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Vacuum tubes

% 1904: the simplest vacuum tube — the diode — was invented by John Fleming.
% 1907: De Forest invented the triode by inserting a third electrode between

cathode and anode.
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Vacuum Tubes
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Vacuum tubes: audio amplifier
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ENIAC computer (1946
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ENIAC computer

* heralded as a "Giant Brain" by the press

» thousand times faster than electro-mechanical computer

» 17,468 vacuum tubes, 7200 crystal diodes, 1,500 relays, 70,000 resistors,
10,000 capacitors, 6,000 manual switches, and approximately 5,000,000
hand-soldered joints.

% consumed 150 kW

% Input was possible from an IBM card reader

% 100 kHz clock

% Several tubes burned out almost every day, leaving it non-functional

about half the time.
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ENIAC computer

X/

% could be programmed to perform complex sequences of operations,
including loops, branches, and subroutines.

% After the program was figured out on paper, the process of getting the
program into ENIAC by manipulating its switches and cables could take
days.

% The task of taking a problem and mapping it onto the machine was
complex, and usually took weeks.

» The programmers debugged problems by crawling inside the massive

structure to find bad joints and bad tubes.

» The first test problem consisted of computations for the hydrogen bomb.
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The first transistor

X/

% The vacuum tube was a bulky and fragile device which consumed a significant power.
% 1947:Shockley, Bardeen, and Brattain at Bell Labs invented the first transistor.

% The first transistor was a “point contact transistor.” The modern transistor is a junction transistor,

and it is monolithic (in the same semiconductor piece).
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Semiconductor technology
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The bipolar transistor continues to be an important device both as

a discrete device and as part of Integrated Circuits (IC).

However, in digital circuits such as processors and memory, the

MOS (Metal Oxide Semiconductor) field-effect transistor has
surpassed the bipolar transistor because of the high integration
density and low power consumption it offers.

1930: patent filed by Lilienfeld for field-effect transistor (FET).

1958: Jack Kilby (Texas Instruments) demonstrated the first integrated
circuit (bipolar transistor, resistor, capacitor) fabricated on a single
piece of germanium.

The rest is history!
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Modern semiconductor technology

silicon wafer




Modern semiconductor technology
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Diffusion furnace
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Modern semiconductor technology




Modern semiconductor technology
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Modern semiconductor technology
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Fabrication of a p-n junction diode

(a) N-type wafer (b) grow Si0O,, (c) apply photoresist  (d) place mask
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MOS technology: scaling

» Shrinking of the smallest definable dimension (“feature size”) on the chip has enabled a huge
number of transistors to be integrated on one chip.

% 1970: feature size of 10 um, 2010: 0.032 um

% Moore’s law: a prediction by Gordon Moore (Intel founder) in 1965: number of transistors

will double every two years

% Increased functionality: “system on a chip” is now possible.
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Vacuum tube computer with 1 million tubes (not built)

% Each vacuum tube is 5 cm x 5 cm: large area

% Each vacuum tube consumes, say, 1 W to 10 W power: total power in the MW range
% Need to remove the heat dissipated by the tubes

% Poor reliability because of a large number vacuum tubes/soldering joints

% Even if it was actually built, the speed would be much lower than a modern CPU

due to parasitic capacitances and inductances of the cables
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Vacuum tube computer with 1 million tubes (not built)
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* How is superposition applied in the context of circuits?
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* Numerical examples
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* How is superposition applied in the context of circuits?
* Numerical examples

* Why does superposition work?
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* Consider a circuit made up of elements of the following types:
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* Consider a circuit made up of elements of the following types:

- Resistor (V=RI)
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* Consider a circuit made up of elements of the following types:
- Resistor (V=RI)
- VOVS (V=a V,)
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* Consider a circuit made up of elements of the following types:
- Resistor (V=RI)
- VOVS (V=a V,)
- VCCS (I=G V)
- CCVS (V=RI)
- CCCS (I=p1)
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* Consider a circuit made up of elements of the following types:
- Resistor (V=RI)
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* Consider a circuit made up of elements of the following types:
- Resistor (V=RI)
- VOVS (V=a V,)
- VCCS (I=G V)
- CCVS (V=RI)
- CCCS (I=p1)
and independent sources of the following types:

= Independent DC voltage source (V =V (constant))
= Independent DC current source (I = Iy (constant))

* Such a circuit is linear, and we can use superposition to obtain its response (currents and voltages) when multiple
independent sources are involved.
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* Consider a circuit made up of elements of the following types:

Resistor (V =R)
VCVS (V =a Ve)
VCCS (I=G V,)
CeVs (V=R1)
CCCS (1=p1.)

and independent sources of the following types:

Independent DC voltage source (V = V; (constant))

Independent DC current source (/ =y (constant))

* Such a circuit is linear, and we can use superposition to obtain its response (currents and voltages) when multiple
independent sources are involved.

* Superposition enables us to consider the independent sources one at a time (with the others deactivated), compute the
desired quantity of interest in each case, and get the net result by adding the individual contributions.
This procedure is generally simpler than considering all independent sources simultaneously.
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* Consider a circuit made up of elements of the following types:
- Resistor (V=RI)
- VOVS (V=a V,)
- VCCS (I=G V)
- CCVS (V=RI)
- CCCS (I=p1)

and independent sources of the following types:

= Independent DC voltage source (V =V (constant))
= Independent DC current source (I = Iy (constant))

* Such a circuit is linear, and we can use superposition to obtain its response (currents and voltages) when multiple
independent sources are involved.

* Superposition enables us to consider the independent sources one at a time (with the others deactivated), compute the
desired quantity of interest in each case, and get the net result by adding the individual contributions.
This procedure is generally simpler than considering all independent sources simultaneously.

* What do we mean by “deactivating” an independent source?

— Deactivating an independent current source = Iy =0, i.e., replace the current source with an open circuit.
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* Consider a circuit made up of elements of the following types:
- Resistor (V=RI)
- VOVS (V=a V,)
- VCCS (I=G V)
- CCVS (V=RI)
- CCCS (I=p1)
and independent sources of the following types:

= Independent DC voltage source (V =V (constant))
= Independent DC current source (I = Iy (constant))

* Such a circuit is linear, and we can use superposition to obtain its response (currents and voltages) when multiple
independent sources are involved.

* Superposition enables us to consider the independent sources one at a time (with the others deactivated), compute the
desired quantity of interest in each case, and get the net result by adding the individual contributions.
This procedure is generally simpler than considering all independent sources simultaneously.

* What do we mean by “deactivating” an independent source?

— Deactivating an independent current source = Iy =0, i.e., replace the current source with an open circuit.

— Deactivating an independent voltage source = V=0, i.e., replace the voltage source with a short circuit.
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Example 1
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Example 1

Case 1: Keep Vg, deactivate I;.
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Case 1: Keep Vg, deactivate I;.
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Example 1

Case 1: Keep Vg, deactivate I;.
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Case 2: Keep |, deactivate V.

2Q

i
102 3a(1)




Example 1

Case 1: Keep Vg, deactivate I;.
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Case 2: Keep |, deactivate V.
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Example 1

Case 1: Keep Vg, deactivate I;.

20
20 lil
Jia oy 4Q§ i =3A
18v(®)  49% 3a(d) I

Case 2: Keep |, deactivate V.
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Example 2

Case 1: Keep Vg, deactivate .
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Example 2

Case 1: Keep Vg, deactivate .
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Example 2

Case 1: Keep Vg, deactivate .
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Example 2

Case 1: Keep Vg, deactivate .

)
Ny +
T' 12V
) I v g3 KVL: — 12431+ 2i+i=0
= +21+1=
\_.../ T 210 _ + 31 T+
T 12V < =i=2A,v =6V.
i v 230 .
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Case 2: Keep I, deactivate V.
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=i=-3Av® =(-3+6)x3=9V.




Example 2

Case 1: Keep Vg, deactivate .

vt = v 4 v@ =6+ 9 =15V ‘
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Case 2: Keep I, deactivate V.
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=i=-3Av® =(-3+6)

X3=9V.
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Example 2

Case 1: Keep Vg, deactivate .

KVL: —12+3i+2i+i=0
=i=2A,v =6V.

) KVL: i+ (6+1i)3+2i=0
=i=-3A,v® = (-3+46)x

f
N
T. 12V
! v 3Q
& 2 -
Loy + s$10
! v 3Q o
1
;19 - GAC
2i
Case 2: Keep I, deactivate V.
+
v"e‘:v(1)+v<2):6+9:15v‘ T' v 230
s10 - | A
2i

(SEQUEL file: ee101_superposition_2.sqproj)

3=9V.
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SEQUEL Circuit Simulator

www.ee.iitb.ac.in/"sequelnew
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Example 3

Find V; using superposition.

R1 R2
MWV MWV
+




Example 3

Find V; using superposition.

R1 R2
MWV MWV
+

Vs1 \% Vs
Vs; alone:
Ry Ra
2 %A%% 2 %A%%
+
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Example 3

Find V; using superposition.

R1 R2
MWV MWV
+

Vs1 \% Vs
Vs alone: Vs, alone:
R1 R, Ry R>
MV MV MV MV
+ +
VS1 Vl Vl Vsz
R R
M= Vg VP = —1 Vs

Ri + R, R1 + R2



Example 3

Find V; using superposition.

R1 R2
MWV MWV
+

Vs1 \% Vs
Vs; alone: Vs, alone:
R1 R, Ry R>
2 %A%% 2 %A%% 2 %\%Y% 2 %\%Y%
+ +
Vs1 \21 V, Vso
R2 2 Rl
Vit = vV VP = V.
1 R, + R s1 1 R, + R, s2
R R
v @ Ly 2y Ly
1 1tV R, + R, SI+R1+R2 $2
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Example 3 (again)

Find V; using superposition.
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Example 3 (again)

Find V; using superposition.

R1 R2
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Example 3 (again)

Find V; using superposition.

R1 R2
2A'%% 2A'%%
+
V51%> Vl
JT_ _

Vsz



Example 3 (again)

Find V; using superposition.

Ry Ro
AN AN
+
Rl R2
Vs; Vi Vs Vs, WY v WY Vsz
1
JT_ _
Vs; alone:
R1 R2
Vs AN v AN 1
1 e
w__R
! Ri+ R, s1



Example 3 (again)

Find V; using superposition.

R1 R2
AV AV
+
Rl R2
Vs; Vi Vs Vs, WY v MWV Vsz
1
JT_ _
Vs; alone: Vs, alone:
R; R, Ry R>
V AV AV AV AV V
S1 \/1 JT_ JT_ \/1 S2
w__R @__ Ry
' "R +R U "R +R 7



Example 3 (again)

Find V; using superposition.

