Introduction to filters

Consider v(t) = vi(t) + vo(t) = Vmisinwit + Vo sinwat .
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A low-pass filter with a cut-off frequency w1 < we < wy will pass the low-frequency component vi(t) and
remove the high-frequency component vx(t).
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remove the high-frequency component vx(t).
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A low-pass filter with a cut-off frequency w1 < we < wy will pass the low-frequency component vi(t) and
remove the high-frequency component vx(t).

A high-pass filter with a cut-off frequency w1 < we < wp will pass the high-frequency component v»(t) and
remove the low-frequency component vi(t).

There are some other types of filters, as we will see.
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H(jw)

Ideal low-pass filter
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Ideal low-pass filter
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Vo(jw) = H(jw) Vi(jw) .
All components with w < wc appear at the output without attenuation.
All components with w > wc get eliminated.

(Note that the ideal low-pass filter has ZH(jw) =1, i.e., H(jw) =1+ 0.)
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Ideal low-pass filter: example
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Ideal high-pass filter: example
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Ideal band-pass filter: example
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Ideal band-reject filter: example
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Practical filter circuits

* In practical filter circuits, the ideal filter response is approximated with a suitable H(jw)
that can be obtained with circuit elements. For example,

1

a5s® + agst + a3s3 + ars2 + a1s + ag

H(s) =

represents a 5™-order low-pass filter.
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Practical filter circuits

* In practical filter circuits, the ideal filter response is approximated with a suitable H(jw)
that can be obtained with circuit elements. For example,

1

a5s® + agst + a3s3 + ars2 + a1s + ag

H(s) =

represents a 5™-order low-pass filter.

* Some commonly used approximations (polynomials) are the Butterworth, Chebyshev, Bessel,
and elliptic functions.

* Coefficients for these filters are listed in filter handbooks. Also, programs for filter design
are available on the internet.
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Practical filters
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* A practical filter may exhibit a ripple. Amax is called the maximum passband ripple, e.g., Amax = 1 dB.
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* A practical filter may exhibit a ripple. Amax is called the maximum passband ripple, e.g., Amax = 1 dB.

* Amin is the minimum attenuation to be provided by the filter, e.g., Amin = 60 dB.
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Practical filters

H Low-pass H| Amax H| High—pass [H| Amax
1 1k ——
Ideal Practical Ideal

Practical

we we  Ws

we Ws we

* A practical filter may exhibit a ripple. Amax is called the maximum passband ripple, e.g., Amax = 1 dB.

* Apmin is the minimum attenuation to be provided by the filter, e.g., Ayin = 60 dB.
* ws: edge of the stop band.
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* A practical filter may exhibit a ripple. Amax is called the maximum passband ripple, e.g., Amax = 1 dB.

* Amin is the minimum attenuation to be provided by the filter, e.g., Amin = 60 dB.

* ws: edge of the stop band.

* ws/we (for a low-pass filter): selectivity factor, a measure of the sharpness of the filter.
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* A practical filter may exhibit a ripple. Amax is called the maximum passband ripple, e.g., Amax = 1 dB.

* Amin is the minimum attenuation to be provided by the filter, e.g., Amin = 60 dB.

* ws: edge of the stop band.

* ws/we (for a low-pass filter): selectivity factor, a measure of the sharpness of the filter.

* we < w < ws: transition band.

M. B. Patil, IIT Bombay



Practical filters
_r
S ai(s/ee)’
=0

Coefficients (a;) for various types of filters are tabulated in handbooks. We now look at |H(jw)| for two
commonly used filters.

For a low-pass filter, H(s) =
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Practical filters
_r
S ai(s/ee)’
=0

Coefficients (a;) for various types of filters are tabulated in handbooks. We now look at |H(jw)| for two
commonly used filters.

For a low-pass filter, H(s) =

Butterworth filters:

. 1
[H(jw)| = Niewrorarh

Chebyshev filters:

1
|[H(jw)] = —————where
1+ 2C3(w/we)

Ca(x) = cos [ncos™}(x)] for x <1,
Ca(x) = cosh [n cosh_l(x)] for x > 1,
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Practical filters
_r
S ai(s/ee)’
=0

Coefficients (a;) for various types of filters are tabulated in handbooks. We now look at |H(jw)| for two
commonly used filters.

For a low-pass filter, H(s) =

Butterworth filters:
[H(jw)| =

1
V1t e(w/w)?

Chebyshev filters:
1
|[H(jw)] = —————where
1+ 2C3(w/we)
Ca(x) = cos [ncos™}(x)] for x <1,
Ca(x) = cosh [n cosh_l(x)] for x > 1,

H(s) for a high-pass filter can be obtained from H(s) of the corresponding low-pass filter by (s/wc) — (wc/s) .
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Practical filters (low-pass)

Butterworth filters:

Chebyshev filters:
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Practical filters (high-pass)

Butterworth filters:

Chebyshev filters:
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Passive filter example



Passive filter example

R
Vs Vo
1009 TR CL.0 . S
R+ (1/sC) 1+ (s/wo)
C
5uF with wy = 1/RC — fo = wp/2m = 318 Hz

(Low—pass filter)



Passive filter example

R
Vs Vo
1009 TR CL.0 . S
R+ (1/sC) 1+ (s/wo)
C
5uF with wy = 1/RC — fo = wp/2m = 318 Hz
(Low—pass filter)
20

[HI (dB)

—60 Il Il
10! 102 103 104 10°

f (Hz)
(SEQUEL file: ee101_rc_ac_2.sqproj)
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Passive filter example

Vo
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Passive filter example

Vo _ Ghaso SR
) = R (o) [ (1/5C) ~ T+ o(L/R) + 1€
s with wo = 1/vLC = fo = wo/2m = 7.96 kHz

s

(Band-pass filter)




Passive filter example

Vo (s) = (sL) || (1/sC) _ s(L/R)
R+ (sL) | (1/sC)  1-+s(L/R)+s2LC
:4/ch with wozl/\/ﬁﬂﬂ):wo/Qﬁ:7.96kHz
(Band-pass filter)

HI (dB)

-80 L L
10° 103 10* 10°
f (Hz)
(SEQUEL file: ee101_rlc_3.sqproj)

M. B. Patil, IIT Bombay



Op-amp filters (“Active” filters)

* Op-amp filters can be designed without using inductors. This is a significant advantage since inductors are
bulky and expensive. Inductors also exhibit nonlinear behaviour (arising from the core properties) which is
undesirable in a filter circuit.

