Modules / Lectures
Module NameDownload
noc21_ma28_assignment_Week_1noc21_ma28_assignment_Week_1
noc21_ma28_assignment_Week_10noc21_ma28_assignment_Week_10
noc21_ma28_assignment_Week_11noc21_ma28_assignment_Week_11
noc21_ma28_assignment_Week_12noc21_ma28_assignment_Week_12
noc21_ma28_assignment_Week_2noc21_ma28_assignment_Week_2
noc21_ma28_assignment_Week_3noc21_ma28_assignment_Week_3
noc21_ma28_assignment_Week_4noc21_ma28_assignment_Week_4
noc21_ma28_assignment_Week_5noc21_ma28_assignment_Week_5
noc21_ma28_assignment_Week_6noc21_ma28_assignment_Week_6
noc21_ma28_assignment_Week_7noc21_ma28_assignment_Week_7
noc21_ma28_assignment_Week_8noc21_ma28_assignment_Week_8
noc21_ma28_assignment_Week_9noc21_ma28_assignment_Week_9


Sl.No Chapter Name MP4 Download
1Lecture 1 : Basic Problem in TopologyDownload
2Lecture 2 : Concept of homotopyDownload
3Lecture 3 : Bird's eye-view of the courseDownload
4Lecture 4 : Path HomotopyDownload
5Lecture 5 : Composition of pathsDownload
6Lecture 6 : Fundamental group π1Download
7Lecture 7 : Computation of Fund. Group of a circleDownload
8Lecture 8 : Computation continuedDownload
9Lecture 9 : Computation concludedDownload
10Lecture 10 : Van-Kampen's TheoremDownload
11Lecture 11 : Function SpacesDownload
12Lecture 12 : Quotient MapsDownload
13Lecture 13 : Group ActionsDownload
14Lecture 14 : Examples of Group ActionsDownload
15Lecture 15 : Assorted Results on Quotient SpacesDownload
16Lecture 16 : Quotient Constructions Typical to Alg. Top.Download
17Lecture 17 : Quotient Constructions continuedDownload
18Lecture 18 : Relative HomotopyDownload
19Lecture 19 : Construction of a typical SDRDownload
20Lecture 20 : Generalized construction of SDRsDownload
21Lecture 21 : A theoretical applicationDownload
22Lecture 22 : The HarvestDownload
23Lecture 23 : NDR pairsDownload
24Lecture 24 : General RemarksDownload
25Lecture 25 : Basics A ne GeometryDownload
26Lecture 26 : Abstract Simplicial ComplexDownload
27Lecture 27 : Geometric RealizationDownload
28Lecture 28 : Topology on |K|Download
29Lecture 29 : Simplical mapsDownload
30Lecture 30 : PolyhedronsDownload
31Lecture 31 : Point Set topological AspectsDownload
32Lecture 32 : Barycentric SubdivisionDownload
33Lecture 33 : Finer SubdivisionsDownload
34Lecture 34 : Simplical ApproximationDownload
35Lecture 35 : Sperner LemmaDownload
36Lecture 36 : Invariance of domainDownload
37Lecture 37 : Proof of controled homotopyDownload
38Lecture 38 : Links and StarsDownload
39Lecture 39 : Homotopical Aspects of Simplicial ComplexesDownload
40Lecture 40 : Homotopical AspectsDownload
41Lecture 41 : Covering Spaces and Fund. GroupsDownload
42Lecture 42 : Lifting PropertiesDownload
43Lecture 43 : Homotopy LiftingDownload
44Lecture 44 : Relation with the fund. GroupDownload
45Lecture 45 : Regular coveringDownload
46Lecture 46 : Lifting ProblemDownload
47Lecture 47 : Classification of CoveringsDownload
48Lecture 48 : ClassificationDownload
49Lecture 49 : Existence of Simply connected coveringsDownload
50Lecture 50 : Construction of Simply connected coveringDownload
51Lecture 51 : Properties Shared by total space and baseDownload
52Lecture 52 : ExamplesDownload
53Lecture 53 : G-coveringsDownload
54Lecture 54 : Pull-backsDownload
55Lecture 55 : Classification of G-coveringsDownload
56Lecture 56 : Proof of classificationDownload
57Lecture 57 : Pushouts and Free productsDownload
58Lecture 58 : Existence of Free Products, pushoutsDownload
59Lecture 59 : Free Products and free groupsDownload
60Lecture 60 : Seifert-Van Kampen TheoremsDownload
61Lecture 61 : ApplicationsDownload
62Lecture 62 : Applications continuedDownload