Ry Ro
4% 4%
+
Rl R2
Vs; Vi Vs Vs, WY v WY Vsz
1
JT_ _
Vs; alone: Vs, alone:
R; R, Ry R>
V AN AN a%\%Y% M V
s1 VA JT— JT— A s2
R
V(l) _ 2 V. (2) _ 1 V.
' "R +R U "R +R 7
Ry

Vs2

R
Vi =it v = 2 v
! DT TRAR T TR+ R
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Superposition: Why does it work?
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Superposition: Why does it work?

KCL at nodes A and B (taking current leaving a node as positive):

LV Vo) + 2w+ 2

Ri-PT TR TT R
1

St —(Vo— V) =

5+R3(2 1)

(V1 —V2) =0,

0.

M. B. Patil, IIT Bombay



Superposition: Why does it work?

KCL at nodes A and B (taking current leaving a node as positive):

1(v V)+1V+1(V Vo) =0

R 1 s R, 1 R3 1 2) = )
1

—Is+ - (Vo= V1) = 0.

Rs
Writing in a matrix form, we get (using Gi = 1/Ry, etc.),

G +G+ G —G3 i _ G1 Vs
—G3 Gs Va o Is
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Superposition: Why does it work?

KCL at nodes A and B (taking current leaving a node as positive):

L Vi— V)b s Vit~ (vi-wv) = 0
Rl 1 s R21 R3 1 2) = YU,

1
—Is+ —(Vo — V)

0.
Rs

Writing in a matrix form, we get (using Gi = 1/Ry, etc.),

G +G+ G —G3 i _ G1 Vs
—G3 Gs Va o Is

SN EEaEPIEN )

Is
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Superposition: Why does it work?

i _ Al GVs | _ | ma1 mnp GVs | _ [ muG  mp V,
Vo Is T ma mxn Is my G ma Is '
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Superposition: Why does it work?

i _ Al GVs | _ | ma1 mnp GVs | _ [ muG  mp V,
Vo Is T ma mxn Is my G ma Is '

We are now in a position to see why superposition works.

1 2
Vil _ | muG  mp Vs | mu G mp 0 | _ Vl( ) 4 \/1( )
Vo my1Gr ma 0 myu G mo Is | — V2(1) \/2(2) '
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Superposition: Why does it work?

i _ Al GVs | _ | ma1 mnp GVs | _ [ muG  mp V,
Vo Is T ma mxn Is my G ma Is '

We are now in a position to see why superposition works.

1 2
Vil _ | muG  mp Vs | mu G mp 0 | _ Vl( ) 4 \/1( )
Vo my1Gr ma 0 myu G mo Is | — V2(1) \/2(2) '

The first vector is the response due to V; alone (and /s deactivated).

The second vector is the response due to /s alone (and Vi deactivated).
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Superposition: Why does it work?

i _ Al GVs | _ | ma1 mnp GVs | _ [ muG  mp V,
Vo Is T ma mxn Is my G ma Is '

We are now in a position to see why superposition works.

1 2
Vil _ | muG  mp Vs | mu G mp 0 | _ Vl( ) 4 \/1( )
Vo my1Gr ma 0 myu G mo Is | — V2(1> \/2(2) '

The first vector is the response due to V; alone (and /s deactivated).
The second vector is the response due to /s alone (and Vi deactivated).
All other currents and voltages are linearly related to V4 and V,

= Any voltage (node voltage or branch voltage) or current can also be computed using superposition.
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Thevenin's theorem

Ry
VWV
+
Ry lo Re v
VWV
Rs

How is V related to the circuit parameters?
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+
Ry lo Re v
VWV
Rs

How is V related to the circuit parameters?

Assign node voltages with respect to a reference node.
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Thevenin's theorem

Vi Ry V,

2A%%
A B +
Ry lo Re v
. _
¢ AW
Vi Ry =

How is V related to the circuit parameters?

Assign node voltages with respect to a reference node.
Let Gy =1/Ry, etc. Write KCL equation at each node, taking current leaving the node as positive.



Thevenin's theorem

How is V related to the circuit parameters?
Assign node voltages with respect to a reference node.
Let Gy =1/Ry, etc. Write KCL equation at each node, taking current leaving the node as positive.

KCL at A : Gl(V17V3)+Gz(V17V2)7/0 =0,
KCL at B : Gy (Vo — Vi) + G, (Vo — 0) =0,
KCL at C: Gl(\/3— V1)+G3V3+Io =0.



Thevenin's theorem

MW
A B +
Ry lo Re v
. _
¢ MW
\& Rs3 =

How is V related to the circuit parameters?
Assign node voltages with respect to a reference node.
Let Gy =1/Ry, etc. Write KCL equation at each node, taking current leaving the node as positive.

KCL at A : Gl(V17V3)+Gz(V17V2)7/0 =0,
KCL at B : GQ(VQ—V1)+GL(V2—0) =0,
KCL at C: Gl(V3—V1)+G3V3+IQ =0.
Write in a matrix form:
G+ G -Gy -G Vi lo
—Gy Gy + G 0 Vs = 0 )
-G 0 G+ G V3 —lo

i.e., GV =1s. We can solve this matrix equation to get V5, i.e., the voltage across R;.
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Thevenin's theorem

;JU
3

G+ G Iy -G
det -G 0 0
) : -G —bb G+ Gs Ay
V5, can be found using Cramer’s rule: Vo, = 3et(G) = de1(G)
e e
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Thevenin's theorem

T
A B n
Ry lo RSV
c o |
’ VW
Vs Rs ‘L_
G + Gy Io -G
det — G 0 0
. , -G b G+ Gs A
V5, can be found using Cramer’s rule: Vo, = =
det(G) det(G)
G+ G -Gy -G
det(G) = det -G G+ G 0
—G1 0 Gl + G3
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Thevenin's theorem

T
A B n
Ry lo RSV
c o |
’ VW
Vs Rs ‘L_
G + Gy Io -G
det — G 0 0
) : -G —bb G+ Gs Ay
V5, can be found using Cramer’s rule: Vo, = =
det(G) det(G)
G+ G -G -Gy
det(G) = det -G G+ G 0
—G1 0 Gl + G3
G+ G —G -Gy G+G 0 -G
= det — Gy Gy 0 + det -Gy G, 0
-G 0 Gy + Gs -G 0 G + G3
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Thevenin's theorem

T
A B n
Ry lo RSV
c o |
’ VW
Vs Rs ‘L_
G + Gy Io -G
det -G 0 0
. , -G b G+ Gs A
V5, can be found using Cramer’s rule: Vo, = =
det(G) det(G)
G+ G -G -Gy
det(G) = det -G G+ G 0
—G1 0 Gl + G3
G+ G —G _Gl G+G 0 -G
= det — Gy Gy + det -Gy G, 0
-G 0 Gy + Gs -G 0 G + G3
G+ G 0 -Gy
= A+ G A, where A, = det —G 1 0 .
-G 0 G +Gs
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Thevenin's theorem

T
A B n
Ry lo RSV
c o |
’ VW
Vs Rs ‘L_
G + Gy Io -G
det -G 0 0
. , -G b G+ Gs A
V5, can be found using Cramer’s rule: Vo, = =
det(G) det(G)
G+ G -Gy -G
det(G) = det -G G+ G 0
—G1 0 Gl + G3
G+ G —G _Gl G+G 0 -G
= det — Gy Gy + det -Gy G, 0
-G 0 Gy + Gs -G 0 G + G3
G+ G 0 -Gy
= A+ G A, where A, = det —G 1 0 .
-G 0 G +Gs
X Ay Aq .
ie, Vo= —— = ——— (Note: A, Ay, and A; are independent of G;).

det(G) A+ GO,
M. B. Patil, IIT Bombay



Thevenin's theorem

Vi Ry V,
A AW
B +
Ry lo R v
c o |
. AW
Vs R3 ‘L‘

Al o Al
det(G) A+ G A,
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Thevenin's theorem

Vi Ry V,
A AW
B +
Ry lo R v
c o |
. AW
Vs R3 ‘L‘

AN /AN
Vo= — L =1
det(G) A+ G A,
A

The “open-circuit” value of V; is obtained by substituting R, = oo, i.e., G =0, leading to V2OC = A

M. B. Patil, IIT Bombay



Thevenin's theorem

2 Ry V,
A WA B
+
Ry lo R v
c o |
A
Vs R3 ‘L‘
Aq Ay
Vo= —— = — —
det(G) A+ G A,
A
The “open-circuit” value of V; is obtained by substituting R, = oo, i.e., G =0, leading to V2oc = Kl
A /A % R
We can now write V, = I Gl/A A = 2A = LA VZOC.
+ GLAy/ 14 22 R+ 22

R.A A

M. B. Patil, IIT Bombay



Thevenin's theorem

A
A B +
Ry lo R v
c o |
A
V3 Rs3 ‘L‘
Ay Ay
V2 = —
det(G) A+ G A,
A
The “open-circuit” value of V; is obtained by substituting R, = oo, i.e., G =0, leading to V2oc = Kl
Ay /A V¢ R
We can now write Vo, = v/ = 2 = L VZOC.
1+GLA2/A 14 JAVS R+&
R.A A
Note that A, /A has units of resistance. Define Rty = Az /A (Thevenin resistance). Then we have
R,
V2 _ L 2OC
R. + Rm

M. B. Patil, IIT Bombay



Thevenin's theorem

A
A B +
Ry lo R v
c 0o |
A
Vs R3 ‘L‘
Ay Ay
\/2 = —
det(G) A+ G A,
A
The “open-circuit” value of V; is obtained by substituting R, = oo, i.e., G =0, leading to V2OC = Kl
Ar/A Ve R
We can now write Vo, = v/ = 2 = L VZOC.
1+GLA2/A 14 JAVS R+ﬁ
RA A
Note that A, /A has units of resistance. Define Rty = Az /A (Thevenin resistance). Then we have
R
Vs = L 2oc
R. + Rm

M. B. Patil, IIT Bombay



Thevenin's theorem

Re oc

Vo= — Ly
> R+ Rm 2

This is simply a voltage division formula, corresponding to the following “Thevenin equivalent circuit” (with Vg, = VzoC)A

Ry

OV R V2
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Thevenin's theorem

Re oc

Vo= — Ly
> R+ Rm 2

This is simply a voltage division formula, corresponding to the following “Thevenin equivalent circuit” (with Vg, = VZOC)

Ry

OV R V2

This allows us to replace the original circuit with an equivalent, simpler circuit.

