Modules / Lectures

Video Transcript:

Auto Scroll Hide
Module NameDownload
noc19_ma01_Assignment1noc19_ma01_Assignment1
noc19_ma01_Assignment10noc19_ma01_Assignment10
noc19_ma01_Assignment11noc19_ma01_Assignment11
noc19_ma01_Assignment12noc19_ma01_Assignment12
noc19_ma01_Assignment13noc19_ma01_Assignment13
noc19_ma01_Assignment2noc19_ma01_Assignment2
noc19_ma01_Assignment3noc19_ma01_Assignment3
noc19_ma01_Assignment4noc19_ma01_Assignment4
noc19_ma01_Assignment5noc19_ma01_Assignment5
noc19_ma01_Assignment6noc19_ma01_Assignment6
noc19_ma01_Assignment7noc19_ma01_Assignment7
noc19_ma01_Assignment8noc19_ma01_Assignment8
noc19_ma01_Assignment9noc19_ma01_Assignment9


Sl.No Chapter Name MP4 Download
1Lecture 01: Rolle’s TheoremDownload
2Lecture 02: Mean Value TheoremsDownload
3Lecture 03:Indeterminate Forms (Part ‐1)Download
4Lecture 04: Indeterminate Forms (Part ‐2)Download
5Lecture 05: Taylor Polynomial and Taylor SeriesDownload
6Lecture 06: Limit of Functions of Two VariablesDownload
7Lecture 07:Evaluation of Limit of Functions of Two VariablesDownload
8Lecture 08: Continuity of Functions of Two VariablesDownload
9Lecture 09: Partial Derivatives of Functions of Two VariablesDownload
10Lecture 10: Partial Derivatives of Higher OrderDownload
11Lecture 11 : Derivative & DifferentiabilityDownload
12Lecture 12 : Differentiability of Functions of Two VariablesDownload
13Lecture 13 : Differentiability of Functions of Two Variables (Cont.)Download
14Lecture 14 : Differentiability of Functions of Two Variables (Cont.)Download
15Lecture 15 : Composite and Homogeneous FunctionsDownload
16Lecture 16 : Taylor’s Theorem for Functions of Two VariablesDownload
17Lecture 17 : Maxima & Minima of Functions of Two VariablesDownload
18Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.)Download
19Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.)Download
20Lecture 20 : Constrained Maxima & MinimaDownload
21Lecture 21 : Improper Integrals Download
22Lecture 22 : Improper Integrals (Cont.)Download
23Lecture 23 : Improper Integrals (Cont.)Download
24Lecture 24 : Improper Integrals (Cont.)Download
25Lecture 25 : Beta & Gamma FunctionDownload
26Lecture 26 : Beta & Gamma Function (Cont.)Download
27Lecture 27 : Differentiation Under Integral SignDownload
28Lecture 28 : Double Integrals Download
29Lecture 29 : Double Integrals (Cont.)Download
30Lecture 30 : Double Integrals (Cont.)Download
31Lecture 31: Integral Calculus –Double Integrals in Polar FormDownload
32Lecture 32: Integral Calculus –Double Integrals: Change of VariablesDownload
33Lecture 33: Integral Calculus –Double Integrals: Surface AreaDownload
34Lecture 34: Integral Calculus –Triple IntegralsDownload
35Lecture 35: Integral Calculus – Triple Integrals (Cont.)Download
36Lecture 36: System of Linear Equations Download
37Lecture 37: System of Linear Equations –Gauss EliminationDownload
38Lecture 38: System of Linear Equations –Gauss Elimination (Cont.)Download
39Lecture 39: Linear Algebra - Vector SpacesDownload
40Lecture 40: Linear Independence of VectorsDownload
41Lecture 41: Vector Spaces –Spanning SetDownload
42Lecture 42: Vector Spaces –Basis and DimensionDownload
43Lecture 43: Rank of a MatrixDownload
44Lecture 44: Linear TransformationsDownload
45Lecture 45: Linear Transformations (contd.)Download
46Lecture 46 : Eigenvalues & EigenvectorsDownload
47Lecture 47 : Eigenvalues & Eigenvectors (Cont.)Download
48Lecture 48 : Eigenvalues & Eigenvectors (Cont.)Download
49Lecture 49 : Eigenvalues & Eigenvectors (Cont.)Download
50Lecture 50 : Eigenvalues & Eigenvectors: DiagonalizationDownload
51Lecture 51 : Differential Equations - IntroductionDownload
52Lecture 52 : First Order Differential EquationsDownload
53Lecture 53 : Exact Differential EquationsDownload
54Lecture 54 : Exact Differential Equations (Cont.)Download
55Lecture 55 : First Order Linear Differential EquationsDownload
56Lecture 56: Higher Order Linear Differential EquationsDownload
57Lecture 57: Solution of Higher Order Homogeneous Linear EquationsDownload
58Lecture 58: Solution of Higher Order Non-Homogeneous Linear EquationsDownload
59Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.)Download
60Lecture 60 : Cauchy-Euler EquationsDownload

Sl.No Chapter Name English
1Lecture 01: Rolle’s TheoremDownload
Verified
2Lecture 02: Mean Value TheoremsDownload
Verified
3Lecture 03:Indeterminate Forms (Part ‐1)Download
Verified
4Lecture 04: Indeterminate Forms (Part ‐2)Download
Verified
5Lecture 05: Taylor Polynomial and Taylor SeriesDownload
Verified
6Lecture 06: Limit of Functions of Two VariablesDownload
Verified
