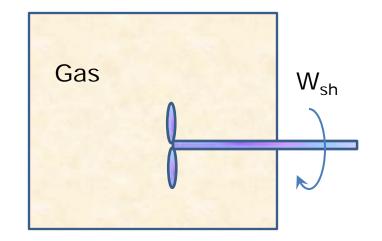
Third law of thermodynamics

- Entropy can be viewed as a measure of molecular disorder, or molecular randomness.
- As a system becomes more disordered, the positions of the molecules become less predictable and the entropy increases.
- The entropy of a system is related to the total number of possible microscopic states of that system, called thermodynamic probability p, by the Boltzmann relation.

Third law of thermodynamics

- Boltzmann relation is expressed as S=k Inp Where, k = 1.3806 x 10⁻²³ J/K is the Boltzmann constant.
- From a microscopic point of view, the entropy of a system increases whenever the molecular randomness or uncertainty (i.e., molecular probability) of a system increases.

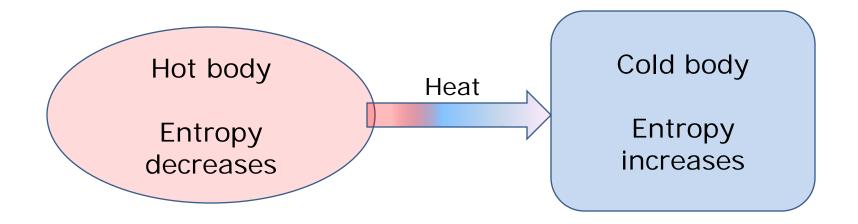

Third law of thermodynamics


- The entropy of a pure crystalline substance at absolute zero temperature is zero since there is no uncertainty about the state of the molecules at that instant: the third law of thermodynamics.
- The entropy determined relative to this point is called absolute entropy.
- A pure crystalline substance at absolute zero temperature is in perfect order, and its entropy is zero.

Entropy and energy transfer

- An organized form of energy like work is free of disorder or randomness and thus free of entropy.
- There is no entropy transfer associated with energy transfer as work.
- The quantity of energy is always preserved during an actual process (the 1st law), but the quality is bound to decrease (the 2nd law).

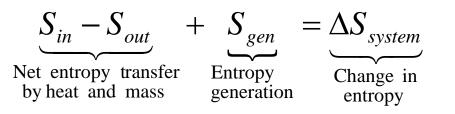
Entropy and energy transfer



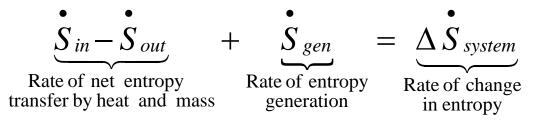
Raising of a weight by a rotating shaft does not generate entropy, and so energy is not degraded during this process (if we assume frictional effects can be neglected). The work done on a gas increases the entropy of the gas, and thus energy is degraded during this process.

- This decrease in quality is always accompanied by an increase in entropy.
- Heat is a form of disorganized energy, and hence, there is increase in entropy with heat.
- Processes can occur only in the direction of increased overall entropy or molecular disorder.
- That is, the entire universe is getting more and more chaotic every day.

Entropy and energy transfer


- During a heat transfer process, the net entropy increases.
- This is because, the increase in the entropy of the cold body is more than the decrease in the entropy of the hot body.

Entropy and energy transfer


- Work is entropy-free, and no entropy is transferred by work.
- Closed systems
 - Energy is transferred by both heat and work, whereas entropy is transferred only by heat (closed systems).
 - Only energy is exchanged during work interaction whereas both energy and entropy are exchanged during heat transfer.
- Open systems
 - Entropy transfer in open systems: heat and mass flow.

Entropy balance

 Entropy balance for any system undergoing any process is:

This can also be expressed in the rate form as,

In this lecture...

- Entropy change of a system and entropy generation
- Increase of entropy principle
- TdS equations
- Entropy change in liquids and solids and ideal gases
- Third law of thermodynamics and absolute entropy
- Entropy and energy transfer
- Entropy balance

In the next lecture ...

- Solve problems related to
 - First law of thermodynamics for closed and open systems
 - Heat engines
 - Refrigerators and heat pumps