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* An analog signal x(t) is represented by a real number at a given time point.

* A digital signal is “binary” in nature, i.e., it takes on only two values: low (0) or high (1).

* Although we have shown 0 and 1 as constant levels, in reality, that is not required. Any value in the low
(high) band will be interpreted as 0 (1) by digital circuits.

* The definition of low and high bands depends on the technology used, e.g.,

TTL (Transitor-Transitor Logic)

CMOS (Complementary MOS)

ECL (Emitter-Coupled Logic)
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A simple digital circuit
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* If Vi is low (“0”), Vo is high (“1”).
If Vi is high (“1”), Vo is low (“0”).

* The circuit is called an “inverter” because it inverts the logic level of the input. If the input is 0, it makes
the output 1, and vice versa.

* Digital circuits are made using a variety of devices. The simple BJT inverter is only an illustration.

* Most of the VLSI circuits today employ the MOS technology because of the high packing density, high
speed, and low power consumption it offers.
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Digital circuits
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* A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting
through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.

* There are several other benefits of using digital representation:

- can use computers to process the data.
- can store in a variety of storage media.

- can program the functionality. For example, the behaviour of a digital filter can be changed simply

by changing its coefficients.
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Logical operations
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Logical operations

* The AND operation is commutative.

→ A · B = B · A.

* The AND operation is associative.

→ (A · B) · C = A · (B · C).

* The OR operation is commutative.

→ A + B = B + A.

* The OR operation is associative.

→ (A + B) + C = A + (B + C).
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Boolean algebra (George Boole, 1815-1864)

* Theorem: A = A.

The theorem can be proved by constructing a truth table:

A A A

0 1 0

1 0 1

Therefore, for all possible values that A can take (i.e., 0 and 1), A is the same as A.

⇒ A = A.

* Similarly, the following theorems can be proved:

A + 0 = A A · 1 = A

A + 1 = 1 A · 0 = 0

A + A = A A · A = A

A + A = 1 A · A = 0

Note the duality: (+←→ ·) and (1←→ 0).
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De Morgan’s theorems

A B A + B A + B A B A · B A · B A · B A + B

0 0

0 1 1 1 1 0 1 1

0 1

1 0 1 0 0 0 1 1

1 0

1 0 0 1 0 0 1 1

1 1

1 0 0 0 0 1 0 0

* Comparing the truth tables for A + B and AB, we conclude that A + B = AB.

* Similiarly, A · B = A + B.

* Similar relations hold for more than two variables, e.g.,

A · B · C = A + B + C ,

A + B + C + D = A · B · C · D,

(A + B) · C = (A + B) + C = A · B + C .
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Distributive laws

1. A · (B + C) = AB + AC .

A B C B + C A · (B + C) AB AC AB + AC

0 0 0
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0 0 1

1 0 0 0 0

0 1 0

1 0 0 0 0

0 1 1

1 0 0 0 0

1 0 0
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1 0 1

1 1 0 1 1

1 1 0

1 1 1 0 1

1 1 1

1 1 1 1 1
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Useful theorems

* A + AB = A.

To prove this theorem, we can follow two approaches:

(a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are
the same.

(b) Use identities and theorems stated earlier to show that LHS=RHS.

A + AB = A · 1 + A · B
= A · (1 + B)
= A · (1)
= A

* A · (A + B) = A.

Proof: A · (A + B) = A · A + A · B
= A + AB
= A
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Duality

A + AB = A ←→ A · (A + B) = A.

Note the duality between OR and AND.

Dual of A + (AB) (LHS): AB → A + B
A + AB → A · (A + B).

Dual of A (RHS) = A (since there are no operations ivolved).

⇒ A · (A + B) = A.

Similarly, consider A + A = 1, with (+←→ .) and (1←→ 0).

Dual of LHS = A · A.

Dual of RHS = 0.

⇒ A · A = 0.
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Useful theorems

* A + AB = A + B.

Proof: A + AB = (A + A) · (A + B) (by distributive law)

= 1 · (A + B)

= A + B

Dual theorem: A · (A + B) = AB.

* AB + AB = A.

Proof: AB + AB = A · (B + B) (by distributive law)

= A · 1
= A

Dual theorem: (A + B) · (A + B) = A.

M. B. Patil, IIT Bombay



Useful theorems

* A + AB = A + B.

Proof: A + AB = (A + A) · (A + B) (by distributive law)

= 1 · (A + B)

= A + B

Dual theorem: A · (A + B) = AB.

* AB + AB = A.

Proof: AB + AB = A · (B + B) (by distributive law)

= A · 1
= A

Dual theorem: (A + B) · (A + B) = A.

M. B. Patil, IIT Bombay



Useful theorems

* A + AB = A + B.