7Lecture 07:Evaluation of Limit of Functions of Two VariablesDownload
Verified
8Lecture 08: Continuity of Functions of Two VariablesDownload
Verified
9Lecture 09: Partial Derivatives of Functions of Two VariablesDownload
Verified
10Lecture 10: Partial Derivatives of Higher OrderDownload
Verified
11Lecture 11 : Derivative & DifferentiabilityDownload
Verified
12Lecture 12 : Differentiability of Functions of Two VariablesDownload
Verified
13Lecture 13 : Differentiability of Functions of Two Variables (Cont.)Download
Verified
14Lecture 14 : Differentiability of Functions of Two Variables (Cont.)Download
Verified
15Lecture 15 : Composite and Homogeneous FunctionsDownload
Verified
16Lecture 16 : Taylor’s Theorem for Functions of Two VariablesDownload
Verified
17Lecture 17 : Maxima & Minima of Functions of Two VariablesDownload
Verified
18Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.)Download
Verified
19Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.)Download
Verified
20Lecture 20 : Constrained Maxima & MinimaDownload
Verified
21Lecture 21 : Improper Integrals Download
Verified
22Lecture 22 : Improper Integrals (Cont.)Download
Verified
23Lecture 23 : Improper Integrals (Cont.)Download
Verified
24Lecture 24 : Improper Integrals (Cont.)Download
Verified
25Lecture 25 : Beta & Gamma FunctionDownload
Verified
26Lecture 26 : Beta & Gamma Function (Cont.)Download
Verified
27Lecture 27 : Differentiation Under Integral SignDownload
Verified
28Lecture 28 : Double Integrals Download
Verified
29Lecture 29 : Double Integrals (Cont.)Download
Verified
30Lecture 30 : Double Integrals (Cont.)Download
Verified
31Lecture 31: Integral Calculus –Double Integrals in Polar FormDownload
Verified
32Lecture 32: Integral Calculus –Double Integrals: Change of VariablesDownload
Verified
33Lecture 33: Integral Calculus –Double Integrals: Surface AreaDownload
Verified
34Lecture 34: Integral Calculus –Triple IntegralsDownload
Verified
35Lecture 35: Integral Calculus – Triple Integrals (Cont.)Download
Verified
36Lecture 36: System of Linear Equations Download
Verified
37Lecture 37: System of Linear Equations –Gauss EliminationDownload
Verified
38Lecture 38: System of Linear Equations –Gauss Elimination (Cont.)Download
Verified
39Lecture 39: Linear Algebra - Vector SpacesDownload
Verified
40Lecture 40: Linear Independence of VectorsDownload
Verified
41Lecture 41: Vector Spaces –Spanning SetDownload
Verified
42Lecture 42: Vector Spaces –Basis and DimensionDownload
Verified
43Lecture 43: Rank of a MatrixDownload
Verified
44Lecture 44: Linear TransformationsDownload
Verified
45Lecture 45: Linear Transformations (contd.)Download
Verified
46Lecture 46 : Eigenvalues & EigenvectorsDownload
Verified
47Lecture 47 : Eigenvalues & Eigenvectors (Cont.)Download
Verified
48Lecture 48 : Eigenvalues & Eigenvectors (Cont.)Download
Verified
49Lecture 49 : Eigenvalues & Eigenvectors (Cont.)Download
Verified
50Lecture 50 : Eigenvalues & Eigenvectors: DiagonalizationDownload
Verified
51Lecture 51 : Differential Equations - IntroductionDownload
Verified
52Lecture 52 : First Order Differential EquationsDownload
Verified
53Lecture 53 : Exact Differential EquationsDownload
Verified
54Lecture 54 : Exact Differential Equations (Cont.)Download
Verified
55Lecture 55 : First Order Linear Differential EquationsDownload
Verified
56Lecture 56: Higher Order Linear Differential EquationsDownload
Verified
57Lecture 57: Solution of Higher Order Homogeneous Linear EquationsDownload
Verified
58Lecture 58: Solution of Higher Order Non-Homogeneous Linear EquationsDownload
Verified
59Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.)Download
Verified
60Lecture 60 : Cauchy-Euler EquationsDownload
Verified
Sl.No Chapter Name Bengali
1Lecture 01: Rolle’s TheoremDownload
2Lecture 02: Mean Value TheoremsDownload
3Lecture 03:Indeterminate Forms (Part ‐1)Download
4Lecture 04: Indeterminate Forms (Part ‐2)Download
5Lecture 05: Taylor Polynomial and Taylor SeriesDownload
6Lecture 06: Limit of Functions of Two VariablesDownload
7Lecture 07:Evaluation of Limit of Functions of Two VariablesDownload
8Lecture 08: Continuity of Functions of Two VariablesDownload
9Lecture 09: Partial Derivatives of Functions of Two VariablesDownload
10Lecture 10: Partial Derivatives of Higher OrderDownload
11Lecture 11 : Derivative & DifferentiabilityDownload
12Lecture 12 : Differentiability of Functions of Two VariablesDownload
13Lecture 13 : Differentiability of Functions of Two Variables (Cont.)Download
14Lecture 14 : Differentiability of Functions of Two Variables (Cont.)Download
15Lecture 15 : Composite and Homogeneous FunctionsDownload