M. B. Patil, IIT Bombay



Op-amp filters (“Active” filters)

* Op-amp filters can be designed without using inductors. This is a significant advantage since inductors are

bulky and expensive. Inductors also exhibit nonlinear behaviour (arising from the core properties) which is
undesirable in a filter circuit.

* With op-amps, a filter circuit can be designed with a pass-band gain.

M. B. Patil, IIT Bombay



Op-amp filters (“Active” filters)
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Op-amp filters (“Active” filters)

* Op-amp filters can be designed without using inductors. This is a significant advantage since inductors are
bulky and expensive. Inductors also exhibit nonlinear behaviour (arising from the core properties) which is
undesirable in a filter circuit.

* With op-amps, a filter circuit can be designed with a pass-band gain.
* Op-amp filters can be easily incorporated in an integrated circuit.
* However, there are situations in which passive filters are still used.

- high frequencies at which op-amps do not have sufficient gain
- high power which op-amps cannot handle
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Op-amp filters: example
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Op-amp filters: example

Ry
— AMA——
10k
LS
1T
R1 10nF
\'A
1k Vv,

-

Op-amp filters are designed for op-amp operation in the linear region
— Our analysis of the inverting amplifier applies, and we get,

Rl (1/5C)
Ry
R> 1
"R 1+ sR,C

Vo = Vs (Vs and V, are phasors)

H(s) =



Op-amp filters: example

Ro
— AMA——
10k
1<
Al
Ry 10nF
Vs
1k v

Op-amp filters are designed for op-amp operation in the linear region
— Our analysis of the inverting amplifier applies, and we get,

R, 1/sC
Vo = _% Vs (Vs and V, are phasors)
1
R 1
H(s) =~ ————
Ri 1+ sR,C

This is a low-pass filter, with wg = 1/R>C (i.e., fy = wo/2m = 1.59 kHz).



Op-amp filters: example
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Op-amp filters are designed for op-amp operation in the linear region
— Our analysis of the inverting amplifier applies, and we get,

R, 1/sC
Vo = _% Vs (Vs and V, are phasors)
1
R 1
H(s) =~ ————
Ri 1+ sR,C

This is a low-pass filter, with wg = 1/R>C (i.e., fy = wo/2m = 1.59 kHz).



Op-amp filters: example

Ry
—AMA——
10k
1<
il
R1 10nF —
V. @
1k Y =
° E=)

20 T BT B B
10 10° 10° 10* 10°
f (Hz)
Op-amp filters are designed for op-amp operation in the linear region
— Our analysis of the inverting amplifier applies, and we get,

R, 1/sC
Vo = _% Vs (Vs and V, are phasors)
1
R 1
H(s) =~ ————
Ri 1+ sR,C

This is a low-pass filter, with wg = 1/R>C (i.e., fy = wo/2m = 1.59 kHz).

(SEQUEL file: ee101_op_filter_1.sqproj)
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Op-amp filters: example



Op-amp filters: example

sR,C

R B
R+ (1/sC) 1+ sRiC

H(s) =



Op-amp filters: example

Ry sR,C
H(s) = — = - .
Ry + (1/sC) 1+ sR;C
This is a high-pass filter, with wg = 1/R1C (i.e., fo = wo/27 = 1.59 kHz).




Op-amp filters: example

Ro
R: C
V. —
N m
1k 100 nF v, =
{ T
?RL
-40 Y SIS Y S A A U ETY B
10! 10? 10° 10* 10°
f (Hz)
Ry sR,C

H(s) =

"R+ (1/sC)  1+sRiC
This is a high-pass filter, with wg = 1/R1C (i.e., fo = wo/27 = 1.59 kHz).



Op-amp filters: example

Ro
R: C
V. —
N m
1k 100 nF v, =
{ T
?RL
-40 Y SIS Y S A A U ETY B
10! 10? 10° 10* 10°
f (Hz)
Ry sR,C

H(s) =

"R+ (1/sC)  1+sRiC
This is a high-pass filter, with wg = 1/R1C (i.e., fo = wo/27 = 1.59 kHz).

(SEQUEL file: ee101_op_filter_2.sqproj)
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Op-amp filters: example
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Op-amp filters: example

Ry

100k

I

R, Cy 80 pF

Vv, —
10k 0.8 uF —\/,
!

R 1/sC R Ry, C;
H(s) = — 12 [(1/sG) _ R sRiG

TR+ (1/sG) R (1+sRG)(1+sRG)



Op-amp filters: example

R,
100 k
I
R, Cy 80 pF
Vv, —
10k 0.8 uF —\/,
A
R 1/sC R Ry, C;
H(s) = 2 || (1/sCa) o sk1G

TR+ (1/sG) R (1+sRG)1+sRG)
This is a band-pass filter, with w; = 1/R1 G and wy = 1/R G,
— f; =20 Hz, fiy =20kHz.



Op-amp filters: example

Ry
100k )
I
R, C; 80 pF @
V, — p
10k 0.8 uF —\/, =
A
- 10°
R 1/sC R Ry, C;
H(s) = 2 || (1/5G)  Re sRi1 Gy

TR+ (1/sG) R (1+sRG)(1+sRG)
This is a band-pass filter, with w; = 1/R1 G and wy = 1/R G,
— f; =20 Hz, fy =20 kHz.