Proof: A + AB = (A + A) · (A + B) (by distributive law)

= 1 · (A + B)

= A + B

Dual theorem: A · (A + B) = AB.

* AB + AB = A.

Proof: AB + AB = A · (B + B) (by distributive law)

= A · 1
= A

Dual theorem: (A + B) · (A + B) = A.

M. B. Patil, IIT Bombay



Useful theorems

* A + AB = A + B.

Proof: A + AB = (A + A) · (A + B) (by distributive law)

= 1 · (A + B)

= A + B

Dual theorem: A · (A + B) = AB.

* AB + AB = A.

Proof: AB + AB = A · (B + B) (by distributive law)

= A · 1
= A

Dual theorem: (A + B) · (A + B) = A.

M. B. Patil, IIT Bombay



A game of words

In an India-Australia match, India will win if one or more of the following conditions are met:

(a) Tendulkar scores a century.

(b) Tedulkar does not score a century AND Warne fails (to get wickets).

(c) Tedulkar does not score a century AND Sehwag scores a century.

Let T ≡ Tendulkar scores a century.

S ≡ Sehwag scores a century.

W ≡ Warne fails.

I ≡ India wins.

I = T + T W + T S

= T + T + T W + T S

= (T + T W ) + (T + T S)

= (T + T ) · (T + W ) + (T + T ) · (T + S)

= T + W + T + S

= T + W + S

i.e., India will win if one or more of the following hold:

(a) Tendulkar strikes, (b) Warne fails, (c) Sehwag strikes.
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Logical functions in standard forms

Consider a function X of three variables A, B, C :

X = AB C + AB C + AB C + AB C

≡ X1 + X2 + X3 + X4

This form is called the “sum of products” form (“sum” corresponding to OR
and “product” corresponding to AND).

We can construct the truth table for X in a systematic manner:

(1) Enumerate all possible combinations of A, B, C .
Since each of A, B, C can take two values (0 or 1), we have 23 possibilities.

(2) Tabulate X1 = AB C , etc. Note that X1 is 1 only if A=B =C = 1 (i.e., A= 0, B = 1, C = 0),
and 0 otherwise.

(3) Since X = X1 + X2 + X3 + X4,
X is 1 if any of X1, X2, X3, X4 is 1; else X is 0.
→ tabulate X .
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“Sum of products” form

XCBA X4X3X2X1
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Logical functions in standard forms

Consider a function Y of three variables A, B, C :

Y = (A + B + C) · (A + B + C) · (A + B + C) · (A + B + C)

≡ Y1 · Y2 · Y3 · Y4

This form is called the “product of sums” form (“sum” corresponding to OR,
and “product” corresponding to AND).

We can construct the truth table for Y in a systematic manner:

(1) Enumerate all possible combinations of A, B, C .
Since each of A, B, C can take two values (0 or 1), we have 23 possibilities.

(2) Tabulate Y1 = A + B + C , etc. Note that Y1 is 0 only if A=B =C = 0;
Y1 is 1 otherwise.

(3) Since Y = Y1 Y2 Y3 Y4,
Y is 0 if any of Y1, Y2, Y3, Y4 is 0; else Y is 1.
→ tabulate Y .
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“Product of sums” form

YCBA Y4Y3Y2Y1

Y = Y1 Y2 Y3 Y4 = (A+ B+ C) (A+ B+ C) (A+ B+ C) (A+ B+ C)
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Standard sum-of-products form

Consider a function X of three variables A, B, C :

X = AB C + AB C + AB C

This form is called the standard sum-of-products form, and each individual term (consisting of all three
variables) is called a “minterm.”

In the truth table for X , the numbers of 1s is the same as the number of minterms, as we have seen in an
example.

X can be rewritten as,

X = AB C + AB (C + C)

= AB C + AB.

This is also a sum-of-products form, but not the standard one.
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Standard product-of-sums form

Consider a function X of three variables A, B, C :

X = (A + B + C) (A + B + C) (A + B + C)

This form is called the standard product-of-sums form, and each individual term (consisting of all three
variables) is called a “maxterm.”

In the truth table for X , the numbers of 0s is the same as the number of maxterms, as we have seen in an
example.

X can be rewritten as,

X = (A + B + C) (A + B + C) (A + B + C)

= (A + B + C) (A + C + B) (A + C + B)

= (A + B + C) (A + C + B B)

= (A + B + C) (A + C).
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The “don’t care” condition

I want to design a box (with inputs A, B, C , and output S) which will help in scheduling my appointments.

A ≡ I am in town, and the time slot being suggested for the appointment is free.

B ≡ My favourite player is scheduled to play a match (which I can watch on TV).

C ≡ The appointment is crucial for my business.

S ≡ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

A B C S

0 X X 0

1 0 X 1

1 1 0 0

1 1 1 1

Note that we have a new entity called X in the truth table.