16Lecture 16 : Taylor’s Theorem for Functions of Two VariablesDownload
17Lecture 17 : Maxima & Minima of Functions of Two VariablesDownload
18Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.)Download
19Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.)Download
20Lecture 20 : Constrained Maxima & MinimaDownload
21Lecture 21 : Improper Integrals Download
22Lecture 22 : Improper Integrals (Cont.)Download
23Lecture 23 : Improper Integrals (Cont.)Download
24Lecture 24 : Improper Integrals (Cont.)Download
25Lecture 25 : Beta & Gamma FunctionDownload
26Lecture 26 : Beta & Gamma Function (Cont.)Download
27Lecture 27 : Differentiation Under Integral SignDownload
28Lecture 28 : Double Integrals Download
29Lecture 29 : Double Integrals (Cont.)Download
30Lecture 30 : Double Integrals (Cont.)Download
31Lecture 31: Integral Calculus –Double Integrals in Polar FormDownload
32Lecture 32: Integral Calculus –Double Integrals: Change of VariablesDownload
33Lecture 33: Integral Calculus –Double Integrals: Surface AreaDownload
34Lecture 34: Integral Calculus –Triple IntegralsDownload
35Lecture 35: Integral Calculus – Triple Integrals (Cont.)Download
36Lecture 36: System of Linear Equations Download
37Lecture 37: System of Linear Equations –Gauss EliminationDownload
38Lecture 38: System of Linear Equations –Gauss Elimination (Cont.)Download
39Lecture 39: Linear Algebra - Vector SpacesDownload
40Lecture 40: Linear Independence of VectorsDownload
41Lecture 41: Vector Spaces –Spanning SetDownload
42Lecture 42: Vector Spaces –Basis and DimensionDownload
43Lecture 43: Rank of a MatrixDownload
44Lecture 44: Linear TransformationsDownload
45Lecture 45: Linear Transformations (contd.)Download
46Lecture 46 : Eigenvalues & EigenvectorsDownload
47Lecture 47 : Eigenvalues & Eigenvectors (Cont.)Download
48Lecture 48 : Eigenvalues & Eigenvectors (Cont.)Download
49Lecture 49 : Eigenvalues & Eigenvectors (Cont.)Download
50Lecture 50 : Eigenvalues & Eigenvectors: DiagonalizationDownload
51Lecture 51 : Differential Equations - IntroductionDownload
52Lecture 52 : First Order Differential EquationsDownload
53Lecture 53 : Exact Differential EquationsDownload
54Lecture 54 : Exact Differential Equations (Cont.)Download
55Lecture 55 : First Order Linear Differential EquationsDownload
56Lecture 56: Higher Order Linear Differential EquationsDownload
57Lecture 57: Solution of Higher Order Homogeneous Linear EquationsDownload
58Lecture 58: Solution of Higher Order Non-Homogeneous Linear EquationsDownload
59Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.)Download
60Lecture 60 : Cauchy-Euler EquationsDownload
Sl.No Chapter Name Gujarati
1Lecture 01: Rolle’s TheoremDownload
2Lecture 02: Mean Value TheoremsDownload
3Lecture 03:Indeterminate Forms (Part ‐1)Download
4Lecture 04: Indeterminate Forms (Part ‐2)Download
5Lecture 05: Taylor Polynomial and Taylor SeriesDownload
6Lecture 06: Limit of Functions of Two VariablesDownload
7Lecture 07:Evaluation of Limit of Functions of Two VariablesDownload
8Lecture 08: Continuity of Functions of Two VariablesDownload
9Lecture 09: Partial Derivatives of Functions of Two VariablesDownload
10Lecture 10: Partial Derivatives of Higher OrderDownload
11Lecture 11 : Derivative & DifferentiabilityDownload
12Lecture 12 : Differentiability of Functions of Two VariablesDownload
13Lecture 13 : Differentiability of Functions of Two Variables (Cont.)Download
14Lecture 14 : Differentiability of Functions of Two Variables (Cont.)Download
15Lecture 15 : Composite and Homogeneous FunctionsDownload
16Lecture 16 : Taylor’s Theorem for Functions of Two VariablesDownload
17Lecture 17 : Maxima & Minima of Functions of Two VariablesDownload
18Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.)Download
19Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.)Download
20Lecture 20 : Constrained Maxima & MinimaDownload
21Lecture 21 : Improper Integrals Download
22Lecture 22 : Improper Integrals (Cont.)Download
23Lecture 23 : Improper Integrals (Cont.)Download
24Lecture 24 : Improper Integrals (Cont.)Download
25Lecture 25 : Beta & Gamma FunctionDownload
26Lecture 26 : Beta & Gamma Function (Cont.)Download
27Lecture 27 : Differentiation Under Integral SignDownload
28Lecture 28 : Double Integrals Download
29Lecture 29 : Double Integrals (Cont.)Download
30Lecture 30 : Double Integrals (Cont.)Download
31Lecture 31: Integral Calculus –Double Integrals in Polar FormDownload
32Lecture 32: Integral Calculus –Double Integrals: Change of VariablesDownload
33Lecture 33: Integral Calculus –Double Integrals: Surface AreaDownload
34Lecture 34: Integral Calculus –Triple IntegralsDownload
