Module Name | Download |
---|---|
noc19_ma01_Assignment1 | noc19_ma01_Assignment1 |
noc19_ma01_Assignment10 | noc19_ma01_Assignment10 |
noc19_ma01_Assignment11 | noc19_ma01_Assignment11 |
noc19_ma01_Assignment12 | noc19_ma01_Assignment12 |
noc19_ma01_Assignment13 | noc19_ma01_Assignment13 |
noc19_ma01_Assignment2 | noc19_ma01_Assignment2 |
noc19_ma01_Assignment3 | noc19_ma01_Assignment3 |
noc19_ma01_Assignment4 | noc19_ma01_Assignment4 |
noc19_ma01_Assignment5 | noc19_ma01_Assignment5 |
noc19_ma01_Assignment6 | noc19_ma01_Assignment6 |
noc19_ma01_Assignment7 | noc19_ma01_Assignment7 |
noc19_ma01_Assignment8 | noc19_ma01_Assignment8 |
noc19_ma01_Assignment9 | noc19_ma01_Assignment9 |
Sl.No | Chapter Name | MP4 Download |
---|---|---|
1 | Lecture 01: Rolle’s Theorem | Download |
2 | Lecture 02: Mean Value Theorems | Download |
3 | Lecture 03:Indeterminate Forms (Part ‐1) | Download |
4 | Lecture 04: Indeterminate Forms (Part ‐2) | Download |
5 | Lecture 05: Taylor Polynomial and Taylor Series | Download |
6 | Lecture 06: Limit of Functions of Two Variables | Download |
7 | Lecture 07:Evaluation of Limit of Functions of Two Variables | Download |
8 | Lecture 08: Continuity of Functions of Two Variables | Download |
9 | Lecture 09: Partial Derivatives of Functions of Two Variables | Download |
10 | Lecture 10: Partial Derivatives of Higher Order | Download |
11 | Lecture 11 : Derivative & Differentiability | Download |
12 | Lecture 12 : Differentiability of Functions of Two Variables | Download |
13 | Lecture 13 : Differentiability of Functions of Two Variables (Cont.) | Download |
14 | Lecture 14 : Differentiability of Functions of Two Variables (Cont.) | Download |
15 | Lecture 15 : Composite and Homogeneous Functions | Download |
16 | Lecture 16 : Taylor’s Theorem for Functions of Two Variables | Download |
17 | Lecture 17 : Maxima & Minima of Functions of Two Variables | Download |
18 | Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
19 | Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
20 | Lecture 20 : Constrained Maxima & Minima | Download |
21 | Lecture 21 : Improper Integrals | Download |
22 | Lecture 22 : Improper Integrals (Cont.) | Download |
23 | Lecture 23 : Improper Integrals (Cont.) | Download |
24 | Lecture 24 : Improper Integrals (Cont.) | Download |
25 | Lecture 25 : Beta & Gamma Function | Download |
26 | Lecture 26 : Beta & Gamma Function (Cont.) | Download |
27 | Lecture 27 : Differentiation Under Integral Sign | Download |
28 | Lecture 28 : Double Integrals | Download |
29 | Lecture 29 : Double Integrals (Cont.) | Download |
30 | Lecture 30 : Double Integrals (Cont.) | Download |
31 | Lecture 31: Integral Calculus –Double Integrals in Polar Form | Download |
32 | Lecture 32: Integral Calculus –Double Integrals: Change of Variables | Download |
33 | Lecture 33: Integral Calculus –Double Integrals: Surface Area | Download |
34 | Lecture 34: Integral Calculus –Triple Integrals | Download |
35 | Lecture 35: Integral Calculus – Triple Integrals (Cont.) | Download |
36 | Lecture 36: System of Linear Equations | Download |
37 | Lecture 37: System of Linear Equations –Gauss Elimination | Download |
38 | Lecture 38: System of Linear Equations –Gauss Elimination (Cont.) | Download |
39 | Lecture 39: Linear Algebra - Vector Spaces | Download |
40 | Lecture 40: Linear Independence of Vectors | Download |
41 | Lecture 41: Vector Spaces –Spanning Set | Download |
42 | Lecture 42: Vector Spaces –Basis and Dimension | Download |
43 | Lecture 43: Rank of a Matrix | Download |
44 | Lecture 44: Linear Transformations | Download |
45 | Lecture 45: Linear Transformations (contd.) | Download |
46 | Lecture 46 : Eigenvalues & Eigenvectors | Download |
47 | Lecture 47 : Eigenvalues & Eigenvectors (Cont.) | Download |
48 | Lecture 48 : Eigenvalues & Eigenvectors (Cont.) | Download |
49 | Lecture 49 : Eigenvalues & Eigenvectors (Cont.) | Download |
50 | Lecture 50 : Eigenvalues & Eigenvectors: Diagonalization | Download |
51 | Lecture 51 : Differential Equations - Introduction | Download |
52 | Lecture 52 : First Order Differential Equations | Download |
53 | Lecture 53 : Exact Differential Equations | Download |
54 | Lecture 54 : Exact Differential Equations (Cont.) | Download |
55 | Lecture 55 : First Order Linear Differential Equations | Download |
56 | Lecture 56: Higher Order Linear Differential Equations | Download |
57 | Lecture 57: Solution of Higher Order Homogeneous Linear Equations | Download |
58 | Lecture 58: Solution of Higher Order Non-Homogeneous Linear Equations | Download |
59 | Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.) | Download |
60 | Lecture 60 : Cauchy-Euler Equations | Download |
Sl.No | Chapter Name | English |
---|---|---|
1 | Lecture 01: Rolle’s Theorem | Download Verified |
2 | Lecture 02: Mean Value Theorems | Download Verified |
3 | Lecture 03:Indeterminate Forms (Part ‐1) | Download Verified |
4 | Lecture 04: Indeterminate Forms (Part ‐2) | Download Verified |
5 | Lecture 05: Taylor Polynomial and Taylor Series | Download Verified |
6 | Lecture 06: Limit of Functions of Two Variables | Download Verified |