X can be 0 or 1 (it does not matter) and is therefore called the “don’t care” condition.

Don’t care conditions can often be used to get a more efficient implementation of a logical function.

M. B. Patil, IIT Bombay



The “don’t care” condition

I want to design a box (with inputs A, B, C , and output S) which will help in scheduling my appointments.

A ≡ I am in town, and the time slot being suggested for the appointment is free.

B ≡ My favourite player is scheduled to play a match (which I can watch on TV).

C ≡ The appointment is crucial for my business.

S ≡ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

A B C S

0 X X 0

1 0 X 1

1 1 0 0

1 1 1 1

Note that we have a new entity called X in the truth table.

X can be 0 or 1 (it does not matter) and is therefore called the “don’t care” condition.

Don’t care conditions can often be used to get a more efficient implementation of a logical function.

M. B. Patil, IIT Bombay



The “don’t care” condition

I want to design a box (with inputs A, B, C , and output S) which will help in scheduling my appointments.

A ≡ I am in town, and the time slot being suggested for the appointment is free.

B ≡ My favourite player is scheduled to play a match (which I can watch on TV).

C ≡ The appointment is crucial for my business.

S ≡ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

A B C S

0 X X 0

1 0 X 1

1 1 0 0

1 1 1 1

Note that we have a new entity called X in the truth table.

X can be 0 or 1 (it does not matter) and is therefore called the “don’t care” condition.

Don’t care conditions can often be used to get a more efficient implementation of a logical function.

M. B. Patil, IIT Bombay



The “don’t care” condition

I want to design a box (with inputs A, B, C , and output S) which will help in scheduling my appointments.

A ≡ I am in town, and the time slot being suggested for the appointment is free.

B ≡ My favourite player is scheduled to play a match (which I can watch on TV).

C ≡ The appointment is crucial for my business.

S ≡ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

A B C S

0 X X 0

1 0 X 1

1 1 0 0

1 1 1 1

Note that we have a new entity called X in the truth table.

X can be 0 or 1 (it does not matter) and is therefore called the “don’t care” condition.

Don’t care conditions can often be used to get a more efficient implementation of a logical function.

M. B. Patil, IIT Bombay



The “don’t care” condition

I want to design a box (with inputs A, B, C , and output S) which will help in scheduling my appointments.

A ≡ I am in town, and the time slot being suggested for the appointment is free.

B ≡ My favourite player is scheduled to play a match (which I can watch on TV).

C ≡ The appointment is crucial for my business.

S ≡ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

A B C S

0 X X 0

1 0 X 1

1 1 0 0

1 1 1 1

Note that we have a new entity called X in the truth table.

X can be 0 or 1 (it does not matter) and is therefore called the “don’t care” condition.

Don’t care conditions can often be used to get a more efficient implementation of a logical function.

M. B. Patil, IIT Bombay



Karnaugh maps

* A Karnaugh map (“K-map”) is a representation of the truth table of a logical
function.

* A K-map can be used to obtain a “minimal” expression of a function in the
sum-of-products form or in the product-of-sums form.

* A “minimal” expression has a minimum number of terms, each with a minimum
number of variables. (For some functions, it is possible to have more than one
minimal expressions, i.e., more than one expressions with the same complexity.)

* A minimal expression can be implemented with fewer gates.
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K-maps
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* A K-map is the same as the truth table of a function except for the way the entries are arranged.

* In a K-map, the adjacent rows or columns differ only in one variable. For example, in going from the
column AB = 01 to AB = 11, there is only one change, viz., A= 0 → A= 1.
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* The 1’s can be enclosed by a rectangle in each case.
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* We are interested in identifying a minimal expression from the given K-map.

* Minimal: smallest number of terms, smallest number of variables in each term
→ smallest number of rectangles containing 2k 1’s, each as large as possible
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What is the logical function (Y ) represented by this K-map?

* There are 21 1’s forming a rectangle → we can combine them.

* The product term is 1 if B = 1, and C = 0.

* The product term does not depend on A.

→ Y =B C
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Can the 1s shown in the K-map be combined?

Although the number of 1’s is a power of 2 (21), they cannot be combined because they are not adjacent
(i.e., they do not form a rectangle).

→ the function (AB C + AB C) cannot be minimized.
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Can the 1’s shown in the K-map be combined?

Let us redraw the K-map by changing the order of the columns cyclically.

The two 1’s are, in fact, adjacent and can be combined to give B C .

→ Columns AB = 00 and AB = 10 in the K-map on the left are indeed “logically adjacent” (although they are
not geometrically adjacent) since they differ only in one variable (A).

