Name | Download | Download Size |
---|---|---|
Lecture Note | Download as zip file | 55M |
Module Name | Download |
---|---|
noc19_cs61_assignment_Week_1 | noc19_cs61_assignment_Week_1 |
noc19_cs61_assignment_Week_2 | noc19_cs61_assignment_Week_2 |
noc19_cs61_assignment_Week_3 | noc19_cs61_assignment_Week_3 |
noc19_cs61_assignment_Week_4 | noc19_cs61_assignment_Week_4 |
noc19_cs61_assignment_Week_5 | noc19_cs61_assignment_Week_5 |
noc19_cs61_assignment_Week_6 | noc19_cs61_assignment_Week_6 |
noc19_cs61_assignment_Week_7 | noc19_cs61_assignment_Week_7 |
noc19_cs61_assignment_Week_8 | noc19_cs61_assignment_Week_8 |
Sl.No | Chapter Name | MP4 Download |
---|---|---|
1 | Lecture 1 Background: Introduction | Download |
2 | Lecture 2 : Probability: Concentration inequalities | Download |
3 | Lecture 3 : Linear algebra: PCA, SVD | Download |
4 | Lecture 4 : Optimization: Basics, Convex, GD | Download |
5 | Lecture 5 : Machine Learning: Supervised, generalization, feature learning, clustering. | Download |
6 | Lecture 6 : Memory-efficient data structures: Hash functions, universal / perfect hash families | Download |
7 | Lecture 7 : Bloom filters | Download |
8 | Lecture 8 : Sketches for distinct count | Download |
9 | Lecture 9 : Sketches for distinct count (Contd.) | Download |
10 | Lecture 10 : Misra-Gries sketch | Download |
11 | Lecture 11 : Frequent Element: Space Saving and Count Min. | Download |
12 | Lecture 12 : Frequent Element: Count Sketch | Download |
13 | Lecture 13 : Near Neighbors | Download |
14 | Lecture 14 : Locality Sensitive Hashing. | Download |
15 | Lecture 15 : Building LSH Tables. | Download |
16 | Lecture 16 : Approximate near neighbors search: Extensions e.g. multi-probe, b-bit hashing, Data dependent variants | Download |
17 | Lecture 17 : Approximate near neighbors search: Extensions e.g. multi-probe, b-bit hashing, Data dependent variants (Contd.) | Download |
18 | Lecture 18 : Approximate near neighbors search: Extensions e.g. multi-probe, b-bit hashing, Data dependent variants (Contd.) | Download |
19 | Lecture 19 : Randomized Numerical Linear Algebra: Random projection | Download |
20 | Lecture 20 : Randomized Numerical Linear Algebra: Random projection (Contd.) | Download |
21 | Lecture 21: "Randomized Numerical Linear Algebra:a) Matrix multiplication + QB decomposition" | Download |
22 | Lecture 22: "Randomized Numerical Linear Algebra:b) CUR+CX" | Download |
23 | Lecture 23: "Randomized Numerical Linear Algebra:a) L2 regression using RP" | Download |
24 | Lecture 24: "Randomized Numerical Linear Algebra:b) Leverage scores" | Download |
25 | Lecture 25: "Randomized Numerical Linear Algebra:c) Hash Kernels + Kitchen Sink" | Download |
26 | Lecture 26 : Map-reduce and Hadoop | Download |
27 | Lecture 27 : Hadoop System | Download |
28 | Lecture 28 : Hadoop System(Contd.) | Download |
29 | Lecture 29 : Hadoop System(Contd.) | Download |
30 | Lecture 30 : Spark | Download |
31 | Lecture 31 : Spark(Contd.) | Download |
32 | Lecture 32 : Spark(Contd.) | Download |
33 | Lecture 33 : Distributed Machine Learning and Optimization: Introduction | Download |
34 | Lecture 34 : SGD+Proof | Download |
35 | Lecture 35 : SGD+Proof(Contd.) | Download |
36 | Lecture 36 : Distributed Machine Learning and Optimization:ADMM + applications | Download |
37 | Lecture 37 : Distributed Machine Learning and Optimization:ADMM + applications(Contd.) | Download |
38 | Lecture 38 : Clustering | Download |
39 | Lecture 39 : Clustering(Contd.) | Download |
40 | Lecture 40 : Conclusion | Download |
Sl.No | Chapter Name | English |