Op-amp filters: example

Ry
100k )
I
R, C; 80 pF @
V, — =
10k 0.8 uF —\/, =
A
- 10°
R 1/sC R Ry, C;
H(s) = 2 || (1/5G)  Re sRi1 Gy

TR+ (1/sG) R (1+sRG)(1+sRG)
This is a band-pass filter, with w; = 1/R1 G and wy = 1/R G,
— f; =20 Hz, fy =20 kHz.

(SEQUEL file: ee101_op_filter_3.sqproj)
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Graphic equalizer

R1A _T_RZ R1B
c2

MV T 0%

R3A R3B
R1A = R1B = 470Q
R3A = R3B = 100kQ Vv,
R2 = 10k |
C1 = 100nF $ R
C2 =10nF = i

[H] (dB)

20
i 07 \a=09 i
o 05
03
| 0.1 |
20 R B el bl -
10" 102 10° 10° 10°
f(Hz)

(Ref.: S. Franco, "Design with Op Amps and analog ICs")
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Graphic equalizer

R1A _T_RZ R1B
c2

MV T 0%

R3A R3B
R1A = R1B = 470Q
R3A = R3B = 100kQ Vv,
R2 = 10k |
C1 = 100nF $ R
C2 =10nF = i

[H] (dB)

20
i 07 \a=09 i
o 05
03
| 0.1 |
20 R B T TN B -
10" 102 10° 10° 10°
f(Hz)

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

* Equalizers are implemented as arrays of narrow-band filters, each with an adjustable gain (attenuation)

around a centre frequency.
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Graphic equalizer

Ct
20
R1A R2 R1B L §
V, %02 0.7 a=0.9
AN AN Q 0.5
R3A R3B =0
RIA = R1B = 4709 B 03
R3A = R3B = 100k —V, | 0.1 |
R2 = 10k {
C1 = 100nF ?RL
C2=10nF = ! T Ot SO RS S ¥ PR UTIY
= 10 102 103 104 10°
f (Hz)

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

* Equalizers are implemented as arrays of narrow-band filters, each with an adjustable gain (attenuation)
around a centre frequency.
* The circuit shown above represents one of the equalizer sections.

(SEQUEL file: ee101_op_filter_4.sqproj)
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Sallen-Key filter example (2" order, low-pass)

40

R1 R2
V., —AN—
A

R1 = R2 = 15.8k2
C1=C2=10nF
RA =10k2, RB = 17.8kQ2

(Ref.: S. Franco, "Design with Op Amps and analog ICs") 10! 10? 10° 10* 10°
f (Hz)
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Sallen-Key filter example (2" order, low-pass)

40

R1 R2
V., —AN—
A

R1 = R2 = 15.8k2
C1=C2=10nF
RA =10k2, RB = 17.8kQ2

(Ref.: S. Franco, "Design with Op Amps and analog ICs") 10! 10? 10° 10* 10°
f (Hz)
Ra

V,=V_=V, —
* ° Ra+ Rs

=V, /K.
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Sallen-Key filter example (2" order, low-pass)

40

R1 R2
V., —AN—
A

R1 = R2 = 15.8k2
C1=C2=10nF
RA =10k2, RB = 17.8kQ2

(Ref.: S. Franco, "Design with Op Amps and analog ICs") 10! 10? 10° 10* 10°
f(H
V,—V_ —v, A =V,/K "
T T T Ra+Rs T
1/sC 1
Also, V, = —M/5@) Vi,
R2+(1/SC2) 1+sR G
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Sallen-Key filter example (2" order, low-pass)

40

R1 R2
V., —AN—
A

R1 = R2 = 15.8k2
C1=C2=10nF
RA =10k2, RB = 17.8kQ2

(Ref.: S. Franco, "Design with Op Amps and analog ICs") 10! 10? 10° 10* 10°
f(H
V,—V_ —v, A =V,/K "
T T T Ra+Rs T
1/sC 1
Also, V, = —M/5@) Vi,
R2+(1/SC2) 1+sR G

1 1
KCL at Vi = (Vs = V1) +5G (Vo — Vi) + (Vi = V1) = 0.
1 2
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Sallen-Key filter example (2" order, low-pass)

40

R1 R2
V., —AN—
A

R1 = R2 = 15.8k2
C1=C2=10nF
RA =10k2, RB = 17.8kQ2

(Ref.: S. Franco, "Design with Op Amps and analog ICs") 10t 10% 103 10* 10°
f(H
V,—V_ —v, A =V,/K "
T T T Ra+Rs T
1/sC 1
Also, V, = —M/5@) Vi,
R2+(1/SC2) 1+sR G

KCL at V; — i(Vs — V1) +sCG (Vo — V1) + i(VJr —V;)=0.
R R»
-~ K
- 1+$[(R1+R2)C2+(17K)R1C1]+52R1C1R2C2 ’
(SEQUEL file: ee101_op_filter_5.sqproj)

Combining the above equations, H(s)
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Sixth-order Chebyshev low-pass filter (cascade design)

10.7k 10.2k 825k 6.49k $
__|_2.2n Ismp __|_220p 1R
(Ref.: S. Franco, "Design with Op Amps and analog ICs")

SEQUEL file: ee101_op_filter_6.sqproj

[H] (dB)

10°
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Third-order Chebyshev high-pass filter

7.68 k

v.—

100n 100 n
54.9 k

—60 - -
(Ref.: S. Franco, "Design with Op Amps and analog ICs")
SEQUEL file: ee101_op_filter_7.sqproj _80 L L
10° 10 102 10°
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Band-pass filter example

VW
sk 5k
7.4n
5k — 7.4n
VooV 5k —
5k
MV =
370k v,

iI—wn

5k

(Ref.: J. M. Fiore, "Op Amps and linear ICs")
SEQUEL file: ee101_op_filter_8.sqproj

40

20 -

10* 10°
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Notch filter example

10?