We could have therefore combined the 1’s without actually redrawing the K-map.
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Standard sum-of-products form:

Since the number of minterms is not a power of 2, they cannot be combined

into a single term; however, they can be combined into two terms:

X1 = ABCD+ ABCD + ABCD

1

1 1

= ABC (D+ D) + BCD (A+ A)

X1 = ABCD + ABCD+ ABCD+ ABCD (using Y=Y+Y)

= ABC+ BCD

* A minterm can be combined with others more than once.
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Since X represents a “don’t care” condition, we can assign 0 or 1 to the corresponding minterm to arrive at a
minimal expression.
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Binary numbers

3 1 7 = 3× 102 + 1× 101 + 7× 100

101102 100

Decimal (base 10) system

* Digits: 0,1,2,..,9

* example: 4 1 5 3

most significant
digit

least significant
digit

Binary (base 2) system

1 0 1 1 1 = 1× 24 + 0× 23 + 1 × 22 + 1× 21 + 1× 20

21 20

222324

= 23 (in decimal)

* Bits: 0,1

* example: 1 0 0 1 1 0

most significant

bit (MSB)

least significant

bit (LSB)
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Addition of binary numbers

49111

9

5

7

1

1

1

0

3

8

weight

first number

second number

carry

sum

1

104 103 102 101 100

Decimal (base 10) system

1

1

weight

carry

1 0 1 1

1 1 0

1

11 0 0 1

first number (dec. 11)

sum (dec. 25)

second number (dec. 14)

1

2021222324

Binary (base 2) system

* 0+ 1 = 1+ 0 = 1 → S = 1, C = 0

* 1+ 1 = 10 (dec. 2) → S = 0, C = 1

* 1+ 1+ 1 = 11 (dec. 3) → S = 1,C = 1
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Addition of binary numbers

0

0 −

example

1

1

weight

carry

1 0 1 1

1 1

1

11 0 0 1

1

first number

second number

sum

2021222324

weight

first number

second number

carry

sum

general procedure

CN

20

AN

BN

CN−1

2122

A2

B2

C1

S2 S1

C0

B1

A1

2N

A0

B0

S0SN

· · ·

· · ·

· · ·

A

B

S

A

B

S

A

B

S

FA

A

B

S

FA FA HA

CinCin Cin CoCoCo CoCN
CN−1

BNAN

S2

C1

B2A2

S1

C0

A1 B1

S0

B0A0

SN

* The rightmost block (corresponding to the LSB) adds two bits A0 and B0; there is no input carry.
This block is called a “half adder.”

* Each of the subsequent blocks adds three bits (Ai , Bi , Ci−1) and is called a “full adder.”
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Half adder implementation

A

B

S

HA

Co

SCoA

C0

B

S0

B0

A0

1

0

1 0

1

0 0

1

0

0

0

1 0

1

1

0

S = AB+ AB = A⊕ B

Co = AB

Implementation 1

Co

A

B

A

B

AB

AB

S

Implementation 2

Co

A+ B

AB

S

A

B
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Full adder implementation

A

B

S
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Co SCin

Co Cin
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1

1

0
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0

0

0

0
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00 01 11 10

0 0 1 0 1

1 1 0 1 0

AB

S = ABCin + ABCin + ABCin + ABCin

Cin

AB

00 01 11 10

0 0 0 1 0

1 0 1 11

Co = AB + BCin + ACin

Co:

Cin
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Implementation of functions with only NAND gates

The NOT, AND, OR operations can be realised by using only NAND gates:

NOT

A = A · A

A A

AND

A · B = A · B

AB
A

B

OR

A+ B = A · B

A

B

A+ B
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Implementation of functions with only NAND gates

Implement Y = AB+ BCD+ AD using only NAND gates.

A · B = A · B

A = A · A

A+ B = A · B

Y = AB · BCD · AD

AB

BCD
Y

AD

A

B

D

B
C

A

D
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Implementation of functions with only NAND gates

Implement Y = A+ B+ C using only 2-input NAND gates.
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Implementation of functions with only NOR gates

The NOT, AND, OR operations can be realised by using only NOR gates:

NOT

A = A+ A

AA

AND

A · B = A+ B

A

B

AB

OR

A+ B = A+ B

A

B
A+ B

Implementation of functions with only NOR (or only NAND) gates is more than a theoretical curiosity. There

are chips which provide a “sea of gates” (say, NOR gates) which can be configured by the user (through

programming) to implement functions.
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Implement Y = AB+ BCD+ AD using only NOR gates.
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Multiplexers

I0

I1

I2

I3

S1 S0

Z

S0S1 Z
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1 0
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0 0

1 I1

I2

I3

I0

S1 S0

SW0

SW1

SW2

SW3

I0

I1

I2

I3
Z

* A multiplexer or data selector (MUX in short) has N Select lines, 2N input lines, and it routes one of the
input lines to the output.

* Conceptually, a MUX may be thought of as 2N switches. For a given combination of the select inputs,
only one of the switches closes (makes contact), and the others are open.