7 | Lecture 07:Evaluation of Limit of Functions of Two Variables | Download Verified |
8 | Lecture 08: Continuity of Functions of Two Variables | Download Verified |
9 | Lecture 09: Partial Derivatives of Functions of Two Variables | Download Verified |
10 | Lecture 10: Partial Derivatives of Higher Order | Download Verified |
11 | Lecture 11 : Derivative & Differentiability | Download Verified |
12 | Lecture 12 : Differentiability of Functions of Two Variables | Download Verified |
13 | Lecture 13 : Differentiability of Functions of Two Variables (Cont.) | Download Verified |
14 | Lecture 14 : Differentiability of Functions of Two Variables (Cont.) | Download Verified |
15 | Lecture 15 : Composite and Homogeneous Functions | Download Verified |
16 | Lecture 16 : Taylor’s Theorem for Functions of Two Variables | Download Verified |
17 | Lecture 17 : Maxima & Minima of Functions of Two Variables | Download Verified |
18 | Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.) | Download Verified |
19 | Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.) | Download Verified |
20 | Lecture 20 : Constrained Maxima & Minima | Download Verified |
21 | Lecture 21 : Improper Integrals | Download Verified |
22 | Lecture 22 : Improper Integrals (Cont.) | Download Verified |
23 | Lecture 23 : Improper Integrals (Cont.) | Download Verified |
24 | Lecture 24 : Improper Integrals (Cont.) | Download Verified |
25 | Lecture 25 : Beta & Gamma Function | Download Verified |
26 | Lecture 26 : Beta & Gamma Function (Cont.) | Download Verified |
27 | Lecture 27 : Differentiation Under Integral Sign | Download Verified |
28 | Lecture 28 : Double Integrals | Download Verified |
29 | Lecture 29 : Double Integrals (Cont.) | Download Verified |
30 | Lecture 30 : Double Integrals (Cont.) | Download Verified |
31 | Lecture 31: Integral Calculus –Double Integrals in Polar Form | Download Verified |
32 | Lecture 32: Integral Calculus –Double Integrals: Change of Variables | Download Verified |
33 | Lecture 33: Integral Calculus –Double Integrals: Surface Area | Download Verified |
34 | Lecture 34: Integral Calculus –Triple Integrals | Download Verified |
35 | Lecture 35: Integral Calculus – Triple Integrals (Cont.) | Download Verified |
36 | Lecture 36: System of Linear Equations | Download Verified |
37 | Lecture 37: System of Linear Equations –Gauss Elimination | Download Verified |
38 | Lecture 38: System of Linear Equations –Gauss Elimination (Cont.) | Download Verified |
39 | Lecture 39: Linear Algebra - Vector Spaces | Download Verified |
40 | Lecture 40: Linear Independence of Vectors | Download Verified |
41 | Lecture 41: Vector Spaces –Spanning Set | Download Verified |
42 | Lecture 42: Vector Spaces –Basis and Dimension | Download Verified |
43 | Lecture 43: Rank of a Matrix | Download Verified |
44 | Lecture 44: Linear Transformations | Download Verified |
45 | Lecture 45: Linear Transformations (contd.) | Download Verified |
46 | Lecture 46 : Eigenvalues & Eigenvectors | Download Verified |
47 | Lecture 47 : Eigenvalues & Eigenvectors (Cont.) | Download Verified |
48 | Lecture 48 : Eigenvalues & Eigenvectors (Cont.) | Download Verified |
49 | Lecture 49 : Eigenvalues & Eigenvectors (Cont.) | Download Verified |
50 | Lecture 50 : Eigenvalues & Eigenvectors: Diagonalization | Download Verified |
51 | Lecture 51 : Differential Equations - Introduction | Download Verified |
52 | Lecture 52 : First Order Differential Equations | Download Verified |
53 | Lecture 53 : Exact Differential Equations | Download Verified |
54 | Lecture 54 : Exact Differential Equations (Cont.) | Download Verified |
55 | Lecture 55 : First Order Linear Differential Equations | Download Verified |
56 | Lecture 56: Higher Order Linear Differential Equations | Download Verified |
57 | Lecture 57: Solution of Higher Order Homogeneous Linear Equations | Download Verified |
58 | Lecture 58: Solution of Higher Order Non-Homogeneous Linear Equations | Download Verified |
59 | Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.) | Download Verified |
60 | Lecture 60 : Cauchy-Euler Equations | Download Verified |
Sl.No | Chapter Name | Bengali |
---|---|---|
1 | Lecture 01: Rolle’s Theorem | Download |
2 | Lecture 02: Mean Value Theorems | Download |
3 | Lecture 03:Indeterminate Forms (Part ‐1) | Download |
4 | Lecture 04: Indeterminate Forms (Part ‐2) | Download |
5 | Lecture 05: Taylor Polynomial and Taylor Series | Download |
6 | Lecture 06: Limit of Functions of Two Variables | Download |
7 | Lecture 07:Evaluation of Limit of Functions of Two Variables | Download |
8 | Lecture 08: Continuity of Functions of Two Variables | Download |
9 | Lecture 09: Partial Derivatives of Functions of Two Variables | Download |
10 | Lecture 10: Partial Derivatives of Higher Order | Download |
11 | Lecture 11 : Derivative & Differentiability | Download |
12 | Lecture 12 : Differentiability of Functions of Two Variables | Download |
13 | Lecture 13 : Differentiability of Functions of Two Variables (Cont.) | Download |
14 | Lecture 14 : Differentiability of Functions of Two Variables (Cont.) | Download |
15 | Lecture 15 : Composite and Homogeneous Functions | Download |