Ro | Rrn
VWA

Re lo RS > Ova R

M. B. Patil, IIT Bombay



Thevenin's theorem




Thevenin's theorem
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Thevenin's theorem

* Since the two circuits are equivalent, the open-circuit voltage must be the same in both cases. Let V,. be
the open-circuit voltage for the left circuit. For the Thevenin equivalent circuit, the open-circuit voltage is
simply V73, since there is no voltage drop across Ry, in this case.

- VTh = Voc

M. B. Patil, IIT Bombay



Thevenin's theorem

* Since the two circuits are equivalent, the open-circuit voltage must be the same in both cases. Let V,. be
the open-circuit voltage for the left circuit. For the Thevenin equivalent circuit, the open-circuit voltage is
simply V73, since there is no voltage drop across Ry, in this case.

- VTh = Voc

* Rpp, can be found by different methods.

M. B. Patil, IIT Bombay



Thevenin's theorem: Rty

Method 1:

e A A

* Deactivate all independent sources. This amounts to making Vi, =0 in the Thevenin equivalent circuit.



Thevenin's theorem: Rty

Method 1:
Rh
e A A
Vh
Rrh
e A A
Sl roes”
= SOUrG =2

* Deactivate all independent sources. This amounts to making Vi, =0 in the Thevenin equivalent circuit.



Thevenin's theorem: Rty

Method 1:
Rh
e A A
Vh
Rrh
e A A
Sl roes”
= SRR

* Deactivate all independent sources. This amounts to making Vi, =0 in the Thevenin equivalent circuit.

* Often, Ry, can be found by inspection of the original circuit (with independent sources deactivated).



Thevenin's theorem: Rty

Method 1:

R '

A A | Al

Vi 3 \'A
—B B |
3 B

Rrn |
—e A A
S o 3
= SRR i
B B |

* Deactivate all independent sources. This amounts to making Vi, =0 in the Thevenin equivalent circuit.
* Often, Ry, can be found by inspection of the original circuit (with independent sources deactivated).

* Ryp can also be found by connecting a test source to the original circuit (with independent sources
deactivated): Rt = Vs/Is.



Thevenin's theorem: Rty

Method 1:
R :
A A | Al
Vi 3 \'A
—B B |
3 B
Rrh A
—e A A T
vottage souees, 3 v. (DL
= SRR 3
— B B | ;

* Deactivate all independent sources. This amounts to making Vi, =0 in the Thevenin equivalent circuit.

* Often, Ry, can be found by inspection of the original circuit (with independent sources deactivated).

* Ryp can also be found by connecting a test source to the original circuit (with independent sources
deactivated): Rt = Vs/Is.

M. B. Patil, IIT Bombay



Thevenin's theorem: Rty

Method 2:
A Rt A
+ +
Voc Vrh Voc
B B
A NUY
lsc lsc
! Vi, !
B B
V- V. 72
* For the Thevenin equivalent circuit, Voc = V1, ke = JTh _ o R = S
RTh RTh Isc

M. B. Patil, IIT Bombay



Thevenin's theorem: Rty

Method 2:
A Rt A
+ +
Voc Vrh Voc
B B
A NUY
lsc lsc
! Vi, !
B B
V- V. 72
* For the Thevenin equivalent circuit, Voc = V1, ke = JTh _ Zoc — Rth= S
RTh RTh Isc
.. . . . VOC
* In the original circuit, find Voc and lse — Ryt = ;
SC

M. B. Patil, IIT Bombay



Thevenin's theorem: Rty

Method 2:
A Rt A
+
Voc Vrh Voc
B B
A NUY
lsc lsc
! Vi, !
B B
V- V. 72
* For the Thevenin equivalent circuit, Voc = V1, ke = JTh _ Zoc — Rth= S
RTh RTh Isc
.. . . . VOC
* In the original circuit, find Voc and lse — Ryt = ;
SC

* Note: We do not deactivate any sources in this case.

M. B. Patil, IIT Bombay



Thevenin's theorem: example

60 20
A

R, R,
oy 303 R, R
B




Thevenin's theorem: example

6¢) 20 Rt
A
Ri1 Rs
oy 303 R, RO = (D, R
B




Thevenin's theorem: example

6 20 R

A
A
Ry Ry
oy 303 R, RO = (D, R
B
B
Vin 60 20 A
+
VOC
oy 303
~B




Thevenin's theorem: example

69 2Q R A
A
Ry Rs
oy 303 R, RO = (D, R
B
B
Vin 60 20 A
+
VOC
oy 303
~B
30
Voe =9V X 50130

1
=9V x = =3V
9 ><3 3



Thevenin's theorem: example

69 2Q R A
A
R, Rs
oy 303 R, RO = (D, R
B
B
Vi 60 2Q A Ryp 6 20 A
oV 3Q§ Vo 3Q§
.B B
30
Voe =9V X 50130

1
=9V x = =3V
9 ><3 3



Thevenin's theorem: example

69 2Q R A
A
Ri1 Rs
oy 303 R, RO = (D, R
B
B
Vi 6 2Q A Ry : 6 20 A
oV 3Q§ Vo 3Q§
.B B
Voo gV x -2 Rrn = (Ry | Re) +Rs = (3] 6) + 2
oc — 6Q+3Q Th — 1 2 3 =

1 . 1x2
=9V x5 =3V _3><<1+2)+2_4Q



Thevenin's theorem: example

6Q 2Q R A 40 A
A
Ri1 Rs
oy 303 R, RO = (D, rRR= (H3v R
B
B B
Vi 60 2Q A Ry : 6 20 A
oV 3Q§ Vo 3Q§
.B B
Voo gV x -2 Rrn = (Ry | Re) +Rs = (3] 6) + 2
oc — 6Q+3Q Th — 1 2 3 =

1 . 1x2
=9V x5 =3V _3X<HQ)+2_4Q



Thevenin's theorem: example

6Q 2Q R A 4Q A
A
Ri1 Rs
oy 303 R, RO = (D, rRR= (Hav R
B
B B
Vi 60 2Q Ry : 6 20
— A — A —AM— A
oV 3Q§ Vo 3Q§
.B B
Voo gV x -2 Rrn = (Ry | Re) +Rs = (3] 6) + 2
oc — 6Q+3Q Th — 1 2 3 =
1 . 1x2
=9V x5 =3V _3><<1+2)+2_4Q

M. B. Patil, IIT Bombay



Thevenin's theorem: example

40

4Q A B
2Q 120 120
6A 48V




Thevenin's theorem: example

4Q A B 4Q
2Q 120 120
6A 48V
Rrh:
4Q A B 40
2Q 120 120
| c




Thevenin's theorem: example

4Q A B 4Q
20 12Q 12Q
6A 48 V
Rrh:
4Q A B 4Q
20 120 120
| c
A B
= 40
30



Thevenin's theorem: example

4Q A B 40
20 12Q 12Q
6A 48 V
Rrh:
40 A B 40
2Q 120 120
| c
A B
= 40 20 = Rm=79



5D
o
S
]
x
(O]
S
(O]
=
o
(]
<=
=)
w
£
=
(]
>
(]
J=
T

40

49

40
2Q 120 12Q
6A 48V
40
2Q 120 12Q
| c




Thevenin's theorem: example

4Q A B Vos
e 0] A B 4Q
20 120 120 ! FVoe =
6A 48V ! 20 120
! 120 6 A 48V
‘ ‘ 3 Ci
Rrh: :
4Q A B 40 | Note: i = 0 (since there is no return path).
| § Vas = Va — Vs
20 120 120 | =(Va=Vo)+ (Ve —Vp)
| = Vac + Ves
I C ! =24V +36V =60V
A B |
= 40 20 = Rm=79



Thevenin's theorem: example

4Q A B Vos
e 0] A B 40
20 120 120 ! FVoe =
6A 48V | 20 120
! 120 6 A 48V
‘ ‘ | Ci
Rrh: :
4Q A B 40 | Note: i = 0 (since there is no return path).
[ § Vag = Va - Vg
20 120 120 | =(Va=Vo)+ (Ve —Vp)
| = Vac + Ves
I C ! =24V +36V =60V
A B |
3 Vo, =60V
= 4% 2 = Ru=T0 § R =70



Thevenin's theorem: example

4Q A B v
e 0] A B 4Q
20 120 120 ! FVoe =
6A 48V ! 20 120
! 120 6 A 48V
‘ ‘ 3 Ci
Rrh: :
4Q A B 40 | Note: i = 0 (since there is no return path).
| § Vas = Va — Vs
20 120 120 | =(Va=Vo)+ (Ve —Vp)
| = Vac + Ves
I C ! =24V +36V =60V
| A B
A B | —
3 Vo, =60V
_ | 7Q
= 340 = Rp =70 : Rrn =79
30 3 60V
C | +

M. B. Patil, IIT Bombay



Graphical method for finding V1, and Ry

Rn Y

Vo () MHv

V1

Vrh —

| = ———
Rth

(Note: negative slope for / versus V plot)
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Graphical method for finding V1, and Ry

Rn Y

Vo () MHv

V1

Vrh —

| = ———
Rth

(Note: negative slope for / versus V plot)

=0 — V=V, (same as Vo)

M. B. Patil, IIT Bombay



Graphical method for finding V1, and Ry

Rn Y

Vo () MHv

V1

Vrh —

| = ———
Rth

(Note: negative slope for / versus V plot)
=0 — V= Vqp, (same as Vo)

VA
V=0 /=" (same as I)
Rrh

M. B. Patil, IIT Bombay



Graphical method for finding V1, and Ry

Rn Y

Vo () MHv

V1

Vi — V
|=2Th (Note: negative slope for / versus V plot)

Rth

=0 — V=V, (same as Vo)

VA
V=0 /=" (same as I)
Rrh

i.e., a plot of | versus V can be used to find Vg, and Rry,.

M. B. Patil, IIT Bombay



Graphical method for finding V1, and Ry

Rn Y
¢ | RTh

Vo () v

Vi — V
I = % (Note: negative slope for / versus V plot)
Th

=0 — V=V, (same as Vo)

VA
V=0 /=" (same as I)
Rrh

i.e., a plot of | versus V can be used to find Vg, and Rry,.

V1

(Instead of a voltage source, we could also connect a resistor load (R), vary R, and then plot / versus V.)

M. B. Patil, IIT Bombay



Graphical method for finding V1, and Ry

SEQUEL file: eel01_thevenin_1.sqproj

40

4Q A B
2Q 120 120
6A 48 V




Graphical method for finding V1, and Ry

SEQUEL file: eel01_thevenin_1.sqproj

40

4Q A B
2Q 120 120
6A 48 V

Connect a voltage source between A and B.

Plot i versus v.

40

B

,w

+v—

120 129
48V

V,c = intercept on the v-axis.

lsc = intercept on the i-axis.