* SEQUEL file: mux test 1.sqproj
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* A 4-to-1 MUX can be implemented as,

Z = I0 S1 S0 + I1 S1 S0 + I2 S1 S0 + I3 S1 S0.

For a given combination of S1 and S0, only one of the terms survives (the others being 0). For example, with S1 = 0,
S0 = 1, we have Z = I1.

* Multiplexers are available as ICs, e.g., 74151 is an 8-to-1 MUX.

* ICs with arrays of multiplexers (and other digital blocks) are also available. These blocks can be configured (“wired”) by
the user in a programmable manner to realise the functionality of interest.
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Active high and active low inputs/outputs

Select inputs are active high.
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Enable (E) pin

inputs outputs

Active high enable pin

inputs outputs

Active low enable pin

EE

* Many digital ICs have an “Enable” (E) pin. If the Enable pin is active, the IC functions as desired; else, it
is “disabled,” i.e., the outputs are set to some default values.

* The Enable pin can be active high or active low.

* If the Enable pin is active low, it is denoted by Enable or E. When E = 0, the IC functions normally; else,
it is disabled.
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Using two 8-to-1 MUXs to make a 16-to-1 MUX

D1

D2

D3

D5

D9

D11

D15

D0

D4

D6

D7

D8

D10

D12

D13

D14

I0

I1

I2

I3

I4

I5

I6

I7

S2 S1 S0

I0

I1

I2

I3

I4

I5

I6

I7

S2 S1 S0

S2 S1S3 S0

X

X2

X174151 Z

74151 Z

S0 XS1S2S3

E

E

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

0

0

1

1

1

1

0

0

0

0

1

1

1

M. B. Patil, IIT Bombay



Implement X = AB C D + AB C D using a 16-to-1 MUX.

MUX
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* When AB C D = 1, we want X = 1.

AB C D = 1→ A= 1, B = 0, C = 0,
D = 1, i.e., the input line corresponding to
1001 (I9) gets selected.
→ Make I9 = 1.

* Similarly, when AB C D = 1, we want
X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as
the MSB and D as the LSB (the same
order in which A, B, C , D are connected
to the select pins), the design is simple:
connect
I0 to X(0 0 0 0),
I1 to X(0 0 0 1),
I2 to X(0 0 1 0), etc.
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Implement X = AB C D + AB C D using a 16-to-1 MUX.
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* When AB C D = 1, we want X = 1.

AB C D = 1→ A= 1, B = 0, C = 0,
D = 1, i.e., the input line corresponding to
1001 (I9) gets selected.
→ Make I9 = 1.

* Similarly, when AB C D = 1, we want
X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as
the MSB and D as the LSB (the same
order in which A, B, C , D are connected
to the select pins), the design is simple:
connect
I0 to X(0 0 0 0),
I1 to X(0 0 0 1),
I2 to X(0 0 1 0), etc.
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Implement X = AB C D + AB C D using a 16-to-1 MUX.

MUX
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* When AB C D = 1, we want X = 1.

AB C D = 1→ A= 1, B = 0, C = 0,
D = 1, i.e., the input line corresponding to
1001 (I9) gets selected.
→ Make I9 = 1.

* Similarly, when AB C D = 1, we want
X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as
the MSB and D as the LSB (the same
order in which A, B, C , D are connected
to the select pins), the design is simple:
connect
I0 to X(0 0 0 0),
I1 to X(0 0 0 1),
I2 to X(0 0 1 0), etc.
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Implement X = AB C D + AB C D using a 16-to-1 MUX.

MUX
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* When AB C D = 1, we want X = 1.

AB C D = 1→ A= 1, B = 0, C = 0,
D = 1, i.e., the input line corresponding to
1001 (I9) gets selected.
→ Make I9 = 1.

* Similarly, when AB C D = 1, we want
X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as
the MSB and D as the LSB (the same
order in which A, B, C , D are connected
to the select pins), the design is simple:
connect
I0 to X(0 0 0 0),
I1 to X(0 0 0 1),
I2 to X(0 0 1 0), etc.
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Implement X = AB C D + AB C D using a 16-to-1 MUX.

MUX
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* When AB C D = 1, we want X = 1.

AB C D = 1→ A= 1, B = 0, C = 0,
D = 1, i.e., the input line corresponding to
1001 (I9) gets selected.
→ Make I9 = 1.

* Similarly, when AB C D = 1, we want
X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as
the MSB and D as the LSB (the same
order in which A, B, C , D are connected
to the select pins), the design is simple:
connect
I0 to X(0 0 0 0),
I1 to X(0 0 0 1),
I2 to X(0 0 1 0), etc.
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Implement X = AB C D + AB C D using a 16-to-1 MUX.