16 | Lecture 16 : Taylor’s Theorem for Functions of Two Variables | Download |
17 | Lecture 17 : Maxima & Minima of Functions of Two Variables | Download |
18 | Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
19 | Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
20 | Lecture 20 : Constrained Maxima & Minima | Download |
21 | Lecture 21 : Improper Integrals | Download |
22 | Lecture 22 : Improper Integrals (Cont.) | Download |
23 | Lecture 23 : Improper Integrals (Cont.) | Download |
24 | Lecture 24 : Improper Integrals (Cont.) | Download |
25 | Lecture 25 : Beta & Gamma Function | Download |
26 | Lecture 26 : Beta & Gamma Function (Cont.) | Download |
27 | Lecture 27 : Differentiation Under Integral Sign | Download |
28 | Lecture 28 : Double Integrals | Download |
29 | Lecture 29 : Double Integrals (Cont.) | Download |
30 | Lecture 30 : Double Integrals (Cont.) | Download |
31 | Lecture 31: Integral Calculus –Double Integrals in Polar Form | Download |
32 | Lecture 32: Integral Calculus –Double Integrals: Change of Variables | Download |
33 | Lecture 33: Integral Calculus –Double Integrals: Surface Area | Download |
34 | Lecture 34: Integral Calculus –Triple Integrals | Download |
35 | Lecture 35: Integral Calculus – Triple Integrals (Cont.) | Download |
36 | Lecture 36: System of Linear Equations | Download |
37 | Lecture 37: System of Linear Equations –Gauss Elimination | Download |
38 | Lecture 38: System of Linear Equations –Gauss Elimination (Cont.) | Download |
39 | Lecture 39: Linear Algebra - Vector Spaces | Download |
40 | Lecture 40: Linear Independence of Vectors | Download |
41 | Lecture 41: Vector Spaces –Spanning Set | Download |
42 | Lecture 42: Vector Spaces –Basis and Dimension | Download |
43 | Lecture 43: Rank of a Matrix | Download |
44 | Lecture 44: Linear Transformations | Download |
45 | Lecture 45: Linear Transformations (contd.) | Download |
46 | Lecture 46 : Eigenvalues & Eigenvectors | Download |
47 | Lecture 47 : Eigenvalues & Eigenvectors (Cont.) | Download |
48 | Lecture 48 : Eigenvalues & Eigenvectors (Cont.) | Download |
49 | Lecture 49 : Eigenvalues & Eigenvectors (Cont.) | Download |
50 | Lecture 50 : Eigenvalues & Eigenvectors: Diagonalization | Download |
51 | Lecture 51 : Differential Equations - Introduction | Download |
52 | Lecture 52 : First Order Differential Equations | Download |
53 | Lecture 53 : Exact Differential Equations | Download |
54 | Lecture 54 : Exact Differential Equations (Cont.) | Download |
55 | Lecture 55 : First Order Linear Differential Equations | Download |
56 | Lecture 56: Higher Order Linear Differential Equations | Download |
57 | Lecture 57: Solution of Higher Order Homogeneous Linear Equations | Download |
58 | Lecture 58: Solution of Higher Order Non-Homogeneous Linear Equations | Download |
59 | Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.) | Download |
60 | Lecture 60 : Cauchy-Euler Equations | Download |
Sl.No | Chapter Name | Gujarati |
---|---|---|
1 | Lecture 01: Rolle’s Theorem | Download |
2 | Lecture 02: Mean Value Theorems | Download |
3 | Lecture 03:Indeterminate Forms (Part ‐1) | Download |
4 | Lecture 04: Indeterminate Forms (Part ‐2) | Download |
5 | Lecture 05: Taylor Polynomial and Taylor Series | Download |
6 | Lecture 06: Limit of Functions of Two Variables | Download |
7 | Lecture 07:Evaluation of Limit of Functions of Two Variables | Download |
8 | Lecture 08: Continuity of Functions of Two Variables | Download |
9 | Lecture 09: Partial Derivatives of Functions of Two Variables | Download |
10 | Lecture 10: Partial Derivatives of Higher Order | Download |
11 | Lecture 11 : Derivative & Differentiability | Download |
12 | Lecture 12 : Differentiability of Functions of Two Variables | Download |
13 | Lecture 13 : Differentiability of Functions of Two Variables (Cont.) | Download |
14 | Lecture 14 : Differentiability of Functions of Two Variables (Cont.) | Download |
15 | Lecture 15 : Composite and Homogeneous Functions | Download |
16 | Lecture 16 : Taylor’s Theorem for Functions of Two Variables | Download |
17 | Lecture 17 : Maxima & Minima of Functions of Two Variables | Download |
18 | Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
19 | Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
20 | Lecture 20 : Constrained Maxima & Minima | Download |
21 | Lecture 21 : Improper Integrals | Download |
22 | Lecture 22 : Improper Integrals (Cont.) | Download |
23 | Lecture 23 : Improper Integrals (Cont.) | Download |
24 | Lecture 24 : Improper Integrals (Cont.) | Download |
25 | Lecture 25 : Beta & Gamma Function | Download |
26 | Lecture 26 : Beta & Gamma Function (Cont.) | Download |
27 | Lecture 27 : Differentiation Under Integral Sign | Download |
28 | Lecture 28 : Double Integrals | Download |
29 | Lecture 29 : Double Integrals (Cont.) | Download |
30 | Lecture 30 : Double Integrals (Cont.) | Download |
31 | Lecture 31: Integral Calculus –Double Integrals in Polar Form | Download |
32 | Lecture 32: Integral Calculus –Double Integrals: Change of Variables | Download |
33 | Lecture 33: Integral Calculus –Double Integrals: Surface Area | Download |
