Solar Energy:
The Semiconductor



Learning objectives:

1)To plot the band diagrams of materials

2)To explain the interaction of bands with
radiation

3)To understand the different ways in
which band diagrams can be plotted.
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Visible Spectrum Wavelength: 400 nm (violet) to 700 nm (red)

Corresponding band gaps: 3.1eV to 1.8 eV
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Conclusions:

1) There is significant variation in the band diagrams of
different types of materials

2) Interaction of a material with radiation depends
strongly on its band diagram

3) Visible spectrum is a small fraction of solar radiation

4) There is a difference in the effectiveness with which
direct and indirect bandgap semiconductors interact
with radiation



Solar Energy:
The p-n junction



Learning objectives:

1)To describe the material features as well
as characteristics of the p-n junction

2)To explain the functioning of the p-n
junction
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I-V characteristics
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Conclusions:

1) A p-n junction can be formed using appropriately
doped materials that are processed carefully

2) Charge, Field and Potential depend on the location
In a p-n junction

3) A p-n junction has interesting |-V characteristics
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Solar Cell:
Growing the single crystal
and making the p-n junction



Learning objectives:

1)To become familiar with the techniques
used to make single crystal as well as
amorphous Si

2)To understand the method to
manufacture the p-n junction



Czochralski process
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Quartzite ———> Metallurgical Grade Silicon (MGS)
(relatively pure sand)

SiO, + Coke + Heat
Metallurgical Grade Silicon (MGS) ———> Electronic Grade Silicon (EGS)
98% purity ppm (C, O) to ppb (metals)

Si (solid) + 3HCI —> SiHCl; (gas) + H,

Si converted to Trichlorosilane, which is purified and reduced back to Si



Czochralski process
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Float zone process

= Smaller diameter
(150mm) due to
surface tension

= Higher purity

Polycrystalline Si rod
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Inner diameter slicing of Si ingot

Silicon ingot

Silicon wafers are 0.2 to 0.75 mm thick

Diamond cutting edge

Sliced wafer

Can produce one wafer at a time
Wire saw uses fast moving thin wire with abrasive slurry, can cut several wafers at the same time



Notches typically used to indicate orientation and doping



Amorphous Si

CVD process
Has dangling bonds (defects)

Hydrogenated amorphous Silicon, a-Si:H by deposition
from Silane gas SiH,



p-n junction

= |on implantation: Low temperature process,
ionized dopants accelerated using electric fields.
Annealing required

= Diffusion: Vapour phase deposition followed by
high temperature diffusion

= Epitaxy: Under high vacuum, gaseous elements
condense on substrate wafer



Conclusions:

1) It is quite challenging to produce single crystal Si

2) Multiple process steps involved

3) Purity and dimensions can have significant impact
on costs

4) Amorphous Si is an option



Solar Energy:
Interaction of p-n junction
with radiation



Learning objectives:

1)To describe the interaction of a p-n
junction with radiation

2)To explain the functioning of the p-n
junction solar cell
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Solar Cell is a current source
Charge carriers created by sunlight received: Photocurrent I,

Without external load, the pn junction is forward biased, and internally shorts
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Conclusions:

1)The p-n junction stabilizes the electron-
hole pair

2)The p-n junction solar cell is a current
source and has to be used accordingly



Solar Energy:
Solar cell characteristics
and usage



Learning objectives:

1)To determine the operational
characteristics of a p-n junction based
solar cell

2)To understand the best way to use the
solar cell
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I-V characteristics
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I-V characteristics

IL A

Maximum Power Point

Vimpp X Iypp
Voc X Isc

Fill Factor =

\ 4




I-V characteristics

IL A

Comparing Solar Panels

SC

\ 4

ocC



I-V characteristics
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Conclusions:

1)The solar cell is a current source

2)1- V relationship is complicated

3)OCV is not the most important parameter

4)Fill factor of a solar cell is important

5)Solar cell must be coupled with an end
use that utilizes the MPP



Solar Energy:
Solar cell construction



Learning objectives:

1)To indicate the limitations of single junction
solar cells

2)To describe how solar cells are constructed

3)To describe the functioning of tandem solar
cells



Shockley-Quiesser limit

Air Mass Coefficient: Optical path length
relative to path length vertically upward
AM 1.5 typically used for evaluating panels

In unconcentrated, AM 1.5 Solar
radiation with a band gap of 1.34 eV,
33.4 % efficiency is obtained

Si, 1.1 eV, 32 % efficiency is the best.
Practically 24% accomplished

Blackbody radiation 7% (At room T, actual T~ 75 °C)

Recombination losses 10%
Spectrum losses 19% unabsorbed, 33% excess v, total 52%
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Amorphous Silicon Solar Cell

Glass
Transparent conducting oxide
Indium Tin Oxide

/

} <«—— pnjunction
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Reflective back contact



Anti-reflective coatings
n1 — \/nons

Glassn,= 1.5
Airng= 1
Filmn, = 1.225



Tandem Cells

High bandgap cell

Low bandgap cell

O

With several tandem cells and concentrated sunlight, theoretically > 80% efficiency possible



Visible Spectrum Wavelength: 400 nm (violet) to 700 nm (red)

Corresponding band gaps: 3.1eV to1.8eV

PbS, a direct bandgap semiconductor

Bandgap of bulk PbS: 0.41 eV (3020 nm)
Bandgap of nanocrystalline PbS: Can be varied to 4.0 eV



Conclusions:

1)Parts of a solar cell are designed to
increase the efficiency of the solar cell

2)Shockley-Quiesser limit indicates the
limitation of a single junction solar cell

3)Tandem solar cells can overcome these
limitations



Solar Energy:
Solar photocatalysis




Learning objectives:

1)To describe the principle of photocatalysis ~~

2)To indicate the various energy considerations
associated with photocatalysis —

3)To list important challenges that need to be
address with respect to photocatalysis
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_= Photochemical: Light is directly used to
enable the reaction

Photo-electrochemical: Photochemical
reaction that involves the flow of current in
an external circuit
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Visible Spectrum Wavelength: <400 nm (violet) to 700 nm (red)

Corresponding band gaps: < 3.1eV to 1.8 eV
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Limitations:

1) Only UV part of spectrum utilized <—
2) Electron hole recombination <—
3) Reverse reaction is easy <«<—




Approaches:

1) Bandgap tuning <=

2) Adding sacrificial agent, reduce particle size
3) Presence of co-catalyst «<—
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Conclusions:

1)Photocatalysis can enable direct
production of Hydrogen from water

2)Matching the bandgaps of materials to
the voltage window needed for splitting
of water

3)Separation of the generated hydrogen /
and oxygen has to be enabled effectively




