Lecture 3: Electron statistics in a
solid
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1 Density of states

In the band theory of the solid, developed earlier, N atoms with N atomic
orbitals formed N molecular orbitals. Each MO can take 2 electrons (oppo-
site spin) so that there are a total of 2/V energy states. These are discrete
states but for large values of N the spacing between them are so small that
they can be considered to be continuous, forming an energy band.

Density of states (DOS) is defined as the number of available energy
states per unit energy per unit volume. The units are J 'm™ or
eV ~tem™ and it provides information on how the energy states are dis-
tributed in a given solid. It is typically denoted as g(F). The experimental
density of states of a material can be measured by photo electron spec-
troscopy or Scanning Tunneling Microscopy (STM) or Electron Energy Loss
spectroscopy (EELS). These techniques probe the density of empty or filled
states around the Fermi energy, called Local DOS (LDOS). Density func-
tional calculations can also be used to calculate the density of states. These
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Density of States of Cu
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Figure 1: Calculated DOS of Cu around the Fermi level. The filled

states lie below Er while the empty states lie above Er. The broad

peak below Fpr corresponds to the filled 3d states.  Adapted from
http:/ /www.personal.psu.edu/ams751 /VASP-Cu/

model the electron density distribution in a solid and also model the atomic
potential within the solid. Figure [I| shows the calculated DOS for Cu around
the Fermi energy.

The density of states can be used to calculate the total number of electron
in a band. If g(F) is the DOS, then the total number of electrons in a band,
S(F) is given by

S(E) = / 4(E)E 1)

where the integration is performed over the entire energy band. This equation
assumes that the probability of occupation of the state is 1. This is not always
true when we look at the conduction band of a semiconductor, where the
occupation probability is defined by a Fermi function. An energy expression
for the density of states, g(F), will be useful for evaluation of the integral in
equation [I]


http://www.personal.psu.edu/ams751/VASP-Cu/
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1.1 DOS in a 3D uniform solid

To simplify the calculation for g(E) consider a 3D solid with uniform po-
tential. This is a simplification of a real solid but is a good approximation
of the valence band of metals where the electrons are loosely bound to the
atom and are delocalized. We will also use this approximation for electrons
and holes near the edge of the band. For simplicity the uniform potential
can be taken to be zero. For this solid the electron is defined by 3 quantum
numbers (nq,n9, ng) and its energy is given by

2
T Sm. L2

Equation [2| is for a cubic solid of length L with the 3 quantum numbers for
the 3 axes. m, is the free electron mass. We can replace the 3 quantum
numbers by a single value n so that equation 2] is modified into

h2n?
= 8m. L2 (3)

For small values of n these energy levels are quantized, but for large values
of n the spacing between them are close so that the energy levels can be
considered to be continuous. So n represents the radius of a sphere, where
the total number of states within the sphere is given by its volume. This
is shown schematically in figure 2] Since the quantum numbers can only be
positive (the quantum numbers represent the electron wavefunction and it
can be shown that to avoid exponential increasing functions the quantum
numbers have to be non-zero positive integers) we can only take the first
quadrant of the sphere.

Hence the total number of ‘orbitals’ (energy states), S,5(n), is given by the
volume of the sphere in the first quadrant

(nf + n3 + nj) (2)

1
Sorp(n) = 3 (gwn3) = éﬂn?’ (4)
Since each orbital can take two electrons of opposite spin, the total number
of energy states (including spin), S(n), is given by
1

S(n) = 2S,p(n) = §7m3 (5)
We can relate n (quantum number of the electron in the solid) to the energy
E using equation |2 to write the total number of states in terms of energy,

S(E). This is given by

[

S(E) = X« (8m.E)

LS
5 73 (6)



NOC: Fundamentals of electronic materials and devices

n3
In here n12+ ny2+ n32< n?

Figure 2: Energy states in a solid with uniform potential. The portion of the
sphere corresponds to the constant energy surface. Only the first quadrant is
to be considered since the quantum numbers are non-zero positive integers.
Adapted from Principles of Electronic Materials - S.0. Kasap.

Dividing by the volume of the cube will give total number of states per unit
volume, S,(E). The density of states is the differential of the total number
of states, so that g(F) is given by

g(E) = 87V2 (73)% VE (")

Equation [7] gives the DOS in a solid with a uniform potential. At the bottom
of the band, which is normally chosen as the reference so energy is set to 0,
DOS is zero. As the energy increases g(E) also increases. The functional form
is shown schematically in figure 3] g(E) represents the density of available
states. It does not provide information whether those states are occupied or
not. The occupation is given by the Fermi function and is usually a function
of temperature.