Graphical method for finding V1, and Ry

SEQUEL file: eel01_thevenin_1.sqproj

40

4Q A B
2Q 120 120
6A 48 V

Connect a voltage source between A and B.

i (Amp)

o N A O 0 O
T
I

n Il n Il n Il
0 20 40 60
v (Volt)

Plot i versus v.

40

B

,w

+v—

120 129
48V

V,c = intercept on the v-axis.

lsc = intercept on the i-axis.



Graphical method for finding V1, and Ry

SEQUEL file: eel01_thevenin_1.sqproj

40

4Q A B
2Q 120 120
6A 48 V

Connect a voltage source between A and B.

i (Amp)

o N A O 0 O
T
I

n Il n Il n Il
0 20 40 60
v (Volt)

Plot i versus v.

40

B

,w

+v—

120 129
48V

V,c = intercept on the v-axis.

Voe =60V, I — 857 A
Rrh = Voc/lse =7 Q2

lsc = intercept on the i-axis.



Graphical method for finding V1, and Ry

SEQUEL file: eel01_thevenin_1.sqproj

40

4Q A B
2Q 120 120
6A 48 V

Connect a voltage source between A and B.

Plot i versus v.

40

B

,w

+v—

120 129
48V

V,c = intercept on the v-axis.

lsc = intercept on the i-axis.

i (Amp)

o N A O 0 O
T
I

n Il n Il n Il
0 20 40 60
v (Volt)

Voe =60V, Igc =857 A
Rh = Voc/lse =7 2

V1, =60V

Rrh =70
60V

M. B. Patil, IIT Bombay



Thevenin's theorem: example




Thevenin's theorem: example

Ry Iy
A
2Q)
2k 4Q§ Ro
B
VTh :Voc
Ry Iy
A
20 +




Thevenin's theorem: example

R h
A
2Q
2k 4Q§ Ro
B
VTh :Voc
R1 h R1
A A
2Q + 2Q +
Voc Voc V=0
21 4Q§R2 —> 4Q§R2 —> T
L .B L B

M. B. Patil, IIT Bombay



Thevenin's theorem: example

R, ly

20
2k 4Q§R2

< B

Rth: Deactivate independent sources, connect a test source.



Thevenin's theorem: example

R, ly

20
2k 4Q§R2

< B

Rth: Deactivate independent sources, connect a test source.

Ry Iy A

2 403k LDV




Thevenin's theorem: example

R, ly

20
2k 4Q§R2

< B

Rth: Deactivate independent sources, connect a test source.

21, Ry, ,L
2Q +

2 403k LDV




Thevenin's theorem: example

R, ly

20
2|14Q§R2

< B

Rth: Deactivate independent sources, connect a test source.

Vs
21, Ry V. ly We need to compute Ry, = —.

s -— |S

2Q + _
KQm¢+E+W 21,

IS LN O A

=0




Thevenin's theorem: example

R, ly

20
2k 4Q§R2

< B

Rth: Deactivate independent sources, connect a test source.

Vs
21, Ry V. ly We need to compute Ry, = —.

s -— |S

2Q + _
KCL: 7|5+E+VS 21,

IS LN O oo

1 1 2
_ V(e =) =1 (14 =
- <R1+R2) (+R1>

Ve 8
%RTh:figg

IS

=0




Thevenin's theorem: example

R: Iy Rth
A A
20 8/30
V
21 4Q§R2 —> oo
———— B B

Rth: Deactivate independent sources, connect a test source.

Vs
21, Ry V. ly We need to compute Ry, = —.

s -— |S

2Q + _
KCL: 7|5+E+VS 21,

IS LN O oo

1 1 2
_ V(e =) =1 (14 =
- <R1+R2) (+R1>

Ve 8
%RTh:figg

IS

=0




Thevenin's theorem: example

Ry h Rrh
A A A
20 8/30
v
2L, o3Re —> oo —> 8/30
B B B

Rth: Deactivate independent sources, connect a test source.

Vs
21, Ry V. ly We need to compute Ry, = —.

s -— |S

2Q + _
KCL: 7|5+E+VS 21,

IS LN O oo

1 1 2
_ V(e =) =1 (14 =
- <&+R) (+RJ

*)RT;,:EZEQ

IS

=0
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Norton equivalent circuit (source transformation)




Norton equivalent circuit (source transformation)
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Norton equivalent circuit (source transformation)

A A

B B

* Consider the open circuit case.



Norton equivalent circuit (source transformation)

A A
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* Consider the open circuit case.
Thevenin circuit: Vag = V.



Norton equivalent circuit (source transformation)

A A

B B

* Consider the open circuit case.
Thevenin circuit: Vag = V.
Norton circuit: Vag = Iy Ry .



Norton equivalent circuit (source transformation)

A A

B B

* Consider the open circuit case.
Thevenin circuit: Vag = V.
Norton circuit: Vag = Iy Ry .
= Vm=IvRy.



Norton equivalent circuit (source transformation)

e
a

Rri | Rri
A A A A
VTh @ 3 VTh lsc IN
B B ! B B

* Consider the open circuit case.
Thevenin circuit: Vag = V.
Norton circuit: Vag = Iy Ry .
= Vm=IvRy.

* Consider the short circuit case.



Norton equivalent circuit (source transformation)

Rri | Rri
A A A A
Vb R ; V1h e In 0 Rn lge
B B | B B

* Consider the open circuit case.
Thevenin circuit: Vag = V.
Norton circuit: Vag = Iy Ry .
= Vm=IvRy.

* Consider the short circuit case.
Thevenin circuit: Isc = V7 /Rp .



Norton equivalent circuit (source transformation)

Rri | Rri
A A A A
Vb R ; V1h e In 0 Rn lge
B B | B B

* Consider the open circuit case.
Thevenin circuit: Vag = V1.
Norton circuit: Vag = Iy Ry .
= Vrm=IyRy.

* Consider the short circuit case.
Thevenin circuit: Isc = V7 /Rp .
Norton circuit: Isc = Iy .



Norton equivalent circuit (source transformation)

Rri | Rri
A A A A
Vb R ; V1h e In 0 Rn lge
B B | B B

* Consider the open circuit case.
Thevenin circuit: Vag = V1.
Norton circuit: Vag = Iy Ry .
= Vrm=IyRy.

* Consider the short circuit case.
Thevenin circuit: Isc = V7 /Rp .
Norton circuit: Isc = Iy .

V-
= Vi = — Ry
Rtn

M. B. Patil, IIT Bombay



Norton equivalent circuit (source transformation)

Rri | Rri
A A A A
Vb R ; V1h e In 0 Rn lge
B B | B B

* Consider the open circuit case.
Thevenin circuit: Vag = V1.
Norton circuit: Vag = Iy Ry .
= Vrm=IyRy.

* Consider the short circuit case.
Thevenin circuit: Isc = V7 /Rp .
Norton circuit: Isc = Iy .

V-
ﬁVTh:jRN — RTh:RN-
Rtn
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Norton equivalent circuit (source transformation)

Rri | Rri
A A A A
Vb R ; V1h e In 0 Rn lge
B B | B B

* Consider the open circuit case.
Thevenin circuit: Vag = V1.
Norton circuit: Vag = Iy Ry .
= Vrm=IyRy.

* Consider the short circuit case.
Thevenin circuit: Isc = V7 /Rp .
Norton circuit: Isc = Iy .

V-
ﬁVTh:jRN — RTh:RN-
Rtn
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Norton equivalent circuit (source transformation)

A

B

* Consider the open circuit case.

| Ry
A A A
Ry ; Vi e In 0 Rn lge
B ! B B

Thevenin circuit: Vag = V.

Norton circuit: Vag = Iy Ry .

= Vm=IvRy.
* Consider the short circuit case.

Thevenin circuit: Isc = V7 /Rp .

Norton circuit: Isc = Iy .

V-
:>VTh:R7ThRN — R =Rpn.

Th

V-
Ry = Rrp, Iy = —©

Rrn = Ry, Vo = InRy

Rth

M. B. Patil, IIT Bombay



Source transformation: example

16 Q 209 6




Source transformation: example

16 Q 209 6
A
32V 2A 1202
B
2092 6Q
2% VW—A
16Q 2A 1202

2A




Source transformation: example

16 Q 209 6
A
32V 2A 1202
B
2092 6Q
$A%% VW—A
16Q 2A 1202
2A
B
209 642
A% MNW—A
162 12Q




Source transformation: example

16 Q 209 69
A
32V 2A 120
B
209 6Q
VW VWA—A
16Q 2A 120
2A
B
2092 6 1602 200 6
A% NW—A A
1602 12Q — 64V 120




Source transformation: example

16 Q 209 69
A
32V 2A 120
B
209 6Q 3602 6Q
VW VWA—A A
16Q 2A 12Q 64V 120
2A
B B
2092 6 1602 200 6
A% NW—A A
1602 12Q — 64V 120




Source transformation: example

16 Q 209 69
A
32V 2A 120
B
209 6Q 3602 6Q
VW VWA—A A
16Q 2A 12Q 64V 120
2A
B B
2092 6 1602 200 6
A% NW—A A
1602 12Q — 64V 120




Source transformation: example

160 200 60 60
A A
— 16
32V 2A 120 3 A 90
B B
200 6Q 369 6Q
AN VWA— A A
160 (1)2A 120 64V 120
2A
B B
200 60 16Q 200 69
A AA— A A
160 120 = 64V 120




Source transformation: example

160 200 69 69
A A
— 16
32V 2A 120 3 A 90
B B
200 69 360 69 90 69
A WA—A A A
160 (1)2A 120 64V 120 16V
2A
B B B
209 69 160 200 69
A AM—A A
160 120 = 64V 120




Source transformation: example

162 2002 6¢) 6
A A
— 16
32V 2A 120 KA 90
B B
200 69 360 60 90 69
A% VW—A A A
160 (4)2A 120 64V 120 16V
2A
B B B
2092 6 1692 2092 6 150
A% AMN—A A A
16Q 12Q — 64V 120 16V
4A
B B B
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which Py is maximum?




Maximum power transfer
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which Py is maximum?

Replace the black box with its Thevenin
equivalent.



Maximum power transfer

Rty

OV

A

L

AL

Ru

Power “transferred” to load is, P, = if Ry .

For a given black box, what is the value of R; for
which Py is maximum?

Replace the black box with its Thevenin
equivalent.



Maximum power transfer

Rty

OV

A

L

AL

Ru

Power “transferred” to load is, P, = if Ry .

For a given black box, what is the value of R; for
which Py is maximum?