MUX
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* When AB C D = 1, we want X = 1.

AB C D = 1→ A= 1, B = 0, C = 0,
D = 1, i.e., the input line corresponding to
1001 (I9) gets selected.
→ Make I9 = 1.

* Similarly, when AB C D = 1, we want
X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as
the MSB and D as the LSB (the same
order in which A, B, C , D are connected
to the select pins), the design is simple:
connect
I0 to X(0 0 0 0),
I1 to X(0 0 0 1),
I2 to X(0 0 1 0), etc.
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Implement X = AB C D + AB C D using a 16-to-1 MUX.

MUX

D XCBA
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* When AB C D = 1, we want X = 1.

AB C D = 1→ A= 1, B = 0, C = 0,
D = 1, i.e., the input line corresponding to
1001 (I9) gets selected.
→ Make I9 = 1.

* Similarly, when AB C D = 1, we want
X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as
the MSB and D as the LSB (the same
order in which A, B, C , D are connected
to the select pins), the design is simple:
connect
I0 to X(0 0 0 0),
I1 to X(0 0 0 1),
I2 to X(0 0 1 0), etc.
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Implement X = AB C D + AB C D using a 16-to-1 MUX.

MUX

D XCBA
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* When AB C D = 1, we want X = 1.

AB C D = 1→ A= 1, B = 0, C = 0,
D = 1, i.e., the input line corresponding to
1001 (I9) gets selected.
→ Make I9 = 1.

* Similarly, when AB C D = 1, we want
X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as
the MSB and D as the LSB (the same
order in which A, B, C , D are connected
to the select pins), the design is simple:
connect
I0 to X(0 0 0 0),
I1 to X(0 0 0 1),
I2 to X(0 0 1 0), etc.
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Implement X = AB C D + AB C D using a 16-to-1 MUX.

MUX

D XCBA
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* When AB C D = 1, we want X = 1.

AB C D = 1→ A= 1, B = 0, C = 0,
D = 1, i.e., the input line corresponding to
1001 (I9) gets selected.
→ Make I9 = 1.

* Similarly, when AB C D = 1, we want
X = 1.
→ Make I4 = 1.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* In this example, since the truth table is
organized in terms of ABCD, with A as
the MSB and D as the LSB (the same
order in which A, B, C , D are connected
to the select pins), the design is simple:
connect
I0 to X(0 0 0 0),
I1 to X(0 0 0 1),
I2 to X(0 0 1 0), etc.
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Implement X = AB C D + AB C D using an 8-to-1 MUX.
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* When AB C = 1, i.e., A= 1, B = 0, C = 0, we have X =D.
→ connect the input line corresponding to 100 (I4) to D.

* When AB C = 1, i.e., A= 0, B = 1, C = 0, we have X =D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X ) with S2 =B, S1 =C , S0 =D.
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Implement X = AB C D + AB C D using an 8-to-1 MUX.

MUX
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* When AB C = 1, i.e., A= 1, B = 0, C = 0, we have X =D.
→ connect the input line corresponding to 100 (I4) to D.

* When AB C = 1, i.e., A= 0, B = 1, C = 0, we have X =D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X ) with S2 =B, S1 =C , S0 =D.

M. B. Patil, IIT Bombay



Implement X = AB C D + AB C D using an 8-to-1 MUX.

MUX

C XBA
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* When AB C = 1, i.e., A= 1, B = 0, C = 0, we have X =D.
→ connect the input line corresponding to 100 (I4) to D.

* When AB C = 1, i.e., A= 0, B = 1, C = 0, we have X =D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X ) with S2 =B, S1 =C , S0 =D.
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Implement X = AB C D + AB C D using an 8-to-1 MUX.

MUX

C XBA
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* When AB C = 1, i.e., A= 1, B = 0, C = 0, we have X =D.
→ connect the input line corresponding to 100 (I4) to D.

* When AB C = 1, i.e., A= 0, B = 1, C = 0, we have X =D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X ) with S2 =B, S1 =C , S0 =D.
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Implement X = AB C D + AB C D using an 8-to-1 MUX.

MUX

C XBA
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* When AB C = 1, i.e., A= 1, B = 0, C = 0, we have X =D.
→ connect the input line corresponding to 100 (I4) to D.

* When AB C = 1, i.e., A= 0, B = 1, C = 0, we have X =D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X ) with S2 =B, S1 =C , S0 =D.
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Implement X = AB C D + AB C D using an 8-to-1 MUX.

MUX

C XBA
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* When AB C = 1, i.e., A= 1, B = 0, C = 0, we have X =D.
→ connect the input line corresponding to 100 (I4) to D.

* When AB C = 1, i.e., A= 0, B = 1, C = 0, we have X =D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X ) with S2 =B, S1 =C , S0 =D.
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Implement X = AB C D + AB C D using an 8-to-1 MUX.