35Lecture 35: Integral Calculus – Triple Integrals (Cont.)Download
36Lecture 36: System of Linear Equations Download
37Lecture 37: System of Linear Equations –Gauss EliminationDownload
38Lecture 38: System of Linear Equations –Gauss Elimination (Cont.)Download
39Lecture 39: Linear Algebra - Vector SpacesDownload
40Lecture 40: Linear Independence of VectorsDownload
41Lecture 41: Vector Spaces –Spanning SetDownload
42Lecture 42: Vector Spaces –Basis and DimensionDownload
43Lecture 43: Rank of a MatrixDownload
44Lecture 44: Linear TransformationsDownload
45Lecture 45: Linear Transformations (contd.)Download
46Lecture 46 : Eigenvalues & EigenvectorsDownload
47Lecture 47 : Eigenvalues & Eigenvectors (Cont.)Download
48Lecture 48 : Eigenvalues & Eigenvectors (Cont.)Download
49Lecture 49 : Eigenvalues & Eigenvectors (Cont.)Download
50Lecture 50 : Eigenvalues & Eigenvectors: DiagonalizationDownload
51Lecture 51 : Differential Equations - IntroductionDownload
52Lecture 52 : First Order Differential EquationsDownload
53Lecture 53 : Exact Differential EquationsDownload
54Lecture 54 : Exact Differential Equations (Cont.)Download
55Lecture 55 : First Order Linear Differential EquationsDownload
56Lecture 56: Higher Order Linear Differential EquationsDownload
57Lecture 57: Solution of Higher Order Homogeneous Linear EquationsDownload
58Lecture 58: Solution of Higher Order Non-Homogeneous Linear EquationsDownload
59Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.)Download
60Lecture 60 : Cauchy-Euler EquationsNot Available
Sl.No Chapter Name Hindi
1Lecture 01: Rolle’s TheoremDownload
2Lecture 02: Mean Value TheoremsDownload
3Lecture 03:Indeterminate Forms (Part ‐1)Download
4Lecture 04: Indeterminate Forms (Part ‐2)Download
5Lecture 05: Taylor Polynomial and Taylor SeriesDownload
6Lecture 06: Limit of Functions of Two VariablesDownload
7Lecture 07:Evaluation of Limit of Functions of Two VariablesDownload
8Lecture 08: Continuity of Functions of Two VariablesDownload
9Lecture 09: Partial Derivatives of Functions of Two VariablesDownload
10Lecture 10: Partial Derivatives of Higher OrderDownload
11Lecture 11 : Derivative & DifferentiabilityDownload
12Lecture 12 : Differentiability of Functions of Two VariablesDownload
13Lecture 13 : Differentiability of Functions of Two Variables (Cont.)Download
14Lecture 14 : Differentiability of Functions of Two Variables (Cont.)Download
15Lecture 15 : Composite and Homogeneous FunctionsDownload
16Lecture 16 : Taylor’s Theorem for Functions of Two VariablesDownload
17Lecture 17 : Maxima & Minima of Functions of Two VariablesDownload
18Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.)Download
19Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.)Download
20Lecture 20 : Constrained Maxima & MinimaDownload
21Lecture 21 : Improper Integrals Download
22Lecture 22 : Improper Integrals (Cont.)Download
23Lecture 23 : Improper Integrals (Cont.)Download
24Lecture 24 : Improper Integrals (Cont.)Download
25Lecture 25 : Beta & Gamma FunctionDownload
26Lecture 26 : Beta & Gamma Function (Cont.)Download
27Lecture 27 : Differentiation Under Integral SignDownload
28Lecture 28 : Double Integrals Download
29Lecture 29 : Double Integrals (Cont.)Download
30Lecture 30 : Double Integrals (Cont.)Download
31Lecture 31: Integral Calculus –Double Integrals in Polar FormDownload
32Lecture 32: Integral Calculus –Double Integrals: Change of VariablesDownload
33Lecture 33: Integral Calculus –Double Integrals: Surface AreaDownload
34Lecture 34: Integral Calculus –Triple IntegralsDownload
35Lecture 35: Integral Calculus – Triple Integrals (Cont.)Download
36Lecture 36: System of Linear Equations Download
37Lecture 37: System of Linear Equations –Gauss EliminationDownload
38Lecture 38: System of Linear Equations –Gauss Elimination (Cont.)Download
39Lecture 39: Linear Algebra - Vector SpacesDownload
40Lecture 40: Linear Independence of VectorsDownload
41Lecture 41: Vector Spaces –Spanning SetDownload
42Lecture 42: Vector Spaces –Basis and DimensionDownload
43Lecture 43: Rank of a MatrixDownload
44Lecture 44: Linear TransformationsDownload
45Lecture 45: Linear Transformations (contd.)Download
46Lecture 46 : Eigenvalues & EigenvectorsDownload
47Lecture 47 : Eigenvalues & Eigenvectors (Cont.)Download
48Lecture 48 : Eigenvalues & Eigenvectors (Cont.)Download
49Lecture 49 : Eigenvalues & Eigenvectors (Cont.)Download
50Lecture 50 : Eigenvalues & Eigenvectors: DiagonalizationDownload
51Lecture 51 : Differential Equations - IntroductionDownload
52Lecture 52 : First Order Differential EquationsDownload