Sl.No Chapter Name English
1Lecture 1 : Basic Problem in TopologyDownload
Verified
2Lecture 2 : Concept of homotopyDownload
Verified
3Lecture 3 : Bird's eye-view of the courseDownload
Verified
4Lecture 4 : Path HomotopyDownload
Verified
5Lecture 5 : Composition of pathsDownload
Verified
6Lecture 6 : Fundamental group π1Download
Verified
7Lecture 7 : Computation of Fund. Group of a circlePDF unavailable
8Lecture 8 : Computation continuedPDF unavailable
9Lecture 9 : Computation concludedPDF unavailable
10Lecture 10 : Van-Kampen's TheoremPDF unavailable
11Lecture 11 : Function SpacesPDF unavailable
12Lecture 12 : Quotient MapsPDF unavailable
13Lecture 13 : Group ActionsPDF unavailable
14Lecture 14 : Examples of Group ActionsPDF unavailable
15Lecture 15 : Assorted Results on Quotient SpacesPDF unavailable
16Lecture 16 : Quotient Constructions Typical to Alg. Top.PDF unavailable
17Lecture 17 : Quotient Constructions continuedPDF unavailable
18Lecture 18 : Relative HomotopyPDF unavailable
19Lecture 19 : Construction of a typical SDRPDF unavailable
20Lecture 20 : Generalized construction of SDRsPDF unavailable
21Lecture 21 : A theoretical applicationPDF unavailable
22Lecture 22 : The HarvestPDF unavailable
23Lecture 23 : NDR pairsPDF unavailable
24Lecture 24 : General RemarksPDF unavailable
25Lecture 25 : Basics A ne GeometryPDF unavailable
26Lecture 26 : Abstract Simplicial ComplexPDF unavailable
27Lecture 27 : Geometric RealizationPDF unavailable
28Lecture 28 : Topology on |K|PDF unavailable
29Lecture 29 : Simplical mapsPDF unavailable
30Lecture 30 : PolyhedronsPDF unavailable
31Lecture 31 : Point Set topological AspectsPDF unavailable
32Lecture 32 : Barycentric SubdivisionPDF unavailable
33Lecture 33 : Finer SubdivisionsPDF unavailable
34Lecture 34 : Simplical ApproximationPDF unavailable
35Lecture 35 : Sperner LemmaPDF unavailable
36Lecture 36 : Invariance of domainPDF unavailable
37Lecture 37 : Proof of controled homotopyPDF unavailable
38Lecture 38 : Links and StarsPDF unavailable
39Lecture 39 : Homotopical Aspects of Simplicial ComplexesPDF unavailable
40Lecture 40 : Homotopical AspectsPDF unavailable
41Lecture 41 : Covering Spaces and Fund. GroupsPDF unavailable
42Lecture 42 : Lifting PropertiesPDF unavailable
43Lecture 43 : Homotopy LiftingPDF unavailable
44Lecture 44 : Relation with the fund. GroupPDF unavailable
45Lecture 45 : Regular coveringPDF unavailable
46Lecture 46 : Lifting ProblemPDF unavailable
47Lecture 47 : Classification of CoveringsPDF unavailable
48Lecture 48 : ClassificationPDF unavailable
49Lecture 49 : Existence of Simply connected coveringsPDF unavailable
50Lecture 50 : Construction of Simply connected coveringPDF unavailable
51Lecture 51 : Properties Shared by total space and basePDF unavailable
52Lecture 52 : ExamplesPDF unavailable
53Lecture 53 : G-coveringsPDF unavailable
54Lecture 54 : Pull-backsPDF unavailable
55Lecture 55 : Classification of G-coveringsPDF unavailable
56Lecture 56 : Proof of classificationPDF unavailable
57Lecture 57 : Pushouts and Free productsPDF unavailable
58Lecture 58 : Existence of Free Products, pushoutsPDF unavailable
59Lecture 59 : Free Products and free groupsPDF unavailable
60Lecture 60 : Seifert-Van Kampen TheoremsPDF unavailable
61Lecture 61 : ApplicationsPDF unavailable
62Lecture 62 : Applications continuedPDF unavailable


Sl.No Language Book link
1EnglishNot Available
2BengaliNot Available
3GujaratiNot Available
4HindiNot Available
5KannadaNot Available
6MalayalamNot Available
7MarathiNot Available
8TamilNot Available
9TeluguNot Available