10k
10k
—Wv— 265n
10k [— 265n
Vs W 10k
— 10k
10k
10k
89k 10k
W%
>
i1 k
= 0
(Ref.: J. M. Fiore, "Op Amps and linear ICs")
SEQUEL file: ee101_op_filter_9.sqproj —
s
— 20} -
=
-40
10t
f (Hz)
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Half-wave rectifier

Ideal
half-wave

rectifier

——-sV

o

Vc
\ slope=1
Vi
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Half-wave rectifier

Ideal
V;—— half-wave

rectifier

——-sV

o

Vc
\ slope=1

Vi

Vo

slope=1
\
—
VOI’\

VO
Vi
Il Il
T/2 T
T
Von
Vi
Vo
Il Il
T/2 T




Half-wave rectifier

V, 1+ i
Ideal N slope 1 L v ]
V;e— half-wave |—V, v, 0F =
rectifier L
L Vi
1
1 1
0 T/2 T
T
Vo 1r 7
L Von .
Vv, Vo r ]
slope=1 Vi ]
0 Yo ]
Vi
= L
Von [~
— | need an improved circuit 1r | | |
0 T/2 T 3T/2 2T
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Half-wave precision rectifier

—V,




Half-wave precision rectifier

—V,
i’R

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the
buffer we have seen earlier.

Vi D

Consider two cases:



Half-wave precision rectifier

—V,
i’R

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the
buffer we have seen earlier.

Vi D

Consider two cases:

Since the input current i_ ~ 0, ig = ip.
V., V. 0.7V

VAR VERC R (L AP SVERE VIR VANV V4
Ay Ay




Half-wave precision rectifier

—V,
i’R

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the
buffer we have seen earlier.

Vi D

Consider two cases:

Since the input current i_ ~ 0, ig = ip.
Vo1 Vo+ 07V

V, -V_= =— =0V V,=V_x V.=V,
+ Av AV o + i

This situation arises only if ip > 0 (since the diode can only conduct in the forward direction),
i.e., ir >0 — V, =igR >0, and therefore V; =V, >0 V.



Half-wave precision rectifier

—V,
i’R

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the
buffer we have seen earlier.

V; D slope=1

Consider two cases:

Since the input current i_ ~ 0, ig = ip.
Vo1 Vo+ 07V

V, -V_= =— =0V V,=V_x V.=V,
+ Av AV o + i

This situation arises only if ip > 0 (since the diode can only conduct in the forward direction),
i.e., ir >0 — V, =igR >0, and therefore V; =V, >0 V.
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Half-wave precision rectifier

—V,
i’R

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the
buffer we have seen earlier.

V; D slope=1

Consider two cases:

Since the input current i_ ~ 0, ig = ip.
Vo1 Vo+ 07V

V, -V_= =— =0V V,=V_x V.=V,
+ Av AV o + i

This situation arises only if ip > 0 (since the diode can only conduct in the forward direction),
i.e., ir >0 — V, =igR >0, and therefore V; =V, >0 V.
Note: Von does not appear in the graph.

M. B. Patil, IIT Bombay



Half-wave precision rectifier

Vo

V; b

i:



Half-wave precision rectifier

> (A — g_. Vo
\A V;

R ire

l

I— WA

(ii) D is not conducting — V, =0 V.



Half-wave precision rectifier

> (A — g_. Vo
\A V;

R ire

l

I— WA

(ii) D is not conducting — V, =0 V.
What about V17

Since the op-amp is now in the open-loop configuration, a very small V; is enough
to drive it to saturation.



Half-wave precision rectifier

(ii)

A — Tt a2

jiR R

D is not conducting — V, =0V.
What about V17

Since the op-amp is now in the open-loop configuration, a very small V; is enough
to drive it to saturation.

V; b

Note that Case (ii) occurs when V; < 0V (we have already looked at V; > 0).
Since V4 — V_ = V; — 0 =V, is negative, V1 is driven to — Veat.



Half-wave precision rectifier

(ii)

l

Vo
> (A — .szizgg;;;;;___:::__-vo
\A V;

R R
Vo0

= v

I—Aw

D is not conducting — V, =0V.
What about V17

Since the op-amp is now in the open-loop configuration, a very small V; is enough
to drive it to saturation.

Note that Case (ii) occurs when V; < 0V (we have already looked at V; > 0).
Since V4 — V_ = V; — 0 =V, is negative, V1 is driven to — Veat.
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Half-wave precision rectifier

D off =—

Super diode
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Half-wave precision rectifier

Super diode

D off =—

* The circuit is called “super diode” (an ideal diode with Vo, =0V).
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Half-wave precision rectifier

D off =—

Super diode

* The circuit is called “super diode” (an ideal diode with Vo, =0V).

* When D conducts, the op-amp operates in the linear region, and we have V ~ V_.
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Half-wave precision rectifier

D off =—

Super diode

* The circuit is called “super diode” (an ideal diode with Vo, =0V).
* When D conducts, the op-amp operates in the linear region, and we have V ~ V_.

* When D is off, the op-amp operates in the saturation region, V_ =0, V4 =V;, and V1 = — Véat.
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Half-wave precision rectifier

D off =—

Super diode

* The circuit is called “super diode” (an ideal diode with Vo, =0V).
* When D conducts, the op-amp operates in the linear region, and we have V ~ V_.
* When D is off, the op-amp operates in the saturation region, V_ =0, V4 =V;, and V1 = — Véat.

* Where does i come from?