34 | Lecture 34: Integral Calculus –Triple Integrals | Download |
35 | Lecture 35: Integral Calculus – Triple Integrals (Cont.) | Download |
36 | Lecture 36: System of Linear Equations | Download |
37 | Lecture 37: System of Linear Equations –Gauss Elimination | Download |
38 | Lecture 38: System of Linear Equations –Gauss Elimination (Cont.) | Download |
39 | Lecture 39: Linear Algebra - Vector Spaces | Download |
40 | Lecture 40: Linear Independence of Vectors | Download |
41 | Lecture 41: Vector Spaces –Spanning Set | Download |
42 | Lecture 42: Vector Spaces –Basis and Dimension | Download |
43 | Lecture 43: Rank of a Matrix | Download |
44 | Lecture 44: Linear Transformations | Download |
45 | Lecture 45: Linear Transformations (contd.) | Download |
46 | Lecture 46 : Eigenvalues & Eigenvectors | Download |
47 | Lecture 47 : Eigenvalues & Eigenvectors (Cont.) | Download |
48 | Lecture 48 : Eigenvalues & Eigenvectors (Cont.) | Download |
49 | Lecture 49 : Eigenvalues & Eigenvectors (Cont.) | Download |
50 | Lecture 50 : Eigenvalues & Eigenvectors: Diagonalization | Download |
51 | Lecture 51 : Differential Equations - Introduction | Download |
52 | Lecture 52 : First Order Differential Equations | Download |
53 | Lecture 53 : Exact Differential Equations | Download |
54 | Lecture 54 : Exact Differential Equations (Cont.) | Download |
55 | Lecture 55 : First Order Linear Differential Equations | Download |
56 | Lecture 56: Higher Order Linear Differential Equations | Download |
57 | Lecture 57: Solution of Higher Order Homogeneous Linear Equations | Download |
58 | Lecture 58: Solution of Higher Order Non-Homogeneous Linear Equations | Download |
59 | Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.) | Download |
60 | Lecture 60 : Cauchy-Euler Equations | Not Available |
Sl.No | Chapter Name | Hindi |
---|---|---|
1 | Lecture 01: Rolle’s Theorem | Download |
2 | Lecture 02: Mean Value Theorems | Download |
3 | Lecture 03:Indeterminate Forms (Part ‐1) | Download |
4 | Lecture 04: Indeterminate Forms (Part ‐2) | Download |
5 | Lecture 05: Taylor Polynomial and Taylor Series | Download |
6 | Lecture 06: Limit of Functions of Two Variables | Download |
7 | Lecture 07:Evaluation of Limit of Functions of Two Variables | Download |
8 | Lecture 08: Continuity of Functions of Two Variables | Download |
9 | Lecture 09: Partial Derivatives of Functions of Two Variables | Download |
10 | Lecture 10: Partial Derivatives of Higher Order | Download |
11 | Lecture 11 : Derivative & Differentiability | Download |
12 | Lecture 12 : Differentiability of Functions of Two Variables | Download |
13 | Lecture 13 : Differentiability of Functions of Two Variables (Cont.) | Download |
14 | Lecture 14 : Differentiability of Functions of Two Variables (Cont.) | Download |
15 | Lecture 15 : Composite and Homogeneous Functions | Download |
16 | Lecture 16 : Taylor’s Theorem for Functions of Two Variables | Download |
17 | Lecture 17 : Maxima & Minima of Functions of Two Variables | Download |
18 | Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
19 | Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
20 | Lecture 20 : Constrained Maxima & Minima | Download |
21 | Lecture 21 : Improper Integrals | Download |
22 | Lecture 22 : Improper Integrals (Cont.) | Download |
23 | Lecture 23 : Improper Integrals (Cont.) | Download |
24 | Lecture 24 : Improper Integrals (Cont.) | Download |
25 | Lecture 25 : Beta & Gamma Function | Download |
26 | Lecture 26 : Beta & Gamma Function (Cont.) | Download |
27 | Lecture 27 : Differentiation Under Integral Sign | Download |
28 | Lecture 28 : Double Integrals | Download |
29 | Lecture 29 : Double Integrals (Cont.) | Download |
30 | Lecture 30 : Double Integrals (Cont.) | Download |
31 | Lecture 31: Integral Calculus –Double Integrals in Polar Form | Download |
32 | Lecture 32: Integral Calculus –Double Integrals: Change of Variables | Download |
33 | Lecture 33: Integral Calculus –Double Integrals: Surface Area | Download |
34 | Lecture 34: Integral Calculus –Triple Integrals | Download |
35 | Lecture 35: Integral Calculus – Triple Integrals (Cont.) | Download |
36 | Lecture 36: System of Linear Equations | Download |
37 | Lecture 37: System of Linear Equations –Gauss Elimination | Download |
38 | Lecture 38: System of Linear Equations –Gauss Elimination (Cont.) | Download |
39 | Lecture 39: Linear Algebra - Vector Spaces | Download |
40 | Lecture 40: Linear Independence of Vectors | Download |
41 | Lecture 41: Vector Spaces –Spanning Set | Download |
42 | Lecture 42: Vector Spaces –Basis and Dimension | Download |
43 | Lecture 43: Rank of a Matrix | Download |
44 | Lecture 44: Linear Transformations | Download |
45 | Lecture 45: Linear Transformations (contd.) | Download |
46 | Lecture 46 : Eigenvalues & Eigenvectors | Download |
47 | Lecture 47 : Eigenvalues & Eigenvectors (Cont.) | Download |
48 | Lecture 48 : Eigenvalues & Eigenvectors (Cont.) | Download |
49 | Lecture 49 : Eigenvalues & Eigenvectors (Cont.) | Download |
50 | Lecture 50 : Eigenvalues & Eigenvectors: Diagonalization | Download |
51 | Lecture 51 : Differential Equations - Introduction | Download |