Replace the black box with its Thevenin

equivalent.
V- R,
I.L:7Th ,PL:V%hxiL 5
Rrn + Re (Rh + RL)



Maximum power transfer

Rty

OV

A

L

AL

Ru

Power “transferred” to load is, P, = if Ry .
For a given black box, what is the value of R; for
which Py is maximum?
Replace the black box with its Thevenin
equivalent.
V- R,

iL:i,PL:V%hxiL.

Rrn + Re (R7h + RL)?

dP,

For —— =0, we need
dR,

(Rrh+ Ru)* = Rux 2(Rmn + Ri) _
(Rrn + RL)*
iie, Rrn+R.=2R, = R, = R

0,



Maximum power transfer

Al
R
B
R p iL,
e Vi Re
B
PL
ppox
} R
RL=Rm,

Power “transferred” to load is, P, = if Ry .
For a given black box, what is the value of R; for
which Py is maximum?
Replace the black box with its Thevenin
equivalent.
V- R,

iL:i,PL:V%hxiL.

Rrn + Re (R7h + RL)?

dP,

For —— = 0, we need
dR,

(Rrh+ Ru)* = Rux 2(Rmn + Ri) _
(Rrn + RL)*
iie, Rrn+R.=2R, = R, = R

0,
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Ry = (Ru | R2) +Rs = (3] 6) + 2

1x2
=3 2=40Q
dx(1+2>+
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Find R, for which P is maximum.
30 2Q

Rn: 30 2Q

R, 260

Ry = (Ru | R2) +Rs = (3] 6) + 2

. 1x2
—3><(1+2

)+2:4Q

Voc: 30 20
Ry Rs
2V o 60

Use superposition to find Voc:
30 2Q)

B

3Q

Ry
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30 2Q

R, 260

Ry = (Ru | R2) +Rs = (3] 6) + 2

. 1x2
—3><(1+2

)+2:4Q

Voc: 30 20
Ry Rs
2V o 60

Use superposition to find Voc:
30 2Q)
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Find R, for which P is maximum.
30 2Q

Rn: 30 2Q

Ry = (Ru | R2) +Rs = (3] 6) + 2

1x2
=3 2=40Q
3><(1+2>+

Voc: 30 20
A
Ri R3
12V Ry 6Q 2A
B
Use superposition to find Voc:
30 20 30 2Q
A
R: Rs
6Q
Rz 2A

V@ =40 x24=8V



Find R, for which P is maximum.
3Q 20 Voct 30 2Q

A
R; R3
12V Ry 6Q 2A
B
Ry 3Q 20 Use superposition to find Voc:
30 20 30 2Q
A
R: Rs
+ 6Q
Rz 2A

L.

Lxo V5,?:12xgzsv VO =40 x24=8V
P X
:3X(1+2)+2:4Q Voe =V 4V =848 =16V

Rrh = (R || R2) + Ry = (3| 6) +2




Find R, for which P is maximum.
30 2Q

Ry = (Ru | R2) +Rs = (3] 6) + 2

:3x(ﬂ)+2:49

Voc: 30 20
A
Ri R3
12V Ry 6Q 2A
B
Use superposition to find Voc:
30 20 30 2Q
A
R: Rs
+ 6Q
I Rz 2A
B ¢ B

vf,?:lzxg:sv V@ =40 x24=8V
Voe =V +V® =84+ 8=16V

142
Rt A
iL
Ovn Re
B

P_ is maximum when R, = Ry, =4Q
=i = Vn/(2Rm) =2A

Prx =22 x 4 =16W.
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Maximum power transfer: simulation results

SEQUEL file: ee101_maxpwr_1.sqproj
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3 ]
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Vs 9 10—_
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. B 4
L
Rt A 4
40 L + gl
2_
V Rig v ]
" 16V o3
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B 0 5 10 15 20 25
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Maximum power transfer (sinusoidal steady state)

Let Z, =R .+ X1, Z1h = Rrpn+Xmp,and Il = I L ¢
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Maximum power transfer (sinusoidal steady state)

Let Z, =R .+ X1, Z1h = Rrpn+Xmp,and Il = I L ¢

The power absorbed by Z; is,

1
P=Z12R

‘ Vo,
Zr+2Z;

2
RL

IV 74)2
(Rt + RL)? + (X7 + X1)?

Ry .

NI= NI N
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Maximum power transfer (sinusoidal steady state)

Let Z, =R .+ X1, Z1h = Rrpn+Xmp,and Il = I L ¢

The power absorbed by Z; is,
1

P:E@&
1] Vv 2
_ - ‘7”’ RL
2|Zmp+ 2,
_1 V7l R,
2 (Rrn+ RU)? + (X7p + X0)2
For P to be maximum, (X7 + X.) must be zero. = X, = —X7.
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Maximum power transfer (sinusoidal steady state)

Let Z, =R .+ X1, Z1h = Rrpn+Xmp,and Il = I L ¢

The power absorbed by Z; is,
1

P:E@&
1] Vv 2
_ - ‘7”’ RL
2|Zmp+ 2,
_1 V7l R,
2 (Rrn+ RO+ (X7n + X0)2
For P to be maximum, (X7 + X.) must be zero. = X, = —X7.
With X, = — X713, we have,
1 |Vl

T2 (Rmt+R)2

which is maximum for R, = Rp.
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Maximum power transfer (sinusoidal steady state)

Let Z, =R .+ X1, Z1h = Rrpn+Xmp,and Il = I L ¢

The power absorbed by Z; is,
1

P:E@&
1] Vv 2
_ - ‘7”’ RL
2|Zmp+ 2,
_1 V7l R,
2 (Rrn+ RO+ (X7n + X0)2
For P to be maximum, (X7 + X.) must be zero. = X, = —X7.
With X, = — X713, we have,
1 |Vl

= 575 _ . p o L
2 (Ryn + R1)?
which is maximum for R, = Rp.
Therefore, for maximum power transfer to the load Z;, we need,

RL = Ryp, Xp = — X1, ie., |2 = Z%,.
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Impedance matching
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signal Amp
1k 1k

N1\ 2
80 > N, ) < 89
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Impedance matching

Input Audio
signal Amp
1k 1k

N1\ 2
80 > N, ) < 89

N11N2

Calculate the turns ratio to provide maximum power transfer of the audio signal.

M. B. Patil, IIT Bombay



Impedance matching

Input
signal

Calculate the turns ratio to provide maximum power transfer of the audio signal.

Z :Z*Th

Audio
Amp

1k

8Q
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Impedance matching

Input
signal

Calculate the turns ratio to provide maximum power transfer of the audio signal.

Audio
Amp

1k

N
Z, =7% —
L Th <N

2

2
1> x 8Q = 1kQ

8Q
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Impedance matching

Input Audio
signal Amp

1k 1k

N1\ 2
80 > <N—>xgsz
2

N11N2

Calculate the turns ratio to provide maximum power transfer of the audio signal.

Ny \2 N 1000
2,=7%, — <—1> Xx8Q=1kQ — — =4/—— =112
N> N> 8
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Sinusoidal steady state

V,, coswt
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Sinusoidal steady state

V,, coswt

R(CV)4+ Ve=Vycoswt, t>0. (1)
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Sinusoidal steady state

V,, coswt

R(CV)4+ Ve=Vycoswt, t>0. (1)
The solution V,(t) is made up of two components, Vc(t) = Vc(h)(t) + Vc(p)(t).
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Sinusoidal steady state

V,, coswt

R(CV)4+ Ve=Vycoswt, t>0. (1)
The solution V,(t) is made up of two components, Vc(t) = Vc(h)(t) + Vc(p)(t).

Véh)(t) satisfies the homogeneous differential equation,
RCV/+V.=0, (2)

from which, V" (t) = A exp(—t/7), with 7 = RC .
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Sinusoidal steady state

V,, coswt

R(CV)4+ Ve=Vycoswt, t>0. (1)
The solution V,(t) is made up of two components, Vc(t) = Vc(h)(t) + Vc(p)(t).
Véh)(t) satisfies the homogeneous differential equation,
RCV!+ V. =0, )
from which, V" (t) = A exp(—t/7), with 7 = RC .
Vc(p)(t) is a particular solution of (1). Since the forcing function is Vj, cos wt, we try
Vc(p)(t) = (; cos wt + G sin wt.
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Sinusoidal steady state

V,, coswt

R(CV)4+ Ve=Vycoswt, t>0. (1)
The solution V,(t) is made up of two components, Vc(t) = Vc(h)(t) + Vc(p)(t).
Véh)(t) satisfies the homogeneous differential equation,

RCV!+ V. =0, )

from which, V" (t) = A exp(—t/7), with 7 = RC .
Vc(p)(t) is a particular solution of (1). Since the forcing function is Vj, cos wt, we try
Vc(p)(t) = (; cos wt + G sin wt.
Substituting in (1), we get,

wR C (—Cy sin wt + G cos wt) + C; cos wt + G sin wt = Vi, cos wt.
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Sinusoidal steady state

V,, coswt

R(CV)4+ Ve=Vycoswt, t>0. (1)
The solution V,(t) is made up of two components, Vc(t) = Vc(h)(t) + Vc(p)(t).

Véh)(t) satisfies the homogeneous differential equation,
RCV/+ V=0, (2
from which, V" (t) = A exp(—t/7), with 7 = RC .
Vc(p)(t) is a particular solution of (1). Since the forcing function is Vj, cos wt, we try
Vc(p)(t) = (; cos wt + G sin wt.
Substituting in (1), we get,

wR C (—Cy sin wt + G cos wt) + C; cos wt + G sin wt = Vi, cos wt.
C; and G, can be found by equating the coefficients of sin wt and cos wt on the left and right sides.
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Sinusoidal steady state

V,, coswt

Vo =1V
f=1kHz

(SEQUEL file: eel01_rc5.sqproj) time (ms)
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Sinusoidal steady state

V,, coswt

Vo =1V
f=1kHz

(SEQUEL file: eel01_rc5.sqproj) time (ms)

* The complete solution is Vc(t) = A exp(—t/7) + G cos wt + C sin wt.
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Sinusoidal steady state

V,, coswt

Vo =1V
f=1kHz

(SEQUEL file: eel01_rc5.sqproj) time (ms)

* The complete solution is Vc(t) = A exp(—t/7) + G cos wt + C sin wt.

* As t — 00, the exponential term becomes zero, and we are left with V(t) = C; cos wt + G, sin wt.
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Sinusoidal steady state

V,, coswt

Vo =1V
f=1kHz

(SEQUEL file: eel01_rc5.sqproj) time (ms)

* The complete solution is Vc(t) = A exp(—t/7) + G cos wt + C sin wt.
* As t — 00, the exponential term becomes zero, and we are left with V(t) = C; cos wt + G, sin wt.