M. B. Patil, IIT Bombay



A=1

M =03

fo = 200 kHz
fm = 10kHz

Application: AM demodulation

1.5

c(t)

L L

50 75
time (jusec)

100
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1.5 T T T
A=1 - 1
M =03 L i
fo=200kHz | &£ Av
£
fn = 10kHz L 1
Application: AM demodulation 15 . . .
1 5 T T T

Carrier wave: ’ i
c(t) = Asin(2rfct) |

N
o

15 L L L

15 N . T I
s
= 0

15 e P o L |

0 25 50 75 100

time (jusec)
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A=1

M =03

fo = 200 kHz
fm = 10kHz

Application: AM demodulation
Carrier wave:

c(t) = Asin(2rfct)
Signal (e.g., audio):

m(t) = Msin(2wfmt + ¢)

1.5

c(t)

L L

50 75
time (jusec)

100
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A=1

M =03

fo = 200 kHz
fm = 10kHz

Application: AM demodulation

Carrier wave:

c(t) = Asin(2rfct)

Signal (e.g., audio):

m(t) = Msin(2wfmt + ¢)

AM wave:

y(t) = [L+ m(t)] <(z)
(Assume M < 1)

1.5

B L L

25 50 75
time (jusec)

M. B. Patil

100

, 1T Bombay



A=1

M =03

fo = 200 kHz
fm = 10kHz

Application: AM demodulation

Carrier wave:

c(t) = Asin(2rfct)
Signal (e.g., audio):

m(t) = Msin(2wfmt + ¢)
AM wave:

y(£) = [1+ m(®)] ()

(Assume M < 1)
e.g., Vividh Bharati:

fe = 1188 kHz,

fm =~ 10 kHz (audio).

1.5

B L L

25 50 75
time (jusec)

100
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AM demodulation using a peak detector

015 7 T T " V.
N Vi
\\\\\\\\ Ny
V, 0
-015 b —— —— ! !
0 1 2 02 0.3 0.4 0.5
t (ms) t (ms)
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AM demodulation using a peak detector

0.15 T V.
N Vi
\\\\\\\\ Ny
V, 0
-015 b —— —— ! !
0 1 2 02 0.3 0.4 0.5
t (ms) t (ms)

* charging through super diode, discharging through resistor
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AM demodulation using a peak detector

0.15 T V.
N Vi
\\\\\\\\ Ny
V, 0
-015 b —— —— ! !
0 1 2 02 0.3 0.4 0.5
t (ms) t (ms)

* charging through super diode, discharging through resistor

* The time constant (RC) needs to be carefully selected.
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AM demodulation using a peak detector

015 7 T T " V.
N Vi
\\\\\\\\ Ny
V, 0
-015 b —— —— ! !
0 1 2 02 0.3 0.4 0.5
t (ms) t (ms)

* charging through super diode, discharging through resistor
* The time constant (RC) needs to be carefully selected.

SEQUEL file: super_diode.sqproj
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Clipping and clamping

* What is the function provided by each circuit?
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Clipping and clamping

* What is the function provided by each circuit?

* Verify with simulation (and in the lab).

M. B. Patil, IIT Bombay



When D conducts, feedback path is closed — V_ =~V =Vr — V,=Vk.



When D conducts, feedback path is closed — V_ =~V =Vr — V,=Vk.
. Ve | VR—V,

KCL: ip = — 4+ ——.
D= R, R



When D conducts, feedback path is closed — V_ =~V =Vr — V,=Vk.
. Ve | VR—V,

KCL: ip = — 4+ ——.
D= R, R

. . 1 1 Vi R+ R
S >0, Vgl —+—=)>—= — Vi<Vg|—) =Via.
Ince Ip R(RL+R) R i R( R ) il



When D conducts, feedback path is closed — V_ =~V =Vr — V,=Vk.

. VR  VR—V;
KCL: = — 4 —.
D=R TR
. . 1 1 Vi R+ RL
S >0, Vgl —+—=)>—= — V<V, = V.
nee 1o R(RﬁR) RV R( RL> e

For V; > V;1, D does not conduct — V, =




D
v, §
D Ve——— : RL

P | =
T SloPe=RTR

vil Vi

When D conducts, feedback path is closed — V_ =~V =Vr — V,=Vk.

. VR  VR—V;
KCL:ip = — 4+ —.

D=R TR
. . 1 1 Vi R+ Ry
Since >0, Vgl —+—=)>—= — V<V, = Vi.
nce ip R(RL+R) R i R( R, ) i1

R
For V; > V;1, D does not conduct — V, = L ;
R+ R,
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D
v, §
D Ve——— : RL

P | =
T SloPe=RTR

vil Vi

When D conducts, feedback path is closed — V_ =~V =Vr — V,=Vk.

. VR VR—V;
KCL: jp = —~ 4+ %~ "1

PR TR
e i 1.1 Vi R+ R,
Sinceip >0, Vp| —+=)>— — V, <V, =V
neer R(RﬁR) R F"( RL> n

R
For V; > Vi1, D does not conduct — V, = L L
Rt R,

If Rt > R, V;1=R, and slope=1 for V; > Vj;.
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When D conducts, feedback path is closed — V_ =~V =Viyp — Vo= Vk.



When D conducts, feedback path is closed — V_ =~V =Viyp — Vo= Vk.
. Ve  VR—Vi

KCL:ip+ —+ —— =0.
ID R, + R



When D conducts, feedback path is closed — V_ =~V =Viyp — Vo= Vk.
. Ve  VR—Vi
KCL:ip+ —+ —— =0.
ID R, + R
1

R

1
Since ip >0, —Vg (— +
Ri

Vi R+R
+F’>0—> V,~>VR( + L)—

= Vij1-
RL !



When D conducts, feedback path is closed — V_ =~V =Viyp — Vo= Vk.