1.2 DOS for a 2D solid

The density of states function will change upon changing the dimensionality
of the solid. Consider the case of a 2D solid with a uniform potential. There
are 2 quantum numbers, n; and nsy, which are related to the energy, similar
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Figure 3: Plot of DOS vs. E for a 3D solid using free electron mass. This is
a plot of equation m using MATLAB.

to equation [2
h? 5 5 h2n?
= Sz Mt = ®)

For a 2D case, n, represents the radius of a circle, shown in figure [4] and
only the first quadrant can be considered since the quantum numbers should
be positive. It is possible to calculate the density of states per unit area,
Sarea(n), including spin

2
™
Sarea(n) = T (9)
Using equation [§ it is possible to calculate the DOS in terms of energy,
Sarea(E)

4mrm,

Sarea(E) - ]’L2

Differentiating equation [10] gives the density of states in two dimensions

E (10)

4mrm,

9(E) = = (1)

The density of states function is independent of energy, unlike 3D where g(F)
increases with energy. It is represented as a step function at different energy
values.

1.3 DOS for a 1D solid

The calculation for a 1D solid is similar to the earlier calculations except
that there is only one quantum number and spatially it is represented on a
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Figure 4: Energy states in a 2D solid with uniform potential. Instead of a
sphere states of constant energy form a circle and only the first quadrant is
relevant. Adapted from Principles of Electronic Materials - S.0. Kasap.

line (instead of circle in 2D and sphere in 3D). The total number of states,
per unit length, S(n), is just 2n and this is related to energy by equation

8me
n = 2 E (12)

The density of states is given by

o(E) = |75 = (13)

In a 1D solid the density of states decreases with energy. For a zero di-
mensional solid, energy states are only discrete. Solids with two, one, and
zero dimensionality can be obtained by reducing the length in one or more
dimensions. A thin film is an example of a two dimensional solid (or a single
or bi layer of graphene ), while a quantum wire is a one dimensional solid. A
quantum dot is a zero dimensional solid. The density of states and hence the
electronic properties of these materials are different from a bulk solid. The
DOS for solids of different dimensionalities are shown in figure [f

2 Electron occupation probability

Density of states gives the number of available states for electrons to occupy.
At absolute zero, electrons occupy the lowest energy state. Above 0 K, there
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Figure 5: DOS for bulk, 2D, 1D, and 0D solids. The y-axis is a
qualitative representation for the different dimensions. Adapted from
http://britneyspears.ac/physics/dos/dos.htm

is always some thermal energy for the electrons to occupy the unoccupied
energy states. There are different statistics to describe the occupation of
energy levels. The simplest statistics is the Boltzmann statistics which
gives the probability of occupation, p(E), of a given energy state, F,

p(E) = A exp(— o) (14)

kgT
A is a constant. At 0 K all the particles have energy 0 and at any given
T, p(F) gives the probability of occupation. For a given temperature, p(E)
reduces as F increases, as shown in figure [6]

Boltzmann statistics works for a system of non-interacting particles but
electrons have a strong repulsive interaction. By Pauli’s exclusion principle
only 2 electrons can occupy a given energy state (of opposite spin). So all
electrons cannot occupy the same energy state, even at absolute zero. The
statistics obeyed by electrons is given by the Fermi-Dirac statistics.

2.1 Fermi-Dirac statistics

In Fermi-Dirac statistics, the probability of electron occupation of a given
energy state is represented by f(FE) and given by

f(E) = S (15)

1 ‘|‘ Aexp(kB_T)
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Figure 6: Boltzmann probability distribution vs. energy at 1000 K. The
probability drops steeply as energy increases due to the exponential nature
of the function. The plot was generated in MATLAB.