* This is known as the “sinusoidal steady state” response since all quantities (currents and voltages) in the
circuit are sinusoidal in nature.
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Sinusoidal steady state

V,, coswt

Vo =1V
f=1kHz

(SEQUEL file: eel01_rc5.sqproj) time (ms)

* The complete solution is Vc(t) = A exp(—t/7) + G cos wt + C sin wt.
* As t — 00, the exponential term becomes zero, and we are left with V(t) = C; cos wt + G, sin wt.

* This is known as the “sinusoidal steady state” response since all quantities (currents and voltages) in the
circuit are sinusoidal in nature.

* Any circuit containing resistors, capacitors, inductors, sinusoidal voltage and current sources (of the same
frequency), dependent (linear) sources behaves in a similar manner, viz., each current and voltage in the
circuit becomes purely sinusoidal as t — oo.
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Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents and voltages.
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Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents and voltages.

* A phasor is a complex number,
X = Xm0 = Xm exp(jO),
with the following interpretation in the time domain.
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Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents and voltages.

* A phasor is a complex number,
X = Xm0 = Xm exp(jO),
with the following interpretation in the time domain.

x(t) = Re [X &/#1]
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Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents and voltages.
* A phasor is a complex number,
X = Xm0 = Xm exp(jO),
with the following interpretation in the time domain.
x(t) = Re [X &/#1]
— Re [Xp el? et]
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Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents and voltages.

* A phasor is a complex number,
X = Xm0 = Xm exp(jO),
with the following interpretation in the time domain.
x(t) = Re [X &/#1]
— Re [Xp e/ e/*t]
= Re [Xm ej(’W'HO)}
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Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents and voltages.
* A phasor is a complex number,
X = Xm0 = Xm exp(jO),
with the following interpretation in the time domain.
x(t) = Re [X &/#1]
— Re [Xp el? et]
= Re [Xm &/(@t10)]
= Xm cos (wt + 0)
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Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents and voltages.
* A phasor is a complex number,
X = Xm0 = Xm exp(jO),
with the following interpretation in the time domain.
x(t) = Re [X &/#1]
— Re [Xp el? et]
= Re [Xm &/(@t10)]
= Xm cos (wt + 0)
* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steady state.

M. B. Patil, IIT Bombay



Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents and voltages.
* A phasor is a complex number,
X = Xm0 = Xm exp(jO),
with the following interpretation in the time domain.
x(t) = Re [X &/#1]
— Re [Xp el? et]
= Re [Xm ej(’W'HQ)]
= Xm cos (wt + 0)
* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steady state.
* Note that a phasor can be written in the polar form or rectangular form,
X =Xmn/0 = Xm exp(jO) = Xm cos 0 + j Xm sin 6.

The term wt is always implicit.

Im (X)
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Phasors: examples

Time domain Frequency domain

v1(t)=3.2 cos (wt+30°) V
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Time domain Frequency domain

v1(t)=3.2 cos (wt+30°) V V; =3.2/30° =3.2exp (jn/6) V

i(t) = —1.5cos (wt + 60°) A
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= 1.5cos (wt — 27/3) A
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Time domain Frequency domain
v1(t)=3.2 cos (wt+30°) V Vi =3.2/30° =32exp (jn/6)V
i(t) = —1.5cos (wt + 60°) A I =15/(-27/3)A
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vo(t) = —0.1cos (wt) V Vo, =01/7V
=0.1cos (wt+m) V




Phasors: examples

Time domain

Frequency domain

v1(t)=3.2 cos (wt+30°) V

Vi =3.2/30° = 3.2exp (jn/6) V

i(t) = —1.5cos (wt + 60°) A
=15cos (wt+7/3—7m)A
= 1.5cos (wt — 27/3) A

I =15/(—2r/3)A

vo(t) = —0.1cos (wt) V
=0.1cos (wt+m) V

Vo =017V

i2(t) = 0.18sin (wt) A




Phasors: examples

Time domain

Frequency domain

v1(t)=3.2 cos (wt+30°) V

Vi =3.2/30° = 3.2exp (jn/6) V

i(t) = —1.5cos (wt + 60°) A
=15cos (wt+7/3—7m)A
= 1.5cos (wt — 27/3) A
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=0.1cos (wt+m) V
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Time domain

Frequency domain

v1(t)=3.2 cos (wt+30°) V

Vi =3.2/30° = 3.2exp (jn/6) V

i(t) = —1.5cos (wt + 60°) A
=15cos (wt+7/3—7m)A
= 1.5cos (wt — 27/3) A
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Time domain

Frequency domain

v1(t)=3.2 cos (wt+30°) V

Vi =3.2/30° = 3.2exp (jn/6) V

i(t) = —1.5cos (wt + 60°) A
=15cos (wt+7/3—7m)A
= 1.5cos (wt — 27/3) A
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Time domain

Frequency domain

v1(t)=3.2 cos (wt+30°) V

Vi =3.2/30° = 3.2exp (jn/6) V

i(t) = —1.5cos (wt + 60°) A
=15cos (wt+7/3—7m)A
= 1.5cos (wt — 27/3) A

I =15/(—2r/3)A

vo(t) = —0.1cos (wt) V
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Phasors: examples

Time domain Frequency domain
v1(t)=3.2 cos (wt+30°) V Vi =3.2/30° =32exp (jn/6)V
i(t) = —1.5cos (wt + 60°) A I =15/(-27/3)A

=15cos (wt+7/3—7m)A
= 1.5cos (wt — 27/3) A

vo(t) = —0.1cos (wt) V Vo, =01/7V
=0.1cos (wt+m) V

ia(t) = 0.18sin (wt) A I, =018/ (—m/2) A
= 0.18cos (wt — 7/2) A
i3(t) = V2 cos (wt + 45°) A ls=14+j1A
=V22/45° A
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Addition of phasors

Consider addition of two sinusoidal quantities:
v(t) = va(t) + va(t)
= Vi1 cos (wt + 01) + Vipa cos (wt + 62)
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Addition of phasors

Consider addition of two sinusoidal quantities:
v(t) = vi(t) + va(t)
= Vi1 cos (wt + 01) + Vipa cos (wt + 62)
Now consider addition of the phasors corresponding to vi(t) and va(t).
V=V;+V;
= Vet + Vipei®
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Addition of phasors

Consider addition of two sinusoidal quantities:
v(t) = va(t) + va(t)
= Vi1 cos (wt + 01) + Vipa cos (wt + 62)
Now consider addition of the phasors corresponding to vi(t) and va(t).
V=V +V
= Vet + Vipei®
In the time domain, V corresponds to ¥(t), with
7(t) = Re [Velvt]
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Addition of phasors

Consider addition of two sinusoidal quantities:
v(t) = va(t) + va(t)
= Vi1 cos (wt + 01) + Vipa cos (wt + 62)
Now consider addition of the phasors corresponding to vi(t) and va(t).
V=V +V
= Vet + Vipei®
In the time domain, V corresponds to ¥(t), with
7(t) = Re [Velvt]
= Re [(Vm1&/% + Vipel®2) evt]
Re [Vim /@00 4 v, peilwir02)]
Vi1 cos (wt + 01) + Vo cos (wt + 62)
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Addition of phasors

Consider addition of two sinusoidal quantities:
v(t) = va(t) + va(t)

= Vi1 cos (wt + 01) + Vipa cos (wt + 62)
Now consider addition of the phasors corresponding to vi(t) and va(t).
V=V +V

= Vet + Vipei®

In the time domain, V corresponds to ¥(t), with
7(t) = Re [Velvt]

= Re [(Vm1&/% + Vipel®2) evt]
Re [Vim /@00 4 v, peilwir02)]
Vi1 cos (wt + 01) + Vo cos (wt + 62)

which is the same as v(t).
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Addition of phasors

* Addition of sinusoidal quantities in the time domain can be replaced by addition
of the corresponding phasors in the sinusoidal steady state.
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Addition of phasors

* Addition of sinusoidal quantities in the time domain can be replaced by addition
of the corresponding phasors in the sinusoidal steady state.

* The KCL and KVL equations,
> ik(t) =0 at a node, and
S vi(t) =0 in a loop,
amount to addition of sinusoidal quantities and can therefore be replaced by the
corresponding phasor equations,

> 1, =0 at a node, and
> Vi =0in a loop.
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Impedance of a resistor

+ v(t) — + Vv -
—AN— > T
i(t) R | z
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Impedance of a resistor

+ v(t) — + Vv -
—AN— > T
i(t) R | z

Let i(t) = Im cos (wt + 6).
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Impedance of a resistor

+ v(t) — + Vv -
—AN— > T
i(t) R | z

Let i(t) = Im cos (wt + 6).
v(t) = Ri(t)
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Impedance of a resistor

+ v(t) — + Vv -
—AN— > T
i(t) R | z

Let i(t) = Im cos (wt + 6).
v(t) = Ri(t)
= R Iy cos (wt + 6)
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Impedance of a resistor

+ v(t) — + Vv -
—AN— > T
i(t) R | z

Let i(t) = Im cos (wt + 6).
v(t) = Ri(t)
= R Iy cos (wt + 6)
= Vi cos (wt + 0).
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Impedance of a resistor

+ v(t) — + Vv -
—AN— > T
i(t) R | z

Let i(t) = Im cos (wt + 6).
v(t) = Ri(t)
= R Iy cos (wt + 6)
= Vi cos (wt + 0).
The phasors corresponding to i(t) and v(t) are, respectively,
Il =1Inll, V=RXx Iy
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Impedance of a resistor

+ v(t) — + Vv -
—AN— > T
i(t) R | z

Let i(t) = Im cos (wt + 6).
v(t) = Ri(t)
= R Iy cos (wt + 6)
= Vi cos (wt + 0).
The phasors corresponding to i(t) and v(t) are, respectively,
Il =1nl8, V=RXIn L.
We have therefore the following relationship between V and I: V=R x I.
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Impedance of a resistor

+ v(t) — + Vv -
—AN— > T
i(t) R | z

Let i(t) = Im cos (wt + 6).
v(t) = Ri(t)
= R Iy cos (wt + 6)
= Vi cos (wt + 0).
The phasors corresponding to i(t) and v(t) are, respectively,
Il =1nl, V=RX Iy 2.
We have therefore the following relationship between V and I: V=R x I.
Thus, the impedance of a resistor, defined as, Z = V/I, is

Z=R+,0
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Impedance of a capacitor

+ (1) — + v -

T = 5
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Impedance of a capacitor

+ (1) — + v -

T = 5

Let v(t) = Vi cos (wt + 6).
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Impedance of a capacitor