. VR VR—V;
KCL: — 4+ ——F = 0.
ip + R, + R
1

1 Vi
Since ip >0, —Vg | — + = — >0 — V;>V,
Ince ip R(RL+R>+ R i R(

R 4+ RL
R
R

For V; < V;1, D does not conduct — V, = i
r Vi il n ndu o R+RL i




Ru Vi
+RL

Slope =
ope=p

When D conducts, feedback path is closed — V_ =~V =Viyp — Vo= Vk.

, Vg Vk — V;
KCL: — 4+ =1 =0

Pt R TR
. . 1 1 V: R+ R,
S >0, ~Vg(—=+=)+—=>0 = Vi>V =V,
new (r v )t R v (TRt ) = v

R
For V; < Vj1, D does not conduct — V, = L .
R+ R,
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Ru Vi
+RL

Slope =
ope=p

When D conducts, feedback path is closed — V_ =~V =Viyp — Vo= Vk.

, Vg Vk — V;
KCL: — 4+ =1 =0

Pt R TR
. . 1 1 V: R+ R,
S >0, ~Vg(—=+=)+—=>0 = Vi>V =V,
new (r v )t R v (TRt ) = v

R
For V; < Vj1, D does not conduct — V, = L .
R+ R,

If Rt > R, V;1=R, and slope=1 for V; < Vj;.

M. B. Patil, IIT Bombay



Time constant for the discharging process is R, C.

Assume R C > T — V(¢ can only increase (in one cycle).



Time constant for the discharging process is R, C.

Assume R C > T — V(¢ can only increase (in one cycle).
When D conducts, V_ ~ Vg, and V¢(t) = Vg — Vmsinwt.
= VI = Vg — (= Vi) = Vi + V.



Time constant for the discharging process is R, C.

Assume R C > T — V(¢ can only increase (in one cycle).

When D conducts, V_ ~ Vg, and V¢(t) = Vg — Vmsinwt.

= VI = Vg — (=Vi) = Vg + Vi

In steady state, V¢ remains equal to VI — V,(t) = Vi(t) + VI = Vjysinwt + Vg + Vin.



Time constant for the discharging process is R, C.

Assume R C > T — V(¢ can only increase (in one cycle).

When D conducts, V_ ~ Vg, and V¢(t) = Vg — Vmsinwt.

= VI = Vg — (=Vi) = Vg + Vi

In steady state, V¢ remains equal to VI — V,(t) = Vi(t) + VI = Vjysinwt + Vg + Vin.

Note: Von of the diode does not appear in the expression for Vo(t).



Time (msec)

Time constant for the discharging process is R, C.

Assume R C > T — V(¢ can only increase (in one cycle).

When D conducts, V_ ~ Vg, and V¢(t) = Vg — Vmsinwt.

= VI = Vg — (=Vi) = Vg + Vi

In steady state, V¢ remains equal to VI — V,(t) = Vi(t) + VI = Vjysinwt + Vg + Vin.

Note: Von of the diode does not appear in the expression for Vo(t).
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Time constant for the discharging process is R, C.

Assume R C > T — V(¢ can only increase (in one cycle).



C
Vi |_
+Ve—
&

Time constant for the discharging process is R, C.
Assume R C > T — V(¢ can only increase (in one cycle).
When D conducts, V_ ~ Vg, and V(t) = Vimsinwt — Vg.

- VI =V, — Vg,



C
v, —
+Ve—
Vr

Time constant for the discharging process is R, C.

Assume R C > T — V(¢ can only increase (in one cycle).
When D conducts, V_ ~ Vg, and V(t) = Vimsinwt — Vg.
S VI =V — Vg

In steady state, V¢ remains equal to VI — V,(t) = Vi(t) — VI = Vjysinwt + Vg — Vin.



C
Vi |_
+Ve—
&

Time constant for the discharging process is R, C.

Assume R C > T — V(¢ can only increase (in one cycle).

When D conducts, V_ ~ Vg, and V(t) = Vimsinwt — Vg.

- VX =V, — Vg

In steady state, V¢ remains equal to VI — V,(t) = Vi(t) — VI = Vjysinwt + Vg — Vin.

Note: Von of the diode does not appear in the expression for Vo(t).



C
Vi |_
+Ve—
&

Time (msec)

Time constant for the discharging process is R, C.

Assume R C > T — V(¢ can only increase (in one cycle).
When D conducts, V_ ~ Vg, and V(t) = Vimsinwt — Vg.
S VI =V — Vg

In steady state, V¢ remains equal to VI — V,(t) = Vi(t) — VI = Vjysinwt + Vg — Vin.

Note: Von of the diode does not appear in the expression for Vo(t).
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Half-wave precision rectifier

Super diode

D off =—

0.6

0.4

0.2

-10
-12

-14
0

10

20
time (msec)

30 40
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Half-wave precision rectifier

0.6 T T T T T T

0.4

D off =—
D 0.2

VO

Ry, = 0 _0.2

éuper diode ) Vi Vi

* When V; > 0, the op-amp operates in the 2 " T " T : T
linear region, and Vo1 =V, + Von. P

10 1
12 :
14

0

10 20 30 40
time (msec)
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Half-wave precision rectifier

0.6 T T T T T T

0.4

D off =—
D 0.2

Vo o— Vi

Ry, = 0 _0.2

éuper diode ) Vi Vi

* When V; > 0, the op-amp operates in the 2 " T " T : T
linear region, and Vo1 =V, + Von. P

* When V; < 0, the op-amp operates in the ot il
open-loop configuration, leading to
saturation, and V13 = — Vaat. Vo