52 | Lecture 52 : First Order Differential Equations | Download |
53 | Lecture 53 : Exact Differential Equations | Download |
54 | Lecture 54 : Exact Differential Equations (Cont.) | Download |
55 | Lecture 55 : First Order Linear Differential Equations | Download |
56 | Lecture 56: Higher Order Linear Differential Equations | Download |
57 | Lecture 57: Solution of Higher Order Homogeneous Linear Equations | Download |
58 | Lecture 58: Solution of Higher Order Non-Homogeneous Linear Equations | Download |
59 | Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.) | Download |
60 | Lecture 60 : Cauchy-Euler Equations | Not Available |
Sl.No | Chapter Name | Kannada |
---|---|---|
1 | Lecture 01: Rolle’s Theorem | Download |
2 | Lecture 02: Mean Value Theorems | Download |
3 | Lecture 03:Indeterminate Forms (Part ‐1) | Download |
4 | Lecture 04: Indeterminate Forms (Part ‐2) | Download |
5 | Lecture 05: Taylor Polynomial and Taylor Series | Download |
6 | Lecture 06: Limit of Functions of Two Variables | Download |
7 | Lecture 07:Evaluation of Limit of Functions of Two Variables | Download |
8 | Lecture 08: Continuity of Functions of Two Variables | Download |
9 | Lecture 09: Partial Derivatives of Functions of Two Variables | Download |
10 | Lecture 10: Partial Derivatives of Higher Order | Download |
11 | Lecture 11 : Derivative & Differentiability | Download |
12 | Lecture 12 : Differentiability of Functions of Two Variables | Download |
13 | Lecture 13 : Differentiability of Functions of Two Variables (Cont.) | Download |
14 | Lecture 14 : Differentiability of Functions of Two Variables (Cont.) | Download |
15 | Lecture 15 : Composite and Homogeneous Functions | Download |
16 | Lecture 16 : Taylor’s Theorem for Functions of Two Variables | Download |
17 | Lecture 17 : Maxima & Minima of Functions of Two Variables | Download |
18 | Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
19 | Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
20 | Lecture 20 : Constrained Maxima & Minima | Download |
21 | Lecture 21 : Improper Integrals | Download |
22 | Lecture 22 : Improper Integrals (Cont.) | Download |
23 | Lecture 23 : Improper Integrals (Cont.) | Download |
24 | Lecture 24 : Improper Integrals (Cont.) | Download |
25 | Lecture 25 : Beta & Gamma Function | Download |
26 | Lecture 26 : Beta & Gamma Function (Cont.) | Download |
27 | Lecture 27 : Differentiation Under Integral Sign | Download |
28 | Lecture 28 : Double Integrals | Download |
29 | Lecture 29 : Double Integrals (Cont.) | Download |
30 | Lecture 30 : Double Integrals (Cont.) | Download |
31 | Lecture 31: Integral Calculus –Double Integrals in Polar Form | Download |
32 | Lecture 32: Integral Calculus –Double Integrals: Change of Variables | Download |
33 | Lecture 33: Integral Calculus –Double Integrals: Surface Area | Download |
34 | Lecture 34: Integral Calculus –Triple Integrals | Download |
35 | Lecture 35: Integral Calculus – Triple Integrals (Cont.) | Download |
36 | Lecture 36: System of Linear Equations | Download |
37 | Lecture 37: System of Linear Equations –Gauss Elimination | Download |
38 | Lecture 38: System of Linear Equations –Gauss Elimination (Cont.) | Download |
39 | Lecture 39: Linear Algebra - Vector Spaces | Download |
40 | Lecture 40: Linear Independence of Vectors | Download |
41 | Lecture 41: Vector Spaces –Spanning Set | Download |
42 | Lecture 42: Vector Spaces –Basis and Dimension | Download |
43 | Lecture 43: Rank of a Matrix | Download |
44 | Lecture 44: Linear Transformations | Download |
45 | Lecture 45: Linear Transformations (contd.) | Download |
46 | Lecture 46 : Eigenvalues & Eigenvectors | Download |
47 | Lecture 47 : Eigenvalues & Eigenvectors (Cont.) | Download |
48 | Lecture 48 : Eigenvalues & Eigenvectors (Cont.) | Download |
49 | Lecture 49 : Eigenvalues & Eigenvectors (Cont.) | Download |
50 | Lecture 50 : Eigenvalues & Eigenvectors: Diagonalization | Download |
51 | Lecture 51 : Differential Equations - Introduction | Download |
52 | Lecture 52 : First Order Differential Equations | Download |
53 | Lecture 53 : Exact Differential Equations | Download |
54 | Lecture 54 : Exact Differential Equations (Cont.) | Download |
55 | Lecture 55 : First Order Linear Differential Equations | Download |
56 | Lecture 56: Higher Order Linear Differential Equations | Download |
57 | Lecture 57: Solution of Higher Order Homogeneous Linear Equations | Download |
58 | Lecture 58: Solution of Higher Order Non-Homogeneous Linear Equations | Download |
59 | Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.) | Download |
60 | Lecture 60 : Cauchy-Euler Equations | Download |
Sl.No | Chapter Name | Malayalam |
---|---|---|
1 | Lecture 01: Rolle’s Theorem | Download |
2 | Lecture 02: Mean Value Theorems | Download |
3 | Lecture 03:Indeterminate Forms (Part ‐1) | Download |
4 | Lecture 04: Indeterminate Forms (Part ‐2) | Download |
5 | Lecture 05: Taylor Polynomial and Taylor Series | Download |
6 | Lecture 06: Limit of Functions of Two Variables | Download |
7 | Lecture 07:Evaluation of Limit of Functions of Two Variables | Download |
8 | Lecture 08: Continuity of Functions of Two Variables | Download |