+ (1) — + v -

T = 5

Let v(t) = Vi cos (wt + 6).

d
i(t) = CF: = —Cw Vi sin (wt + 0).
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Impedance of a capacitor

+ (1) — + v -

T = 5

Let v(t) = Vi cos (wt + 6).
d
i(t) = CF: = —Cw Vi sin (wt + 0).
Using the identity, cos (¢ + m/2) = —sin ¢, we get
i(t) = Cw Vi cos(wt + 0+ m/2).
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Impedance of a capacitor

+ (1) — + v -

T = 5

Let v(t) = Vi cos (wt + 6).
d
i(t) = CF: = —Cw Vi sin (wt + 0).
Using the identity, cos (¢ + m/2) = —sin ¢, we get

i(t) = Cw Vi cos(wt + 0+ m/2).
In terms of phasors, V=V, 20, | = wCV,, A6+x/2),
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Impedance of a capacitor

+ (1) — + v -

T = 5

Let v(t) = Vi cos (wt + 6).
d
i(t) = Cd—: = —Cw Vi sin (wt + 0).
Using the identity, cos (¢ + m/2) = —sin ¢, we get
i(t) = Cw Vi cos(wt + 0+ m/2).
In terms of phasors, V=V, 20, | = wCV,, A6+x/2),

| can be rewritten as,
| = wCVp &047/2) = 4 CVip e &7/2 = jwC (Vimel?) = jwCV
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Impedance of a capacitor

+ (1) — + v -

T = 5

Let v(t) = Vi cos (wt + 6).
d
i(t) = Cd—: = —Cw Vi sin (wt + 0).
Using the identity, cos (¢ + m/2) = —sin ¢, we get
i(t) = Cw Vi cos(wt + 0+ m/2).
In terms of phasors, V=V, 20, | = wCV,, A6+x/2),

| can be rewritten as,
| = wCVp &047/2) = 4 CVip e &7/2 = jwC (Vimel?) = jwCV

Thus, the impedance of a capacitor, Z=V/l,is| Z =1/(jwC) |,
and the admittance of a capacitor, Y =1/V, is .
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Impedance of an inductor

+ o) — + v -
Ffms\_ —> ——
i(t L | z
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Impedance of an inductor

+ o) — + v -
Ffms\_ —> ——
i(t L | z

Let i(t) = Im cos (wt + 6).
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Impedance of an inductor

+ o) — + v -
Ffms\_ —> ——
i(t L | z

Let i(t) = Im cos (wt + 6).

= —Lwly sin(wt + 0).

di
ty=L"
v(t) o
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Impedance of an inductor

+ o) — + v -
Ffms\_ —> ——
i(t L | z

Let i(t) = Im cos (wt + 6).
di
v(t)=1L d—; = —Lwly sin(wt + 0).
Using the identity, cos (¢ + 7/2) = —sin ¢, we get

v(t) = Lwln cos(wt+ 6+ 7/2).
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Impedance of an inductor

+ o) — + v -
Ffms\_ —> ——
i(t L | z

Let i(t) = Im cos (wt + 6).
di
v(t) = Ld—; = —Lwly sin(wt + 0).
Using the identity, cos (¢ + 7/2) = —sin ¢, we get
v(t) = Lwln cos(wt+ 6+ 7/2).
In terms of phasors, | = I, /0, V = wll, A0+7/2),

M. B. Patil, IIT Bombay



Impedance of an inductor

+ o) — + v -
Ffms\_ —> ——
i(t L | z

Let i(t) = Im cos (wt + 6).

v(t) = L% = —Lwly sin(wt + 0).

Using the identity, cos (¢ + 7/2) = —sin ¢, we get

v(t) = Lwln cos(wt+ 6+ 7/2).

In terms of phasors, | = I, /0, V = wll, A0+7/2),

V can be rewritten as,

V = wlly &0/ = Ly & &™/2 = jwl (Inel?) = jwl]
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Impedance of an inductor

+ o) — + v -
Ffms\_ —> ——
i(t L | z

Let i(t) = Im cos (wt + 6).

v(t) = L% = —Lwly sin(wt + 0).

Using the identity, cos (¢ + 7/2) = —sin ¢, we get
v(t) = Lwln cos(wt+ 6+ 7/2).

In terms of phasors, | = I, /0, V = wll, A0+7/2),
V can be rewritten as,

V = wlly &0/ = Ly & &™/2 = jwl (Inel?) = jwl]

Thus, the impedance of an indcutor, Z = V/I, is ,
and the admittance of an inductor, Y =1/V,is|Y = 1/(jwl) |.
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Sources

|s(t)<# —> (#ls vs(t)$ —> #VS
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Sources

|s(t)<# —> (#ls vs(t)$ —> #VS

* An independent sinusoidal current source, is(t) = I cos (wt + @), can be represented by the phasor I, 20
(i.e., a constant complex number).
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Sources

|s(t)<# —> (#ls vs(t)$ —> #VS

* An independent sinusoidal current source, is(t) = I cos (wt + @), can be represented by the phasor I, 20
(i.e., a constant complex number).

* An independent sinusoidal voltage source, vs(t) = Vi, cos (wt + 6), can be represented by the phasor
Vin /0 (i.e., a constant complex number).
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Sources

|s(t)<# —> (#ls vs(t)$ —> #VS

* An independent sinusoidal current source, is(t) = I cos (wt + @), can be represented by the phasor I, 20
(i.e., a constant complex number).

* An independent sinusoidal voltage source, vs(t) = Vi, cos (wt + 6), can be represented by the phasor
Vin /0 (i.e., a constant complex number).

* Dependent (linear) sources can be treated in the sinusoidal steady state in the same manner as a resistor,
i.e., by the corresponding phasor relationship.
For example, for a CCVS, we have,
v(t) = ric(t) in the time domain.
V = rl¢ in the frequency domain.
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Use of phasors in circuit analysis
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > vk(t) = 0 can be written as >_ I, = 0 and
>~V = 0 in the frequency domain.
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > vk(t) = 0 can be written as >_ I, = 0 and
>~V = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z 1 in the frequency domain, which is similar
to V = R/ in DC conditions (except that we are dealing with complex numbers in the frequency domain).
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > vk(t) = 0 can be written as >_ I, = 0 and
>~V = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z 1 in the frequency domain, which is similar
to V = R/ in DC conditions (except that we are dealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., Vs = constant
(a complex number).
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > vk(t) = 0 can be written as >_ I, = 0 and
>~V = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z 1 in the frequency domain, which is similar
to V = R/ in DC conditions (except that we are dealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., Vs = constant
(a complex number).

* For dependent sources, a time-domain relationship such as i(t) = Bic(t) translates to | = B¢ in the
frequency domain.
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > vk(t) = 0 can be written as >_ I, = 0 and
>~V = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z 1 in the frequency domain, which is similar
to V = R/ in DC conditions (except that we are dealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., Vs = constant
(a complex number).

* For dependent sources, a time-domain relationship such as i(t) = Bic(t) translates to | = B¢ in the
frequency domain.

* Circuit analysis in the sinusoidal steady state using phasors is therefore very similar to DC circuits with
independent and dependent sources, and resistors.
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > vk (t) = 0 can be written as >_ I, = 0 and
>~V = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z 1 in the frequency domain, which is similar
to V = R/ in DC conditions (except that we are dealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., Vs = constant
(a complex number).

* For dependent sources, a time-domain relationship such as i(t) = Bic(t) translates to | = B¢ in the
frequency domain.

* Circuit analysis in the sinusoidal steady state using phasors is therefore very similar to DC circuits with
independent and dependent sources, and resistors.

* Series/parallel formulas for resistors, nodal analysis, mesh analysis, Thevenin's and Norton's theorems can
be directly applied to circuits in the sinusoidal steady state.
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V207 (X0 g jul

Vs
= VmZ0 e,
R+ jwL
V,
where I, = o and 0 = tan"}(wL/R).

VR + w212’



V207 (X0 g jul

Vs
= VmZ0 e,
R+ jwL
V,
where I, = o and 0 = tan"}(wL/R).

VR + w212’
In the time domain, i(t) = I cos (wt — #), which lags the source voltage since the peak (or zero) of i(t) occurs
t = 6/w seconds after that of the source voltage.



V207 (X0 g jul

VinZ
= ’"7,0 = InZ(—0),
R+ jwL
Vv
where Iy = ———2— and 0 = tan"1(wL/R).
v/ R2 +w2L2

In the time domain, i(t) = I cos (wt — #), which lags the source voltage since the peak (or zero) of i(t) occurs
t = 6/w seconds after that of the source voltage.

For R=1Q, L=1.6mH, f =50Hz, § = 26.6°, tj;; = 1.48 ms.
(SEQUEL file: ee101_rl_ac_1.sqproj)



R=1Q
L=16mH

time (ms)
Vs
)
R+ jwL
V,
where Iy = ———2— and 0 = tan"1(wL/R).
v/ R2 +w2L2

In the time domain, i(t) = I cos (wt — #), which lags the source voltage since the peak (or zero) of i(t) occurs
t = 6/w seconds after that of the source voltage.

For R=1Q, L=1.6mH, f =50Hz, § = 26.6°, tj;; = 1.48 ms.
(SEQUEL file: ee101_rl_ac_1.sqproj)
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Vins
= "’7,0 = InZ(—9),
R+ jwlL
m

VR + w212’

where I, = and 0 = tan~Y(wL/R).



Vs
= VYm0 e,
R+ jwlL
where Iy = ——=—— and 0 = tan~(wL/R).
VR? F w212

VR =1 x R=RInZ(—0),
VL = I X jwl = wlnl £(—0 + 7/2) ,



Vs
= VYm0 e,
R+ jwlL
where Iy = ——=—— and 0 = tan~(wL/R).
VR? F w212

VR =1 x R=RInZ(—0),
VL = I X jwl = wlnl £(—0 + 7/2) ,

The KVL equation, Vs = Vg 4+ V|, can be represented in the complex plane by a “phasor diagram.”



Im (V)

Vs
= VYm0 e,
R+ jwlL
where Iy = ——=—— and 0 = tan~(wL/R).
VR? F w212

VR =1 x R=RInZ(—0),
VL = I X jwl = wlnl £(—0 + 7/2) ,

The KVL equation, Vs = Vg 4+ V|, can be represented in the complex plane by a “phasor diagram.’
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Im (V)

VinZ0

= ——— = InZ(-9),

R+jwLl " (=0)
where Iy = ——=—— and 0 = tan~(wL/R).