MUX

C XBA
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* When AB C = 1, i.e., A= 1, B = 0, C = 0, we have X =D.
→ connect the input line corresponding to 100 (I4) to D.

* When AB C = 1, i.e., A= 0, B = 1, C = 0, we have X =D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X ) with S2 =B, S1 =C , S0 =D.
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Implement X = AB C D + AB C D using an 8-to-1 MUX.

MUX
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* When AB C = 1, i.e., A= 1, B = 0, C = 0, we have X =D.
→ connect the input line corresponding to 100 (I4) to D.

* When AB C = 1, i.e., A= 0, B = 1, C = 0, we have X =D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X ) with S2 =B, S1 =C , S0 =D.

M. B. Patil, IIT Bombay



Implement X = AB C D + AB C D using an 8-to-1 MUX.

MUX

C XBA

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0 0

0

0

0

0

I7

I6

I5

I4

I3

I2

I1

I0

S2

A B C

0

0

1

1

1

1

0

S1 S0

Z X

D

D

D

D

0

0

0

0

0

0

* When AB C = 1, i.e., A= 1, B = 0, C = 0, we have X =D.
→ connect the input line corresponding to 100 (I4) to D.

* When AB C = 1, i.e., A= 0, B = 1, C = 0, we have X =D.
→ connect the input line corresponding to 010 (I2) to D.

* In all other cases, X should be 0.
→ connect all other pins to 0.

* Home work: Implement the same function (X ) with S2 =B, S1 =C , S0 =D.
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Implement the function X using an 8-to-1 MUX.

* When ABC = 000, X =D → I0 =D.

* When ABC = 001, X = 1→ I1 = 1,
and so on.

* Home work: repeat with S2 =B, S1 =C ,
S0 =D.
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Implement the function X using an 8-to-1 MUX.

* When ABC = 000, X =D → I0 =D.

* When ABC = 001, X = 1→ I1 = 1,
and so on.

* Home work: repeat with S2 =B, S1 =C ,
S0 =D.
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Implement the function X using an 8-to-1 MUX.

* When ABC = 000, X =D → I0 =D.

* When ABC = 001, X = 1→ I1 = 1,
and so on.

* Home work: repeat with S2 =B, S1 =C ,
S0 =D.
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Implement the function X using an 8-to-1 MUX.

* When ABC = 000, X =D → I0 =D.

* When ABC = 001, X = 1→ I1 = 1,
and so on.

* Home work: repeat with S2 =B, S1 =C ,
S0 =D.
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Implement the function X using an 8-to-1 MUX.

* When ABC = 000, X =D → I0 =D.

* When ABC = 001, X = 1→ I1 = 1,
and so on.

* Home work: repeat with S2 =B, S1 =C ,
S0 =D.
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Implement the function X using an 8-to-1 MUX.

* When ABC = 000, X =D → I0 =D.

* When ABC = 001, X = 1→ I1 = 1,
and so on.

* Home work: repeat with S2 =B, S1 =C ,
S0 =D.
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Implement the function X using an 8-to-1 MUX.

* When ABC = 000, X =D → I0 =D.

* When ABC = 001, X = 1→ I1 = 1,
and so on.

* Home work: repeat with S2 =B, S1 =C ,
S0 =D.
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Implement the function X using an 8-to-1 MUX.

* When ABC = 000, X =D → I0 =D.

* When ABC = 001, X = 1→ I1 = 1,
and so on.

* Home work: repeat with S2 =B, S1 =C ,
S0 =D.
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Implement the function X using an 8-to-1 MUX.

* When ABC = 000, X =D → I0 =D.

* When ABC = 001, X = 1→ I1 = 1,
and so on.

* Home work: repeat with S2 =B, S1 =C ,
S0 =D.
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Implement the function X using an 8-to-1 MUX.

* When ABC = 000, X =D → I0 =D.

* When ABC = 001, X = 1→ I1 = 1,
and so on.

* Home work: repeat with S2 =B, S1 =C ,
S0 =D.
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Demultiplexers

DEMUX
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* A demultiplexer takes a single input (I) and routes it to one of the output lines (O0, O1,· · · ).

* For N Select inputs (S0, S1,· · · ), the number of output lines is 2N .

* SEQUEL file: demux test 1.sqproj
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* A demultiplexer takes a single input (I) and routes it to one of the output lines (O0, O1,· · · ).

* For N Select inputs (S0, S1,· · · ), the number of output lines is 2N .

* SEQUEL file: demux test 1.sqproj
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Demultiplexer: gate-level diagram
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Decoders

N inputs Decoder M outputs

A0

A1

AN−1

O0

O1

OM−1

* For each input combination, an associated bit pattern appears at the output.
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3-to-8 decoder (1-of-8 decoder)
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Binary-Coded-Decimal (BCD) encoding

* Example:

Decimal 75

Binary 1001011

BCD 0111 0101

* BCD coding is commonly used to display numbers in electronic systems.