53Lecture 53 : Exact Differential EquationsDownload
54Lecture 54 : Exact Differential Equations (Cont.)Download
55Lecture 55 : First Order Linear Differential EquationsDownload
56Lecture 56: Higher Order Linear Differential EquationsDownload
57Lecture 57: Solution of Higher Order Homogeneous Linear EquationsDownload
58Lecture 58: Solution of Higher Order Non-Homogeneous Linear EquationsDownload
59Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.)Download
60Lecture 60 : Cauchy-Euler EquationsNot Available
Sl.No Chapter Name Kannada
1Lecture 01: Rolle’s TheoremDownload
2Lecture 02: Mean Value TheoremsDownload
3Lecture 03:Indeterminate Forms (Part ‐1)Download
4Lecture 04: Indeterminate Forms (Part ‐2)Download
5Lecture 05: Taylor Polynomial and Taylor SeriesDownload
6Lecture 06: Limit of Functions of Two VariablesDownload
7Lecture 07:Evaluation of Limit of Functions of Two VariablesDownload
8Lecture 08: Continuity of Functions of Two VariablesDownload
9Lecture 09: Partial Derivatives of Functions of Two VariablesDownload
10Lecture 10: Partial Derivatives of Higher OrderDownload
11Lecture 11 : Derivative & DifferentiabilityDownload
12Lecture 12 : Differentiability of Functions of Two VariablesDownload
13Lecture 13 : Differentiability of Functions of Two Variables (Cont.)Download
14Lecture 14 : Differentiability of Functions of Two Variables (Cont.)Download
15Lecture 15 : Composite and Homogeneous FunctionsDownload
16Lecture 16 : Taylor’s Theorem for Functions of Two VariablesDownload
17Lecture 17 : Maxima & Minima of Functions of Two VariablesDownload
18Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.)Download
19Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.)Download
20Lecture 20 : Constrained Maxima & MinimaDownload
21Lecture 21 : Improper Integrals Download
22Lecture 22 : Improper Integrals (Cont.)Download
23Lecture 23 : Improper Integrals (Cont.)Download
24Lecture 24 : Improper Integrals (Cont.)Download
25Lecture 25 : Beta & Gamma FunctionDownload
26Lecture 26 : Beta & Gamma Function (Cont.)Download
27Lecture 27 : Differentiation Under Integral SignDownload
28Lecture 28 : Double Integrals Download
29Lecture 29 : Double Integrals (Cont.)Download
30Lecture 30 : Double Integrals (Cont.)Download
31Lecture 31: Integral Calculus –Double Integrals in Polar FormDownload
32Lecture 32: Integral Calculus –Double Integrals: Change of VariablesDownload
33Lecture 33: Integral Calculus –Double Integrals: Surface AreaDownload
34Lecture 34: Integral Calculus –Triple IntegralsDownload
35Lecture 35: Integral Calculus – Triple Integrals (Cont.)Download
36Lecture 36: System of Linear Equations Download
37Lecture 37: System of Linear Equations –Gauss EliminationDownload
38Lecture 38: System of Linear Equations –Gauss Elimination (Cont.)Download
39Lecture 39: Linear Algebra - Vector SpacesDownload
40Lecture 40: Linear Independence of VectorsDownload
41Lecture 41: Vector Spaces –Spanning SetDownload
42Lecture 42: Vector Spaces –Basis and DimensionDownload
43Lecture 43: Rank of a MatrixDownload
44Lecture 44: Linear TransformationsDownload
45Lecture 45: Linear Transformations (contd.)Download
46Lecture 46 : Eigenvalues & EigenvectorsDownload
47Lecture 47 : Eigenvalues & Eigenvectors (Cont.)Download
48Lecture 48 : Eigenvalues & Eigenvectors (Cont.)Download
49Lecture 49 : Eigenvalues & Eigenvectors (Cont.)Download
50Lecture 50 : Eigenvalues & Eigenvectors: DiagonalizationDownload
51Lecture 51 : Differential Equations - IntroductionDownload
52Lecture 52 : First Order Differential EquationsDownload
53Lecture 53 : Exact Differential EquationsDownload
54Lecture 54 : Exact Differential Equations (Cont.)Download
55Lecture 55 : First Order Linear Differential EquationsDownload
56Lecture 56: Higher Order Linear Differential EquationsDownload
57Lecture 57: Solution of Higher Order Homogeneous Linear EquationsDownload
58Lecture 58: Solution of Higher Order Non-Homogeneous Linear EquationsDownload
59Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.)Download
60Lecture 60 : Cauchy-Euler EquationsDownload
Sl.No Chapter Name Malayalam
1Lecture 01: Rolle’s TheoremDownload
2Lecture 02: Mean Value TheoremsDownload
3Lecture 03:Indeterminate Forms (Part ‐1)Download
4Lecture 04: Indeterminate Forms (Part ‐2)Download
5Lecture 05: Taylor Polynomial and Taylor SeriesDownload
6Lecture 06: Limit of Functions of Two VariablesDownload
7Lecture 07:Evaluation of Limit of Functions of Two VariablesDownload
8Lecture 08: Continuity of Functions of Two VariablesDownload
9Lecture 09: Partial Derivatives of Functions of Two VariablesDownload
10Lecture 10: Partial Derivatives of Higher OrderDownload