9 | Lecture 09: Partial Derivatives of Functions of Two Variables | Download |
10 | Lecture 10: Partial Derivatives of Higher Order | Download |
11 | Lecture 11 : Derivative & Differentiability | Download |
12 | Lecture 12 : Differentiability of Functions of Two Variables | Download |
13 | Lecture 13 : Differentiability of Functions of Two Variables (Cont.) | Download |
14 | Lecture 14 : Differentiability of Functions of Two Variables (Cont.) | Download |
15 | Lecture 15 : Composite and Homogeneous Functions | Download |
16 | Lecture 16 : Taylor’s Theorem for Functions of Two Variables | Download |
17 | Lecture 17 : Maxima & Minima of Functions of Two Variables | Download |
18 | Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
19 | Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
20 | Lecture 20 : Constrained Maxima & Minima | Download |
21 | Lecture 21 : Improper Integrals | Download |
22 | Lecture 22 : Improper Integrals (Cont.) | Download |
23 | Lecture 23 : Improper Integrals (Cont.) | Download |
24 | Lecture 24 : Improper Integrals (Cont.) | Download |
25 | Lecture 25 : Beta & Gamma Function | Download |
26 | Lecture 26 : Beta & Gamma Function (Cont.) | Download |
27 | Lecture 27 : Differentiation Under Integral Sign | Download |
28 | Lecture 28 : Double Integrals | Download |
29 | Lecture 29 : Double Integrals (Cont.) | Download |
30 | Lecture 30 : Double Integrals (Cont.) | Download |
31 | Lecture 31: Integral Calculus –Double Integrals in Polar Form | Download |
32 | Lecture 32: Integral Calculus –Double Integrals: Change of Variables | Download |
33 | Lecture 33: Integral Calculus –Double Integrals: Surface Area | Download |
34 | Lecture 34: Integral Calculus –Triple Integrals | Download |
35 | Lecture 35: Integral Calculus – Triple Integrals (Cont.) | Download |
36 | Lecture 36: System of Linear Equations | Download |
37 | Lecture 37: System of Linear Equations –Gauss Elimination | Download |
38 | Lecture 38: System of Linear Equations –Gauss Elimination (Cont.) | Download |
39 | Lecture 39: Linear Algebra - Vector Spaces | Download |
40 | Lecture 40: Linear Independence of Vectors | Download |
41 | Lecture 41: Vector Spaces –Spanning Set | Download |
42 | Lecture 42: Vector Spaces –Basis and Dimension | Download |
43 | Lecture 43: Rank of a Matrix | Download |
44 | Lecture 44: Linear Transformations | Download |
45 | Lecture 45: Linear Transformations (contd.) | Download |
46 | Lecture 46 : Eigenvalues & Eigenvectors | Download |
47 | Lecture 47 : Eigenvalues & Eigenvectors (Cont.) | Download |
48 | Lecture 48 : Eigenvalues & Eigenvectors (Cont.) | Download |
49 | Lecture 49 : Eigenvalues & Eigenvectors (Cont.) | Download |
50 | Lecture 50 : Eigenvalues & Eigenvectors: Diagonalization | Download |
51 | Lecture 51 : Differential Equations - Introduction | Download |
52 | Lecture 52 : First Order Differential Equations | Download |
53 | Lecture 53 : Exact Differential Equations | Download |
54 | Lecture 54 : Exact Differential Equations (Cont.) | Download |
55 | Lecture 55 : First Order Linear Differential Equations | Download |
56 | Lecture 56: Higher Order Linear Differential Equations | Download |
57 | Lecture 57: Solution of Higher Order Homogeneous Linear Equations | Download |
58 | Lecture 58: Solution of Higher Order Non-Homogeneous Linear Equations | Download |
59 | Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.) | Download |
60 | Lecture 60 : Cauchy-Euler Equations | Download |
Sl.No | Chapter Name | Marathi |
---|---|---|
1 | Lecture 01: Rolle’s Theorem | Download |
2 | Lecture 02: Mean Value Theorems | Download |
3 | Lecture 03:Indeterminate Forms (Part ‐1) | Download |
4 | Lecture 04: Indeterminate Forms (Part ‐2) | Download |
5 | Lecture 05: Taylor Polynomial and Taylor Series | Download |
6 | Lecture 06: Limit of Functions of Two Variables | Download |
7 | Lecture 07:Evaluation of Limit of Functions of Two Variables | Download |
8 | Lecture 08: Continuity of Functions of Two Variables | Download |
9 | Lecture 09: Partial Derivatives of Functions of Two Variables | Download |
10 | Lecture 10: Partial Derivatives of Higher Order | Download |
11 | Lecture 11 : Derivative & Differentiability | Download |
12 | Lecture 12 : Differentiability of Functions of Two Variables | Download |
13 | Lecture 13 : Differentiability of Functions of Two Variables (Cont.) | Download |
14 | Lecture 14 : Differentiability of Functions of Two Variables (Cont.) | Download |
15 | Lecture 15 : Composite and Homogeneous Functions | Download |
16 | Lecture 16 : Taylor’s Theorem for Functions of Two Variables | Download |
17 | Lecture 17 : Maxima & Minima of Functions of Two Variables | Download |
18 | Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
19 | Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
20 | Lecture 20 : Constrained Maxima & Minima | Download |
21 | Lecture 21 : Improper Integrals | Download |
22 | Lecture 22 : Improper Integrals (Cont.) | Download |
23 | Lecture 23 : Improper Integrals (Cont.) | Download |
24 | Lecture 24 : Improper Integrals (Cont.) | Download |
25 | Lecture 25 : Beta & Gamma Function | Download |