7−segment

display

decoder

BCD

input

BCD−to−7−seg

01010111

* In some electronic systems (e.g., calculators), all computations are performed in BCD.
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7-segment display

common

anode

g

a

b

c

d

e

f

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

VCC

a

b

c

d

e

f

g
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BCD-to-7 segment decoder

D

C

B

A

common

anode

MSB

LSB

g

7446

a

b

c

d

e

f

VCC

a

b

d

e

f

g

0000 0001 0010 0011 0100 0101 0110 0111 1000 1111111011011100101110101001

c

* The resistors serve to limit the diode
current. For VCC = 5V , VD = 2V , and
ID = 10 mA, R = 300 Ω.

* Home work: Write the truth table for
c (in terms of D, C , B, A). Obtain a
minimized expression for c using a K
map.

M. B. Patil, IIT Bombay



BCD-to-7 segment decoder

D

C

B

A

common

anode

MSB

LSB

g

7446

a

b

c

d

e

f

VCC

a

b

d

e

f

g

0000 0001 0010 0011 0100 0101 0110 0111 1000 1111111011011100101110101001

c

* The resistors serve to limit the diode
current. For VCC = 5V , VD = 2V , and
ID = 10 mA, R = 300 Ω.

* Home work: Write the truth table for
c (in terms of D, C , B, A). Obtain a
minimized expression for c using a K
map.

M. B. Patil, IIT Bombay



BCD-to-7 segment decoder

D

C

B

A

common

anode

MSB

LSB

g

7446

a

b

c

d

e

f

VCC

a

b

d

e

f

g

0000 0001 0010 0011 0100 0101 0110 0111 1000 1111111011011100101110101001

c

* The resistors serve to limit the diode
current. For VCC = 5V , VD = 2V , and
ID = 10 mA, R = 300 Ω.

* Home work: Write the truth table for
c (in terms of D, C , B, A). Obtain a
minimized expression for c using a K
map.

M. B. Patil, IIT Bombay



BCD-to-decimal decoder

none

Active output

7442

none

none

none

none

none

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0
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1

1
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1
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0

0
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0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

1

1

1

1

0

0

0

0

1

1

1

O1

O2

O3

O4

O5

O6

O7

O8

O9

O0

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

A0

A1

A2

A3

A0A1A2A3

* Note that the combinations A3A2A1A0 = 1010 onwards are “don’t care” conditions since a BCD (binary coded decimal)
number is expected to be less than 1010 (i.e., decimal 10).
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Encoders

M inputs Encoder N outputs

O0

O1

ON−1

A0

A1

AM−1

* Only one input line is assumed to be active. The binary number corresponding to the active input line
appears at the output pins.

* The N output lines can represent 2N binary numbers, each corresponding to one of the M input lines, i.e.,
we can have M = 2N . Some encoders have M < 2N .

* As an example, for N = 3, we can have a maximum of 23 = 8 input lines.
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Encoders

O0

O1

O2

A0

A1

A2

A3

A4

A5

A6

A7

8−to−3 encoder example

Encoder

A0 A1 A2 A3 A4 A5 A6 A7 O0O1O2

1 0 0 0 0 0 0 0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

00000

0

0

0

0

0

0

0

0

0 0 0 0

00

0

0 0 0 0

0

0

0

0

00

00

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

* Note that only one of the input lines is assumed to be active.

* What if two input lines become simultaneously active?
→ There are “priority encoders” which assign a priority to each of the input lines.
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* Note that only one of the input lines is assumed to be active.
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* Note that only one of the input lines is assumed to be active.

* What if two input lines become simultaneously active?
→ There are “priority encoders” which assign a priority to each of the input lines.
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74147 decimal-to-BCD priority encoder

74147

A9A8A7A6A5A4A3A2A1 O3 O2 O1 O0

1 1 1 1 1 1 1 1 1

X X 0

0

0

0

0

0

0

0

0

X X X X X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1 1 1

0 01 1

0 111

01 00

1 0 0 1

1 0 01

1 0 1 1

1

1

1

1

1

1 1 0

0 1

0 0

1

O0

O1

O2

O3

A1

A2

A3

A4

A5

A6

A7

A8

A9

* Note that the higher input lines get priority over the lower ones.

For example, A7 gets priority over A1, A2, A3, A4, A5, A6. If A7 is active (low), the binary output is 1000
(i.e., 0111 inverted bit-by-bit) which corresponds to decimal 7, irrespective of

A1, A2, A3, A4, A5, A6.

* The lower input lines are therefore shown as “don’t care” (X) conditions.
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