A is a constant. f(F) is called the Fermi function. For solids A is related
to the Fermi energy (EF) so that f(F) is given by

1
(K — EF)
[—k:BT ]

f(E) = (16)

1 + exp

At absolute zero all energy levels below the Fermi level are occupied so that
the occupation probability is 1. Above Er the levels are empty so that f(FE)
is 0. Also, at any temperature f(F) at the Fermi level is 0.5. Figure
plots the Fermi function as a function of energy. When the energy difference
(E — Ep) is much larger than kg7 the Fermi function simplifies to the
Boltzmann form shown in equation [I4]

If g(E) is the density of states and f(F) gives the probability of occupation
of those states at a given temperature, the number of occupied states, n(E),
is given by

n(E) = / 4(E)[(E)dE (17)

If the number of occupied states in an energy band needs to be calculated
the integration needs to be performed over the entire band. This will be a
function of temperature, since the Fermi function is temperature dependent.
Equation {17 can be used to calculate the concentration of electron and holes
in semiconductors, which decides their conductivity.
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Figure 7: Fermi function vs. energy at three different temperatures. The
probability drops steeply as energy is increased from the Fermi function. To
increase the probability the temperature has to be increased. The plot was
generated using MATLAB using Er = 2.5 ¢eV. T = 0.1 K was used to
simulate the 0 K distribution.

3 Density of states in silver

Consider an example to calculate the density of states in a metal, silver (Ag).
Ag is a free electron metal, electrons in the outer shell are delocalized and are
free to move in the material. Hence, valence electrons in Ag can be treated as
electrons in an uniform potential. The atomic weight of Ag is 107.9 gmol !
and the density (p) is 10.5 gem™3. Hence the number of atoms per unit

volume (ny) can be calculated

At.awt

ny (18)

where N is Avogadro’s number. This gives ny to be 5.85 x 10?2 atoms cm 3.
The Fermi energy (Fr) of Agis at 5.5 eV. This is with reference to the bot-
tom of the valence band (taken as zero). So the density of states, at the
Fermi energy, for Ag can be calculated using equation [7]is given by

9(E) = 8nV2 (75)% VEr (19)

where Er is 5.5 eV. This gives a number 9.95 x 10 m™ J~! or converting
the units 1.59 x 10*2 em =3 eV ~!. This is of the same order of magnitude as
the number of atoms per unit volume. Close to the bottom of the band the
density of states is still a substantial quantity. Consider an energy kg1 above
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the bottom of the band. At room temperature this energy is approximately
25 meV. Using equation [7] the density of states is 1.09 x 10%! em=3 eV !
which is still a substantial fraction of the number of atoms.

In order to calculate the total number of electrons in the band equation
can be integrated from the bottom of the band to Er. The occupation
probability, f(FE), is 1.

n(E) = / " g(B)E (20)

The integral is
e 3 2
n(E) = 87r\/§(%)3 s ErVEr (21)

The calculated value of n(E) is 5.08 x 10*? cm~3 which is very close to the
number of atoms per cm~3. Since each atom contributes one electron in Ag
this is also the number of electrons and they fill all the states below Ep.
Thus, a simple model of a solid with a uniform potential matches closely
with reality. I silver, Fr is in the middle of the band so that there are empty
available states for the electrons to occupy. When an electric field electrons
travel opposite to this field and they can occupy these empty states. This
makes Ag a very good conductor of electricity.

4 Fermi function vs. Boltzmann function

We can compare the occupation probability using Fermi function and the
Boltzmann function. Consider the case when (£ — FEp) is equal to kgT.
f(E), equation [16] is equal to 0.26, while Boltzmann function, equation
is 0.367. Consider when (F — FEp) is equal to 2kgT. f(F) is equal to
0.12, while Boltzmann function is 0.135. If (E — FEp) is equal to 10kgT,
f(E) is 4.5 x 107° while the Boltzmann function is 4.54 x 107°. Thus, as
(E — Ep) becomes higher compared to kg7, the Fermi function can be
approximated by the Boltzmann distribution. This can be seen in figure
which compares the Boltzmann and Fermi function for energies above the
Fermi energy (Fr). As seen from figure |8 when (F — EF) is around 2kgT
both functions start converge so that the Boltzmann approximation is valid
for the Fermi function. At room temperature 10kgT is 250 meV or 0.25 V.
This number is smaller than the band gap of most semiconductors (Si has
band gap of 1.1 eV'). So for calculating electron occupation in semiconductors
the Boltzmann function is a good approximation for the Fermi function.
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Fermi vs. Boltzmann function
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Figure 8: Comparison of the Fermi and Boltzmann probability distribution
vs. normalized energy at constant temperature. Emergy is plotted with
reference to Er and normalized by temperature. At low (E — Ep)Fermi
function is accurate while at higher values Boltzmann function is a good
approximation. The plot was generated in MATLAB.
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