10 1
12 :
14

0

10 20 30 40
time (msec)
M. B. Patil, IIT Bombay



Half-wave precision rectifier

v, 0.6 T T T T T T
—= Don 04 Vo
D off =—
0.2
D v, =,
V \/o o i 0 / ’
Vi ol
R
\ | V, = 0\ -0.2
Super diode 1 Vi 04 V;
-0.6 L L L
* When V; > 0, the op-amp operates in the 2 " T " T : T
linear region, and Vo1 = Vo + Von. 0 Q\_///_\\\/
* When V; < 0, the op-amp operates in the ot Vi il
open-loop configuration, leading to n i
saturation, and V,1 = — Vsat. - Vy,
6 i
* The V; <0 to V; > 0 transition requires the
op-amp to come out of saturation. This is a -8 7
relatively slow process and is limited by the —10F 4
op-amp slew rate. 2l |
_14 : . "
0 10 20 30 40
time (msec)
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Half-wave precision rectifier

) . v, 0.6 " T " T " T "
—= Don 0.4 Vo 1
D off =—
0.2 1
D \~V =V
v Vo 0
Vi ol
R
V, = 0\ -0.2 ]
Super diode 1 Vi 04 Vi |
) -0.6 L L L
* When V; > 0, the op-amp operates in the 2 " T " T : T .
linear region, and V1 =V, + Von. 0 Q\_/Qv
* When V; < 0, the op-amp operates in the ot Vi il
open-loop configuration, leading to Al i
saturation, and V1 = — Vaat. - Vy,
6+ B
* The V; <0 to V; > 0 transition requires the
op-amp to come out of saturation. This is a -8r b
relatively slow process and is limited by the ~10 | B
op-amp slew rate. ol i
SEQUEL file: ee101_super_diode_1.sqproj _14 . : . :
10 20 30 40
time (msec)
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Half-wave precision rectifier

Vo

— Don
D off <—

Vi

Super diode 1 V,

* The time taken by the op-amp to come out of
saturation can be neglected at low signal frequencies.



Half-wave precision rectifier

Vi

V, 0.6

D off =—

Super diode 1 Vi 06

* The time taken by the op-amp to come out of
saturation can be neglected at low signal frequencies.

T
f
Vo
Vi
| n 1 1
10 20 30 40
time (msec)



Half-wave precision rectifier

Vi

V, 0.6

D off =—

Super diode 1 Vi 06

* The time taken by the op-amp to come out of
saturation can be neglected at low signal frequencies.

* At high signal frequencies, it leads to distortion in the
output waveform.

T
f
Vo
Vi
| n 1 1
10 20 30 40
time (msec)



Half-wave precision rectifier

Vi

Super diode

v, 0.6
Doff =~ D°"
Vo=V o
Vo=0—
Vi _06

* The time taken by the op-amp to come out of
saturation can be neglected at low signal frequencies.

* At high signal frequencies, it leads to distortion in the

output waveform.

0.6

T
f=50Hz
Vo
\/vi
| n 1 1 L
10 20 30 40
time (msec)
: .
f=1kHz
VO

/

\/Vi
I I
5 1

0.
time (msec)

1.5

N
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Half-wave precision rectifier

Vi

Super diode

v, 0.6
Doff =~ D°"
Vo=V o
Vo=0—
Vi _06

* The time taken by the op-amp to come out of
saturation can be neglected at low signal frequencies.

* At high signal frequencies, it leads to distortion in the

output waveform.

* Hook up the circuit in the lab, and check it out!

0.6

T
f=50Hz
Vo
\/vi
| n 1 1 L
10 20 30 40
time (msec)
: .
f=1kHz
VO

/

\/Vi
I I
5 1

0.
time (msec)

1.5

N
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Improved half-wave precision rectifier

iRy Ry
2%
(%
N
T
iRy D:
——AW—— D
V; D2
Ry D V,
+ Voi D,




Improved half-wave precision rectifier

iRy Ry
MW
oy
N
T
iny D,
——ANW—— 2
V; D2
Ry D V,
+ Voi D,

(i) Dj conducts: V_ =Vy =0V, Vo1 = —Vp1 =~ —-07V.



Improved half-wave precision rectifier

iRy Ry
MW
oy
N
T
iny D,
——ANW—— 2
V; D2
Ry D V,
+ Voi D,

(i) Dj conducts: V_ =Vy =0V, Vo1 = —Vp1 =~ —-07V.

D5 cannot conduct (show that, if it did, KCL is not satisfied at V).
—)I'R2:07 Vo=V_=0V.



Improved half-wave precision rectifier

iR Ro R,
2% | M
D1
N
D, D
IR1 1 1
— AA——D =
Vi R 02 Vi R
! VI Vo T ! S v,
+ ol D, + ol D,

(i) Dj conducts: V_ =Vy =0V, Vo1 = —Vp1 =~ —-07V.

D5 cannot conduct (show that, if it did, KCL is not satisfied at V).
—)I'R2:07 Vo=V_=0V.



Improved half-wave precision rectifier

iR Ro R>
2% | M
(%
N
D, D
IR1 1 1
— AA——D =
Vi R D2 Vi R
! VI Vo T ! S v,
+ ol D, + ol D,

(i) Dj conducts: V_ =Vy =0V, Vo1 = —Vp1 =~ —-07V.

D5 cannot conduct (show that, if it did, KCL is not satisfied at V).
—)I'R2:07 Vo=V_=0V.

ir1 = ip1 which can only be positive = V; >0V.



Improved half-wave precision rectifier

iR Ro R>
2% | M
(%
N
D, D
IR1 1 1
— AA——D =
Vi R D2 Vi R
! VI Vo T ! S v,
+ ol D, + ol D,

(i) Dj conducts: V_ =Vy =0V, Vo1 = —Vp1 =~ —-07V.

D5 cannot conduct (show that, if it did, KCL is not satisfied at V).
—)I'R2:07 Vo=V_=0V.

ir1 = ip1 which can only be positive = V; >0V.

(ii) Dj is off; this will happen when V; <0V .