11Lecture 11 : Derivative & DifferentiabilityDownload
12Lecture 12 : Differentiability of Functions of Two VariablesDownload
13Lecture 13 : Differentiability of Functions of Two Variables (Cont.)Download
14Lecture 14 : Differentiability of Functions of Two Variables (Cont.)Download
15Lecture 15 : Composite and Homogeneous FunctionsDownload
16Lecture 16 : Taylor’s Theorem for Functions of Two VariablesDownload
17Lecture 17 : Maxima & Minima of Functions of Two VariablesDownload
18Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.)Download
19Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.)Download
20Lecture 20 : Constrained Maxima & MinimaDownload
21Lecture 21 : Improper Integrals Download
22Lecture 22 : Improper Integrals (Cont.)Download
23Lecture 23 : Improper Integrals (Cont.)Download
24Lecture 24 : Improper Integrals (Cont.)Download
25Lecture 25 : Beta & Gamma FunctionDownload
26Lecture 26 : Beta & Gamma Function (Cont.)Download
27Lecture 27 : Differentiation Under Integral SignDownload
28Lecture 28 : Double Integrals Download
29Lecture 29 : Double Integrals (Cont.)Download
30Lecture 30 : Double Integrals (Cont.)Download
31Lecture 31: Integral Calculus –Double Integrals in Polar FormDownload
32Lecture 32: Integral Calculus –Double Integrals: Change of VariablesDownload
33Lecture 33: Integral Calculus –Double Integrals: Surface AreaDownload
34Lecture 34: Integral Calculus –Triple IntegralsDownload
35Lecture 35: Integral Calculus – Triple Integrals (Cont.)Download
36Lecture 36: System of Linear Equations Download
37Lecture 37: System of Linear Equations –Gauss EliminationDownload
38Lecture 38: System of Linear Equations –Gauss Elimination (Cont.)Download
39Lecture 39: Linear Algebra - Vector SpacesDownload
40Lecture 40: Linear Independence of VectorsDownload
41Lecture 41: Vector Spaces –Spanning SetDownload
42Lecture 42: Vector Spaces –Basis and DimensionDownload
43Lecture 43: Rank of a MatrixDownload
44Lecture 44: Linear TransformationsDownload
45Lecture 45: Linear Transformations (contd.)Download
46Lecture 46 : Eigenvalues & EigenvectorsDownload
47Lecture 47 : Eigenvalues & Eigenvectors (Cont.)Download
48Lecture 48 : Eigenvalues & Eigenvectors (Cont.)Download
49Lecture 49 : Eigenvalues & Eigenvectors (Cont.)Download
50Lecture 50 : Eigenvalues & Eigenvectors: DiagonalizationDownload
51Lecture 51 : Differential Equations - IntroductionDownload
52Lecture 52 : First Order Differential EquationsDownload
53Lecture 53 : Exact Differential EquationsDownload
54Lecture 54 : Exact Differential Equations (Cont.)Download
55Lecture 55 : First Order Linear Differential EquationsDownload
56Lecture 56: Higher Order Linear Differential EquationsDownload
57Lecture 57: Solution of Higher Order Homogeneous Linear EquationsDownload
58Lecture 58: Solution of Higher Order Non-Homogeneous Linear EquationsDownload
59Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.)Download
60Lecture 60 : Cauchy-Euler EquationsDownload
Sl.No Chapter Name Marathi
1Lecture 01: Rolle’s TheoremDownload
2Lecture 02: Mean Value TheoremsDownload
3Lecture 03:Indeterminate Forms (Part ‐1)Download
4Lecture 04: Indeterminate Forms (Part ‐2)Download
5Lecture 05: Taylor Polynomial and Taylor SeriesDownload
6Lecture 06: Limit of Functions of Two VariablesDownload
7Lecture 07:Evaluation of Limit of Functions of Two VariablesDownload
8Lecture 08: Continuity of Functions of Two VariablesDownload
9Lecture 09: Partial Derivatives of Functions of Two VariablesDownload
10Lecture 10: Partial Derivatives of Higher OrderDownload
11Lecture 11 : Derivative & DifferentiabilityDownload
12Lecture 12 : Differentiability of Functions of Two VariablesDownload
13Lecture 13 : Differentiability of Functions of Two Variables (Cont.)Download
14Lecture 14 : Differentiability of Functions of Two Variables (Cont.)Download
15Lecture 15 : Composite and Homogeneous FunctionsDownload
16Lecture 16 : Taylor’s Theorem for Functions of Two VariablesDownload
17Lecture 17 : Maxima & Minima of Functions of Two VariablesDownload
18Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.)Download
19Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.)Download
20Lecture 20 : Constrained Maxima & MinimaDownload
21Lecture 21 : Improper Integrals Download
22Lecture 22 : Improper Integrals (Cont.)Download
23Lecture 23 : Improper Integrals (Cont.)Download
24Lecture 24 : Improper Integrals (Cont.)Download
25Lecture 25 : Beta & Gamma FunctionDownload
26Lecture 26 : Beta & Gamma Function (Cont.)Download
27Lecture 27 : Differentiation Under Integral SignDownload
28Lecture 28 : Double Integrals Download