26 | Lecture 26 : Beta & Gamma Function (Cont.) | Download |
27 | Lecture 27 : Differentiation Under Integral Sign | Download |
28 | Lecture 28 : Double Integrals | Download |
29 | Lecture 29 : Double Integrals (Cont.) | Download |
30 | Lecture 30 : Double Integrals (Cont.) | Download |
31 | Lecture 31: Integral Calculus –Double Integrals in Polar Form | Download |
32 | Lecture 32: Integral Calculus –Double Integrals: Change of Variables | Download |
33 | Lecture 33: Integral Calculus –Double Integrals: Surface Area | Download |
34 | Lecture 34: Integral Calculus –Triple Integrals | Download |
35 | Lecture 35: Integral Calculus – Triple Integrals (Cont.) | Download |
36 | Lecture 36: System of Linear Equations | Download |
37 | Lecture 37: System of Linear Equations –Gauss Elimination | Download |
38 | Lecture 38: System of Linear Equations –Gauss Elimination (Cont.) | Download |
39 | Lecture 39: Linear Algebra - Vector Spaces | Download |
40 | Lecture 40: Linear Independence of Vectors | Download |
41 | Lecture 41: Vector Spaces –Spanning Set | Download |
42 | Lecture 42: Vector Spaces –Basis and Dimension | Download |
43 | Lecture 43: Rank of a Matrix | Download |
44 | Lecture 44: Linear Transformations | Download |
45 | Lecture 45: Linear Transformations (contd.) | Download |
46 | Lecture 46 : Eigenvalues & Eigenvectors | Download |
47 | Lecture 47 : Eigenvalues & Eigenvectors (Cont.) | Download |
48 | Lecture 48 : Eigenvalues & Eigenvectors (Cont.) | Download |
49 | Lecture 49 : Eigenvalues & Eigenvectors (Cont.) | Download |
50 | Lecture 50 : Eigenvalues & Eigenvectors: Diagonalization | Download |
51 | Lecture 51 : Differential Equations - Introduction | Download |
52 | Lecture 52 : First Order Differential Equations | Download |
53 | Lecture 53 : Exact Differential Equations | Download |
54 | Lecture 54 : Exact Differential Equations (Cont.) | Download |
55 | Lecture 55 : First Order Linear Differential Equations | Download |
56 | Lecture 56: Higher Order Linear Differential Equations | Download |
57 | Lecture 57: Solution of Higher Order Homogeneous Linear Equations | Download |
58 | Lecture 58: Solution of Higher Order Non-Homogeneous Linear Equations | Download |
59 | Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.) | Download |
60 | Lecture 60 : Cauchy-Euler Equations | Download |
Sl.No | Chapter Name | Tamil |
---|---|---|
1 | Lecture 01: Rolle’s Theorem | Download |
2 | Lecture 02: Mean Value Theorems | Download |
3 | Lecture 03:Indeterminate Forms (Part ‐1) | Download |
4 | Lecture 04: Indeterminate Forms (Part ‐2) | Download |
5 | Lecture 05: Taylor Polynomial and Taylor Series | Download |
6 | Lecture 06: Limit of Functions of Two Variables | Download |
7 | Lecture 07:Evaluation of Limit of Functions of Two Variables | Download |
8 | Lecture 08: Continuity of Functions of Two Variables | Download |
9 | Lecture 09: Partial Derivatives of Functions of Two Variables | Download |
10 | Lecture 10: Partial Derivatives of Higher Order | Download |
11 | Lecture 11 : Derivative & Differentiability | Download |
12 | Lecture 12 : Differentiability of Functions of Two Variables | Download |
13 | Lecture 13 : Differentiability of Functions of Two Variables (Cont.) | Download |
14 | Lecture 14 : Differentiability of Functions of Two Variables (Cont.) | Download |
15 | Lecture 15 : Composite and Homogeneous Functions | Download |
16 | Lecture 16 : Taylor’s Theorem for Functions of Two Variables | Download |
17 | Lecture 17 : Maxima & Minima of Functions of Two Variables | Download |
18 | Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
19 | Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
20 | Lecture 20 : Constrained Maxima & Minima | Download |
21 | Lecture 21 : Improper Integrals | Download |
22 | Lecture 22 : Improper Integrals (Cont.) | Download |
23 | Lecture 23 : Improper Integrals (Cont.) | Download |
24 | Lecture 24 : Improper Integrals (Cont.) | Download |
25 | Lecture 25 : Beta & Gamma Function | Download |
26 | Lecture 26 : Beta & Gamma Function (Cont.) | Download |
27 | Lecture 27 : Differentiation Under Integral Sign | Download |
28 | Lecture 28 : Double Integrals | Download |
29 | Lecture 29 : Double Integrals (Cont.) | Download |
30 | Lecture 30 : Double Integrals (Cont.) | Download |
31 | Lecture 31: Integral Calculus –Double Integrals in Polar Form | Download |
32 | Lecture 32: Integral Calculus –Double Integrals: Change of Variables | Download |
33 | Lecture 33: Integral Calculus –Double Integrals: Surface Area | Download |
34 | Lecture 34: Integral Calculus –Triple Integrals | Download |
35 | Lecture 35: Integral Calculus – Triple Integrals (Cont.) | Download |
36 | Lecture 36: System of Linear Equations | Download |
37 | Lecture 37: System of Linear Equations –Gauss Elimination | Download |
38 | Lecture 38: System of Linear Equations –Gauss Elimination (Cont.) | Download |
39 | Lecture 39: Linear Algebra - Vector Spaces | Download |
40 | Lecture 40: Linear Independence of Vectors | Download |
41 | Lecture 41: Vector Spaces –Spanning Set | Download |
42 | Lecture 42: Vector Spaces –Basis and Dimension | Download |
43 | Lecture 43: Rank of a Matrix | Download |