---|---|---|
1 | Lecture 1 Background: Introduction | Download Verified |
2 | Lecture 2 : Probability: Concentration inequalities | Download Verified |
3 | Lecture 3 : Linear algebra: PCA, SVD | Download Verified |
4 | Lecture 4 : Optimization: Basics, Convex, GD | Download Verified |
5 | Lecture 5 : Machine Learning: Supervised, generalization, feature learning, clustering. | Download Verified |
6 | Lecture 6 : Memory-efficient data structures: Hash functions, universal / perfect hash families | Download Verified |
7 | Lecture 7 : Bloom filters | Download Verified |
8 | Lecture 8 : Sketches for distinct count | Download Verified |
9 | Lecture 9 : Sketches for distinct count (Contd.) | Download Verified |
10 | Lecture 10 : Misra-Gries sketch | Download Verified |
11 | Lecture 11 : Frequent Element: Space Saving and Count Min. | Download Verified |
12 | Lecture 12 : Frequent Element: Count Sketch | Download Verified |
13 | Lecture 13 : Near Neighbors | Download Verified |
14 | Lecture 14 : Locality Sensitive Hashing. | Download Verified |
15 | Lecture 15 : Building LSH Tables. | Download Verified |
16 | Lecture 16 : Approximate near neighbors search: Extensions e.g. multi-probe, b-bit hashing, Data dependent variants | Download Verified |
17 | Lecture 17 : Approximate near neighbors search: Extensions e.g. multi-probe, b-bit hashing, Data dependent variants (Contd.) | Download Verified |
18 | Lecture 18 : Approximate near neighbors search: Extensions e.g. multi-probe, b-bit hashing, Data dependent variants (Contd.) | Download Verified |
19 | Lecture 19 : Randomized Numerical Linear Algebra: Random projection | Download Verified |
20 | Lecture 20 : Randomized Numerical Linear Algebra: Random projection (Contd.) | Download Verified |
21 | Lecture 21: "Randomized Numerical Linear Algebra:a) Matrix multiplication + QB decomposition" | Download Verified |
22 | Lecture 22: "Randomized Numerical Linear Algebra:b) CUR+CX" | Download Verified |
23 | Lecture 23: "Randomized Numerical Linear Algebra:a) L2 regression using RP" | Download Verified |
24 | Lecture 24: "Randomized Numerical Linear Algebra:b) Leverage scores" | Download Verified |
25 | Lecture 25: "Randomized Numerical Linear Algebra:c) Hash Kernels + Kitchen Sink" | Download Verified |
26 | Lecture 26 : Map-reduce and Hadoop | Download Verified |
27 | Lecture 27 : Hadoop System | Download Verified |
28 | Lecture 28 : Hadoop System(Contd.) | Download Verified |
29 | Lecture 29 : Hadoop System(Contd.) | Download Verified |
30 | Lecture 30 : Spark | Download Verified |
31 | Lecture 31 : Spark(Contd.) | Download Verified |
32 | Lecture 32 : Spark(Contd.) | Download Verified |
33 | Lecture 33 : Distributed Machine Learning and Optimization: Introduction | Download Verified |
34 | Lecture 34 : SGD+Proof | Download Verified |
35 | Lecture 35 : SGD+Proof(Contd.) | Download Verified |
36 | Lecture 36 : Distributed Machine Learning and Optimization:ADMM + applications | Download Verified |
37 | Lecture 37 : Distributed Machine Learning and Optimization:ADMM + applications(Contd.) | Download Verified |
38 | Lecture 38 : Clustering | Download Verified |
39 | Lecture 39 : Clustering(Contd.) | Download Verified |
40 | Lecture 40 : Conclusion | Download Verified |
Sl.No | Language | Book link |
---|---|---|
1 | English | Download |
2 | Bengali | Not Available |
3 | Gujarati | Not Available |
4 | Hindi | Not Available |
5 | Kannada | Not Available |
6 | Malayalam | Not Available |
7 | Marathi | Not Available |
8 | Tamil | Not Available |
9 | Telugu | Not Available |