29Lecture 29 : Double Integrals (Cont.)Download
30Lecture 30 : Double Integrals (Cont.)Download
31Lecture 31: Integral Calculus –Double Integrals in Polar FormDownload
32Lecture 32: Integral Calculus –Double Integrals: Change of VariablesDownload
33Lecture 33: Integral Calculus –Double Integrals: Surface AreaDownload
34Lecture 34: Integral Calculus –Triple IntegralsDownload
35Lecture 35: Integral Calculus – Triple Integrals (Cont.)Download
36Lecture 36: System of Linear Equations Download
37Lecture 37: System of Linear Equations –Gauss EliminationDownload
38Lecture 38: System of Linear Equations –Gauss Elimination (Cont.)Download
39Lecture 39: Linear Algebra - Vector SpacesDownload
40Lecture 40: Linear Independence of VectorsDownload
41Lecture 41: Vector Spaces –Spanning SetDownload
42Lecture 42: Vector Spaces –Basis and DimensionDownload
43Lecture 43: Rank of a MatrixDownload
44Lecture 44: Linear TransformationsDownload
45Lecture 45: Linear Transformations (contd.)Download
46Lecture 46 : Eigenvalues & EigenvectorsDownload
47Lecture 47 : Eigenvalues & Eigenvectors (Cont.)Download
48Lecture 48 : Eigenvalues & Eigenvectors (Cont.)Download
49Lecture 49 : Eigenvalues & Eigenvectors (Cont.)Download
50Lecture 50 : Eigenvalues & Eigenvectors: DiagonalizationDownload
51Lecture 51 : Differential Equations - IntroductionDownload
52Lecture 52 : First Order Differential EquationsDownload
53Lecture 53 : Exact Differential EquationsDownload
54Lecture 54 : Exact Differential Equations (Cont.)Download
55Lecture 55 : First Order Linear Differential EquationsDownload
56Lecture 56: Higher Order Linear Differential EquationsDownload
57Lecture 57: Solution of Higher Order Homogeneous Linear EquationsDownload
58Lecture 58: Solution of Higher Order Non-Homogeneous Linear EquationsDownload
59Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.)Download
60Lecture 60 : Cauchy-Euler EquationsDownload
Sl.No Chapter Name Tamil
1Lecture 01: Rolle’s TheoremDownload
2Lecture 02: Mean Value TheoremsDownload
3Lecture 03:Indeterminate Forms (Part ‐1)Download
4Lecture 04: Indeterminate Forms (Part ‐2)Download
5Lecture 05: Taylor Polynomial and Taylor SeriesDownload
6Lecture 06: Limit of Functions of Two VariablesDownload
7Lecture 07:Evaluation of Limit of Functions of Two VariablesDownload
8Lecture 08: Continuity of Functions of Two VariablesDownload
9Lecture 09: Partial Derivatives of Functions of Two VariablesDownload
10Lecture 10: Partial Derivatives of Higher OrderDownload
11Lecture 11 : Derivative & DifferentiabilityDownload
12Lecture 12 : Differentiability of Functions of Two VariablesDownload
13Lecture 13 : Differentiability of Functions of Two Variables (Cont.)Download
14Lecture 14 : Differentiability of Functions of Two Variables (Cont.)Download
15Lecture 15 : Composite and Homogeneous FunctionsDownload
16Lecture 16 : Taylor’s Theorem for Functions of Two VariablesDownload
17Lecture 17 : Maxima & Minima of Functions of Two VariablesDownload
18Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.)Download
19Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.)Download
20Lecture 20 : Constrained Maxima & MinimaDownload
21Lecture 21 : Improper Integrals Download
22Lecture 22 : Improper Integrals (Cont.)Download
23Lecture 23 : Improper Integrals (Cont.)Download
24Lecture 24 : Improper Integrals (Cont.)Download
25Lecture 25 : Beta & Gamma FunctionDownload
26Lecture 26 : Beta & Gamma Function (Cont.)Download
27Lecture 27 : Differentiation Under Integral SignDownload
28Lecture 28 : Double Integrals Download
29Lecture 29 : Double Integrals (Cont.)Download
30Lecture 30 : Double Integrals (Cont.)Download
31Lecture 31: Integral Calculus –Double Integrals in Polar FormDownload
32Lecture 32: Integral Calculus –Double Integrals: Change of VariablesDownload
33Lecture 33: Integral Calculus –Double Integrals: Surface AreaDownload
34Lecture 34: Integral Calculus –Triple IntegralsDownload
35Lecture 35: Integral Calculus – Triple Integrals (Cont.)Download
36Lecture 36: System of Linear Equations Download
37Lecture 37: System of Linear Equations –Gauss EliminationDownload
38Lecture 38: System of Linear Equations –Gauss Elimination (Cont.)Download
39Lecture 39: Linear Algebra - Vector SpacesDownload
40Lecture 40: Linear Independence of VectorsDownload
41Lecture 41: Vector Spaces –Spanning SetDownload
42Lecture 42: Vector Spaces –Basis and DimensionDownload
43Lecture 43: Rank of a MatrixDownload
44Lecture 44: Linear TransformationsDownload
45Lecture 45: Linear Transformations (contd.)Download
46Lecture 46 : Eigenvalues & EigenvectorsDownload