44 | Lecture 44: Linear Transformations | Download |
45 | Lecture 45: Linear Transformations (contd.) | Download |
46 | Lecture 46 : Eigenvalues & Eigenvectors | Download |
47 | Lecture 47 : Eigenvalues & Eigenvectors (Cont.) | Download |
48 | Lecture 48 : Eigenvalues & Eigenvectors (Cont.) | Download |
49 | Lecture 49 : Eigenvalues & Eigenvectors (Cont.) | Download |
50 | Lecture 50 : Eigenvalues & Eigenvectors: Diagonalization | Download |
51 | Lecture 51 : Differential Equations - Introduction | Download |
52 | Lecture 52 : First Order Differential Equations | Download |
53 | Lecture 53 : Exact Differential Equations | Download |
54 | Lecture 54 : Exact Differential Equations (Cont.) | Download |
55 | Lecture 55 : First Order Linear Differential Equations | Download |
56 | Lecture 56: Higher Order Linear Differential Equations | Download |
57 | Lecture 57: Solution of Higher Order Homogeneous Linear Equations | Download |
58 | Lecture 58: Solution of Higher Order Non-Homogeneous Linear Equations | Download |
59 | Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.) | Download |
60 | Lecture 60 : Cauchy-Euler Equations | Not Available |
Sl.No | Chapter Name | Telugu |
---|---|---|
1 | Lecture 01: Rolle’s Theorem | Download |
2 | Lecture 02: Mean Value Theorems | Download |
3 | Lecture 03:Indeterminate Forms (Part ‐1) | Download |
4 | Lecture 04: Indeterminate Forms (Part ‐2) | Download |
5 | Lecture 05: Taylor Polynomial and Taylor Series | Download |
6 | Lecture 06: Limit of Functions of Two Variables | Download |
7 | Lecture 07:Evaluation of Limit of Functions of Two Variables | Download |
8 | Lecture 08: Continuity of Functions of Two Variables | Download |
9 | Lecture 09: Partial Derivatives of Functions of Two Variables | Download |
10 | Lecture 10: Partial Derivatives of Higher Order | Download |
11 | Lecture 11 : Derivative & Differentiability | Download |
12 | Lecture 12 : Differentiability of Functions of Two Variables | Download |
13 | Lecture 13 : Differentiability of Functions of Two Variables (Cont.) | Download |
14 | Lecture 14 : Differentiability of Functions of Two Variables (Cont.) | Download |
15 | Lecture 15 : Composite and Homogeneous Functions | Download |
16 | Lecture 16 : Taylor’s Theorem for Functions of Two Variables | Download |
17 | Lecture 17 : Maxima & Minima of Functions of Two Variables | Download |
18 | Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
19 | Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.) | Download |
20 | Lecture 20 : Constrained Maxima & Minima | Download |
21 | Lecture 21 : Improper Integrals | Download |
22 | Lecture 22 : Improper Integrals (Cont.) | Download |
23 | Lecture 23 : Improper Integrals (Cont.) | Download |
24 | Lecture 24 : Improper Integrals (Cont.) | Download |
25 | Lecture 25 : Beta & Gamma Function | Download |
26 | Lecture 26 : Beta & Gamma Function (Cont.) | Download |
27 | Lecture 27 : Differentiation Under Integral Sign | Download |
28 | Lecture 28 : Double Integrals | Download |
29 | Lecture 29 : Double Integrals (Cont.) | Download |
30 | Lecture 30 : Double Integrals (Cont.) | Download |
31 | Lecture 31: Integral Calculus –Double Integrals in Polar Form | Download |
32 | Lecture 32: Integral Calculus –Double Integrals: Change of Variables | Download |
33 | Lecture 33: Integral Calculus –Double Integrals: Surface Area | Download |
34 | Lecture 34: Integral Calculus –Triple Integrals | Download |
35 | Lecture 35: Integral Calculus – Triple Integrals (Cont.) | Download |
36 | Lecture 36: System of Linear Equations | Download |
37 | Lecture 37: System of Linear Equations –Gauss Elimination | Download |
38 | Lecture 38: System of Linear Equations –Gauss Elimination (Cont.) | Download |
39 | Lecture 39: Linear Algebra - Vector Spaces | Download |
40 | Lecture 40: Linear Independence of Vectors | Download |
41 | Lecture 41: Vector Spaces –Spanning Set | Download |
42 | Lecture 42: Vector Spaces –Basis and Dimension | Download |
43 | Lecture 43: Rank of a Matrix | Download |
44 | Lecture 44: Linear Transformations | Download |
45 | Lecture 45: Linear Transformations (contd.) | Download |
46 | Lecture 46 : Eigenvalues & Eigenvectors | Download |
47 | Lecture 47 : Eigenvalues & Eigenvectors (Cont.) | Download |
48 | Lecture 48 : Eigenvalues & Eigenvectors (Cont.) | Download |
49 | Lecture 49 : Eigenvalues & Eigenvectors (Cont.) | Download |
50 | Lecture 50 : Eigenvalues & Eigenvectors: Diagonalization | Download |
51 | Lecture 51 : Differential Equations - Introduction | Download |
52 | Lecture 52 : First Order Differential Equations | Download |
53 | Lecture 53 : Exact Differential Equations | Download |
54 | Lecture 54 : Exact Differential Equations (Cont.) | Download |
55 | Lecture 55 : First Order Linear Differential Equations | Download |
56 | Lecture 56: Higher Order Linear Differential Equations | Download |
57 | Lecture 57: Solution of Higher Order Homogeneous Linear Equations | Download |
58 | Lecture 58: Solution of Higher Order Non-Homogeneous Linear Equations | Download |
59 | Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.) | Download |
60 | Lecture 60 : Cauchy-Euler Equations | Download |