1 | Course Overview | PDF unavailable |
2 | Course Overview (cont\'d) | PDF unavailable |
3 | Descriptive Statistics - Graphical Approaches | PDF unavailable |
4 | Descriptive Statistics - Measures of Central Tendency | PDF unavailable |
5 | Descriptive Statistics - Measures of Dispersion | PDF unavailable |
6 | Random Variables and Probability Distributions | PDF unavailable |
7 | Probability Distributions(cont\'d) | PDF unavailable |
8 | Probability Distributions(cont\'d) | PDF unavailable |
9 | Inferential Statistics - Motivation | PDF unavailable |
10 | Inferential Statistics - Single sample tests | PDF unavailable |
11 | Two Sample tests | PDF unavailable |
12 | Type 1 and Type 2 Errors | PDF unavailable |
13 | Confidence Intervals | PDF unavailable |
14 | ANOVA and Test of Independence | PDF unavailable |
15 | Short Introduction to Regression | PDF unavailable |
16 | Introduction to Machine Learning | PDF unavailable |
17 | Supervised Learning | PDF unavailable |
18 | Unsupervised Learning | PDF unavailable |
19 | Ordinary Least Squares Regression | PDF unavailable |
20 | Simple and Multiple Regression in Excel and Matlab | PDF unavailable |
21 | Regularization/ Coefficients Shrinkage | PDF unavailable |
22 | Data Modelling and Algorithmic Modelling Approaches | PDF unavailable |
23 | Logistic Regression | PDF unavailable |
24 | Training a Logistic Regression Classifier | PDF unavailable |
25 | Classification and Regression Trees | PDF unavailable |
26 | Classification and Regression Trees(cont\'d) | PDF unavailable |
27 | Bias Variance Dichotomy | PDF unavailable |
28 | Model Assessment and Selection | PDF unavailable |
29 | Support Vector Machines | PDF unavailable |
30 | Support Vector Machines(cont\'d) | PDF unavailable |
31 | Support Vector Machines for Non Linearly Separable Data | PDF unavailable |
32 | Support Vector Machines and Kernel Transformations | PDF unavailable |
33 | Ensemble Methods and Random Forests | PDF unavailable |
34 | Artificial Neural Networks | PDF unavailable |
35 | Artificial Neural Networks(cont\'d) | PDF unavailable |
36 | Deep Learning | PDF unavailable |
37 | Associative Rule Mining | PDF unavailable |
38 | Association Rule Mining (cont\'d) | PDF unavailable |
39 | Big Data, A small introduction | PDF unavailable |
40 | Big Data - A small introduction (cont\'d) | PDF unavailable |
41 | Clustering Analysis | PDF unavailable |
42 | Clustering Analysis (cont\'d) | PDF unavailable |
43 | Introduction to Experimentation and Active Learning | PDF unavailable |
44 | Introduction to Experimentation and Active Learning(cont\'d) | PDF unavailable |
45 | An Introduction to Online Learning - Reinforcement Learning | PDF unavailable |
46 | An Introduction to Online Learning - Reinforcement Learning (cont\'d) | PDF unavailable |
47 | Summary+ Insights into the Final Exam | PDF unavailable |
48 | Tutorial on Weka | PDF unavailable |
49 | Tutorial on Decision Trees | PDF unavailable |