47Lecture 47 : Eigenvalues & Eigenvectors (Cont.)Download
48Lecture 48 : Eigenvalues & Eigenvectors (Cont.)Download
49Lecture 49 : Eigenvalues & Eigenvectors (Cont.)Download
50Lecture 50 : Eigenvalues & Eigenvectors: DiagonalizationDownload
51Lecture 51 : Differential Equations - IntroductionDownload
52Lecture 52 : First Order Differential EquationsDownload
53Lecture 53 : Exact Differential EquationsDownload
54Lecture 54 : Exact Differential Equations (Cont.)Download
55Lecture 55 : First Order Linear Differential EquationsDownload
56Lecture 56: Higher Order Linear Differential EquationsDownload
57Lecture 57: Solution of Higher Order Homogeneous Linear EquationsDownload
58Lecture 58: Solution of Higher Order Non-Homogeneous Linear EquationsDownload
59Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.)Download
60Lecture 60 : Cauchy-Euler EquationsNot Available
Sl.No Chapter Name Telugu
1Lecture 01: Rolle’s TheoremDownload
2Lecture 02: Mean Value TheoremsDownload
3Lecture 03:Indeterminate Forms (Part ‐1)Download
4Lecture 04: Indeterminate Forms (Part ‐2)Download
5Lecture 05: Taylor Polynomial and Taylor SeriesDownload
6Lecture 06: Limit of Functions of Two VariablesDownload
7Lecture 07:Evaluation of Limit of Functions of Two VariablesDownload
8Lecture 08: Continuity of Functions of Two VariablesDownload
9Lecture 09: Partial Derivatives of Functions of Two VariablesDownload
10Lecture 10: Partial Derivatives of Higher OrderDownload
11Lecture 11 : Derivative & DifferentiabilityDownload
12Lecture 12 : Differentiability of Functions of Two VariablesDownload
13Lecture 13 : Differentiability of Functions of Two Variables (Cont.)Download
14Lecture 14 : Differentiability of Functions of Two Variables (Cont.)Download
15Lecture 15 : Composite and Homogeneous FunctionsDownload
16Lecture 16 : Taylor’s Theorem for Functions of Two VariablesDownload
17Lecture 17 : Maxima & Minima of Functions of Two VariablesDownload
18Lecture 18 : Maxima & Minima of Functions of Two Variables (Cont.)Download
19Lecture 19 : Maxima & Minima of Functions of Two Variables (Cont.)Download
20Lecture 20 : Constrained Maxima & MinimaDownload
21Lecture 21 : Improper Integrals Download
22Lecture 22 : Improper Integrals (Cont.)Download
23Lecture 23 : Improper Integrals (Cont.)Download
24Lecture 24 : Improper Integrals (Cont.)Download
25Lecture 25 : Beta & Gamma FunctionDownload
26Lecture 26 : Beta & Gamma Function (Cont.)Download
27Lecture 27 : Differentiation Under Integral SignDownload
28Lecture 28 : Double Integrals Download
29Lecture 29 : Double Integrals (Cont.)Download
30Lecture 30 : Double Integrals (Cont.)Download
31Lecture 31: Integral Calculus –Double Integrals in Polar FormDownload
32Lecture 32: Integral Calculus –Double Integrals: Change of VariablesDownload
33Lecture 33: Integral Calculus –Double Integrals: Surface AreaDownload
34Lecture 34: Integral Calculus –Triple IntegralsDownload
35Lecture 35: Integral Calculus – Triple Integrals (Cont.)Download
36Lecture 36: System of Linear Equations Download
37Lecture 37: System of Linear Equations –Gauss EliminationDownload
38Lecture 38: System of Linear Equations –Gauss Elimination (Cont.)Download
39Lecture 39: Linear Algebra - Vector SpacesDownload
40Lecture 40: Linear Independence of VectorsDownload
41Lecture 41: Vector Spaces –Spanning SetDownload
42Lecture 42: Vector Spaces –Basis and DimensionDownload
43Lecture 43: Rank of a MatrixDownload
44Lecture 44: Linear TransformationsDownload
45Lecture 45: Linear Transformations (contd.)Download
46Lecture 46 : Eigenvalues & EigenvectorsDownload
47Lecture 47 : Eigenvalues & Eigenvectors (Cont.)Download
48Lecture 48 : Eigenvalues & Eigenvectors (Cont.)Download
49Lecture 49 : Eigenvalues & Eigenvectors (Cont.)Download
50Lecture 50 : Eigenvalues & Eigenvectors: DiagonalizationDownload
51Lecture 51 : Differential Equations - IntroductionDownload
52Lecture 52 : First Order Differential EquationsDownload
53Lecture 53 : Exact Differential EquationsDownload
54Lecture 54 : Exact Differential Equations (Cont.)Download
55Lecture 55 : First Order Linear Differential EquationsDownload
56Lecture 56: Higher Order Linear Differential EquationsDownload
57Lecture 57: Solution of Higher Order Homogeneous Linear EquationsDownload
58Lecture 58: Solution of Higher Order Non-Homogeneous Linear EquationsDownload
59Lecture 59: Solution of Higher Order Non-Homogeneous Linear Equations (cont.)Download
60Lecture 60 : Cauchy-Euler EquationsDownload


Sl.No Language Book link
1EnglishDownload
2BengaliDownload
3GujaratiDownload
4HindiDownload
5KannadaDownload
6MalayalamDownload
7MarathiDownload
8TamilDownload
9TeluguDownload