Improved half-wave precision rectifier

iR Ro R R
MW | MWV T MWV
iy
Dt { |
LRl, D D, D,
— AA——D . ——AA—— D ———AAN—
Vi Iz Vi Vi
Ra Dt Vo D Ri Ly v, Ri L.y,
+ Voi D, + Vor D, Vor D,

(1)

(ii)

I
Py
I—AW
"5
<
\Y%
o
I
Py
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D; conducts: V_ =V, =0V, Vo1 = —Vp1 = —-0.7V.

D5 cannot conduct (show that, if it did, KCL is not satisfied at V).
—)I'R2:07 Vo=V_=0V.

ir1 = ip1 which can only be positive = V; >0V.
D; is off; this will happen when V; <0 V.

In this case, D, conducts and closes the feedback loop through R».



Improved half-wave precision rectifier
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— AA——D . ——AA—— D ———AAN—
Vi Iz Vi Vi
Ra Dt Vo D Ri Ly v, Ri L.y,
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(1)

(ii)
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Vi>0 Vi< 0

D; conducts: V_ =V, =0V, Vo1 = —Vp1 = —-0.7V.

D5 cannot conduct (show that, if it did, KCL is not satisfied at V).
—)I'R2:07 Vo=V_=0V.

ir1 = ip1 which can only be positive = V; >0V.
D; is off; this will happen when V; <0 V.

In this case, D, conducts and closes the feedback loop through R».

. 0—-V; R>
Vo = V_ R,=0 Ry =——"V;.
o + Ir2R2 +< R ) 2 R
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Improved half-wave precision rectifier
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* Note that the op-amp does not enter saturation since a feedback path is available for
V,>0Vand V; <0V.




Improved half-wave precision rectifier
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* Note that the op-amp does not enter saturation since a feedback path is available for
V,>0Vand V; <0V.
SEQUEL file: precision_half_wave.sqproj
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The diodes are now reversed.
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Improved half-wave precision rectifier
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The diodes are now reversed.
By considering two cases: (i) D; on, (ii) Dy off, the V, versus V; relationship shown
in the figure is obtained (show this).
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Improved half-wave precision rectifier

Ra Vo
WA
K3 Vo=0
D, ¢
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Vi Ra K v '
+ Vo D, R,
V,
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The diodes are now reversed.

By considering two cases: (i) D; on, (ii) Dy off, the V, versus V; relationship shown
in the figure is obtained (show this).

SEQUEL file: precision_half_wave_2.sqproj
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Full-wave precision rectifier Ve
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inverting half-wave rectifier inverting summer

(SEQUEL file: precision_full_wave.sqproj)
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When D is off, i = Fo’ and Vj is (by superposition), V4 = Vm - ng.

R
For D to turn on, V4 = Vi ® 0.7V — V = Vireak = ra (Vo + Von) + Von .
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When D is off, i = Fo’ and Vj is (by superposition), V4 = Vm - ng.

R
For Dtoturnon, V4 = Von 0.7V = V = Vpyreak = ra (Vo + Von) + Von .
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Wave shaping with diodes
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/

v
When D is off, i = Fo’ and Vj is (by superposition), V4 = Vm - ng.

R
For Dtoturnon, V4 = Von 0.7V = V = Vpyreak = ra (Vo + Von) + Von

When D i YV Ve Vo Ve 11 + (constant)
en iIson, I = — = —_ — constan
Ro R R’

R R
i,e., V=(Ro || R)i+ (constant).



Wave shaping with diodes
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v
When D is off, i = Fo’ and Vj is (by superposition), V4 = Vm - ng.

R
For Dtoturnon, V4 = Von 0.7V = V = Vpyreak = ra (Vo + Von) + Von

When D i YV Ve Vo Ve 11 + (constant)
en iIson, I = — = —_ — constan
Ro R R’

R R
i,e., V=(Ro || R)i+ (constant).
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(a) Vireak = - (Vo + Von) + Von. (b)When D is on, V = (Ry || R) i + (constant).
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/~—slope = Rg
,

) \| =Ry | R
Vbreak siope = To

R . .
(a) Vireak = - (Vo + Von) + Von. (b)When D is on, V = (Ry || R) i + (constant).

* Vpreak depends on the ratio R/R’.
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/~—slope = Rg
,

) \| =Ry | R
Vbreak siope = To

R . .
(a) Vireak = - (Vo + Von) + Von. (b)When D is on, V = (Ry || R) i + (constant).

* Vpreak depends on the ratio R/R’.

* The slope Ry || R depends on the resistance values.
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Wave shaping with diodes

/~—slope = Rg
,

) \| =Ry | R
Vbreak siope = To

R . .
(a) Vireak = - (Vo + Von) + Von. (b)When D is on, V = (Ry || R) i + (constant).

* Vpreak depends on the ratio R/R’.
* The slope Ry || R depends on the resistance values.

* Given the break point and the two slopes, the resistance values can be easily determined.
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Vo
Ra=5k Vo
Ro =20 k N N
23S
RIA = R1B = 15 k 22 &
R2A = R2B =5 k D2A R2A i
RIA' = R1B' = 60 k A
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Since V; = —R,i, the V, versus V; plot is similar to the V versus i plot, except for the (—R,) factor.
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RIA = R1B = 15 k 22 &
R2A = R2B =5 k D2A R2A i
RIA' = R1B' = 60 k N
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Since V; = —R,i, the V, versus V; plot is similar to the V versus i plot, except for the (—R,) factor.
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= Vi (V) time (msec)
Since V; = —R,i, the V, versus V; plot is similar to the V versus i plot, except for the (—R,) factor.
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Wave shaping with diodes

Vo
Ra=5k Vo
Ro =20 k N N
<> <
RIA=R1B =15k = g
R2A = R2B =5 k D2A R2A i
R1A’ = R1B' = 60 k RIA
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= Vi (V) time (msec)
Since V; = —R,i, the V, versus V; plot is similar to the V versus i plot, except for the (—R,) factor.

SEQUEL file: ee101_wave_shaper.sqproj
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