VR? F w212

VR =IXR=RInZ(-0),

VL =1l X jwl =wlnl Z(—0 4+ 7/2),

The KVL equation, Vs = Vg 4+ V|, can be represented in the complex plane by a “phasor diagram.”
, 0 =0, [VR| >~ |Vs| = V.

L0 = 7/2, VL] = V| = Vi,

If R>> |jwl
If R < |jwl
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R 1
A
Vint0° () == 1/jwC
v
=m0 e,
R+ 1/jwC
cv,
where I, = W Tm and § = 7/2 — tan~}(wRC).

1+ (wRC)?'



R 1
A
Vint0° () == 1/jwC
)
R+ 1/jwC
cv,
where I, = wim, and § = 7/2 — tan~}(wRC).

1+ (wRC)?2

In the time domain, i(t) = Im cos (wt + 0), which leads the source voltage since the peak (or zero) of i(t)
occurs t = 0 /w seconds before that of the source voltage.



R 1
A
Vint0° () == 1/jwC
v
- Ym0 e,
R+ 1/jwC
cv,
where I, = wim, and § = 7/2 — tan~}(wRC).

1+ (wRC)?2

In the time domain, i(t) = Im cos (wt + 0), which leads the source voltage since the peak (or zero) of i(t)
occurs t = 0 /w seconds before that of the source voltage.

For R=1Q, C =53mF, f =50Hz, 0 = 31°, tjeaq = 1.72 ms.
(SEQUEL file: ee101_rc_ac_1.sqproj)



R=1Q
C=53mF

time (ms)

VnZ0

= = [,/0,
R+1/jwC "

wCVpm
1+ (wRC)?2

where I, =

,and @ = 7/2 — tan~Y(wRC).

In the time domain, i(t) = Im cos (wt + 0), which leads the source voltage since the peak (or zero) of i(t)
occurs t = 0 /w seconds before that of the source voltage.

For R=1Q, C =53mF, f =50Hz, 0 = 31°, tjeaq = 1.72 ms.
(SEQUEL file: ee101_rc_ac_1.sqproj)
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+ Vr —
NN—
+ Ry
Vi 20° (") V —V)
<> ’ 1/jwC ¢
v
_ Ym0 e,
R+1/jwC
CcV,
where I, = wim, and § = 7/2 — tan~ 1 (wRC).

1+ (wRC)?2



Volr QI Vs il Ve

v
= mi,o = I;n 20,
R+1/jwC
wCVpm

where Iy = ———-"— ‘and § = 7/2 — tan"}(wRC).
1+ (wRC)?2

VR=IXR=RIn0,
Ve =1 % (1/jwC) = (Im/wC) £(6 — 7/2),



+ Vr —
AN—
+ Ry
Vin20°(09) Vs —_—V
<> 1/jwC ¢
_ M = 1,/6,
R+1/jwC
cv,
where I, = wim, and § = 7/2 — tan~ 1 (wRC).
1+ (wRC)?2

VR=IXR=RIn0,
Ve =1 % (1/jwC) = (Im/wC) £(6 — 7/2),

The KVL equation, Vs = Vg 4+ V¢, can be represented in the complex plane by a “phasor diagram.”



Ve —
+ Ve Im (V)
NN—
+ Ry
Vi 20° (N V, ) Re (V
Qv TV (V)
_ M = 1,/6,
R+1/jwC
CcV,
where I, = wim, and § = 7/2 — tan~ 1 (wRC).
1+ (wRC)?2

VR=IXR=RIn0,
Ve =1 % (1/jwC) = (Im/wC) £(6 — 7/2),

The KVL equation, Vs = Vg 4 V¢, can be represented in the complex plane by a “phasor diagram.’
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Ve —
+ Ve Im (V)
NN—
+ Ry
Vi 20° (N V, ) Re (V
Qv TV (V)
_ M = 1,/6,
R+1/jwC
CcV,
where I, = wim, and § = 7/2 — tan~ 1 (wRC).
1+ (wRC)?2

VR=IXR=RInZ0,
Ve =1X (1/jwC) = (Im/wC) £(0 — 7/2),
The KVL equation, Vs = Vg 4+ V¢, can be represented in the complex plane by a “phasor diagram.”

If R>> [1/jwC|, 0 — 0, |Vg| = |Vs| = Vin.
If R < [1/jwC|, 6 = 7/2, |Vc| ~ |Vs| = Vim.
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Series/parallel connections

025 Hg Z,

100 u

B
(w =100 rad/s)



Series/parallel connections

Z; =) x 100 x 0.25 =250

025 HZ8Z,
Z, = —j/(100 x 100 x 1076) = —j100 Q2
100u Z=2,+2,=—j75Q
B

(w =100 rad/s)



Series/parallel connections

A A
Zi=jx1 25 =250
025 HEZ, L =j % 100 x 0.25 = 25
—> z Z, = —j/(100 x 100 x 10~%) = —j 1002
100 uF Z, Z=27,+2,=—j75Q
B-——I B

(w =100 rad/s)

A A
0.25 H 100 4F
. jr— ::> z
Z Z,
B B

(w =100 rad/s)



Series/parallel connections

A A
Zi=jx1 25 =250
025 HEZ, L =j % 100 x 0.25 = 25
—> z Z, = —j/(100 x 100 x 10~%) = —j 1002
100 uF Z, Z=27,+2,=—j75Q
B-——I B

(w =100 rad/s)

A A 7. 4t
Z,+12,

100 4F (125) % (—j100)
0'25ZH = z T j25-100
' % 25100
575
—i3330

B B
(w =100 rad/s)
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Impedance example

Obtain Z in polar form.

102§ §J2120Q ::> z

B B
(w=100 rad/s)




Impedance example

Method 1:
. . 10 x j10  j10
Obtain Z in polar form. = 0510 = i
A ) w0 1
1+j 1-—j
10 +j10 .
10 Q EleQ:; z = ) =54+j5Q
Z1§ Z,
Convert to polar form — Z = 7.07 /45° Q)
B B

(w =100 rad/s)



Impedance example

Method 1:
10 x j1 j1
Obtain Z in polar form. - 1gij18 _ ffj
) A w0 1
1+) 1—j
10 +j10 .
10 Q EleQ ::> z = =5+j50Q
21§ Z, 2
Convert to polar form — Z = 7.07 £ 45° Q)
B B

Method 2:

_10xj10  100/7/2
©10+j10  10v2/7/4

=5v2/(n/2—n/4) =7.07/45°Q

(w=100 rad/s)
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Circuit example
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Circuit example

i 20 100
A — A
jlc
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Circuit example

i 20 100
A — A
jlc
w00V L
O T B '“Hé

|

Z,
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Circuit example

s, 20 10Q . Z Z;
A A 1
Jic ie . |le in
OREL T wmE = v 2] 2] =
Z3 ! =—j16Q

T jx 27 x50 x 2 x 10-3
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Circuit example

s, 20 10Q . Z Z;
A A 1
Jic ie . |le in
OREL T wmE = v 2] 2] =
Z3 ! =—j16Q

T jx 27 x50 x 2 x 10-3
Z,=j2r x50x15x 1073 =j47Q
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Circuit example

s, 20 10Q . Z Z;
A A 1
Jic ie . |le in
OREL T wmE = v 2] 2] =
Z3 ! =—j16Q

T jx 27 x50 x 2 x 10-3
Z,=j2r x50x15x 1073 =j47Q

Zeg =21+ Z3 || (Z2+ Z4)
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Circuit example

i 20 100
A AW
i
000V
O 5 mE 15 mH
1
Z3

T jx 27 x50 x 2 x 10-3

li

= ev ]

Z,

=-j16Q

Z; =j2nx50x15x 1073 =47Q
Zeg =21+ Z3 || (Z2+ Z4)

=24 (—j16) | (10+j47) =2+

(—j1.6) x (10 +j4.7)
—j1.6+10+ 4.7
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Circuit example

s, 20 10Q . Z Z;
A A 1
Jic ie . |le in
OREL T wmE = v 2] 2] =
Z3 ! =—j16Q

T jx 27 x50 x 2 x 10-3
Z; =j2nx50x15x 1073 =47Q

Zeg =21+ Z3 || (Z2+ Z4)

(—j1.6) x (10 +4.7)
—j16+10+j4.7

1.6 (—90°) x 11.05/ (25.2°) 17.7/ (—64.8°)

—> —2
+ 10,477 (17.2°) * 1047/ (17.20)

=24 (—j16) | (10+j47) =2+
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Circuit example

s, 20 10Q . Z Z;
A A 1
Jic ie . |le in
OREL T wmE = v 2] 2] =
Z3 ! =—j16Q

T jx 27 x50 x 2 x 10-3
Z; =j2nx50x15x 1073 =47Q

Zeg =21+ Z3 || (Z2+ Z4)
(—j1.6) x (10 +4.7)
—j16+10+j4.7
., LBL(-90°) x11.052(252°) _,  17.7/(-648°)
10.47/ (17.2°) 10.47/ (17.2°)

=2+ 1.69/(—82°) =2+ (0.235 — j1.67)

=24 (—j16) | (10+j47) =2+

M. B. Patil, IIT Bombay



Circuit example

s, 20 10Q . Z Z;
A A 1
Jic ie . |le in
OREL T wmE = v 2] 2] =
Z3 ! =—j16Q

T jx 27 x50 x 2 x 10-3
Z; =j2nx50x15x 1073 =47Q

Zeg =21+ Z3 || (Z2+ Z4)
(—j1.6) x (10 +4.7)
—j16+10+j4.7
., LBL(-90°) x11.052(252°) _,  17.7/(-648°)
10.47/ (17.2°) 10.47/ (17.2°)

=2+ 1.69/(—82°) =2+ (0.235 — j1.67)

=24 (—j16) | (10+j47) =2+

=2.235 —j1.67 = 2.79/(—36.8°) Q

M. B. Patil, IIT Bombay



Circuit example (continued)

is. 20 1092
VW W%
lic Jic
O som: T BmHE T
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Circuit example (continued)

s, 20 100
A —W
Jic liL
10/0v L
Ohir TamF 1smHE )
Ve 10/(0°)

= =)  _358/(36.8°) A
Zeo 279 /(—36.8°)

M. B. Patil, IIT Bombay



Circuit example (continued)

s, 20 100

A —W
Jic liL
10/00v L
i 50 1o Tome mHE )
Y 102 (0°
= Ve 10200 555,368 A

Zeg  2.79/(—36.8°)

(Z2 +Z4)

c= x ls = 3.79 £ (44.6°) A

Z3+ (22 + Zy)

M. B. Patil, IIT Bombay



Circuit example (continued)

i 20

1092
AW —W
Jic l'L
10/0°V L
@f—SO He Tomp 2 ’“Hé —
v 10 £ (0°
o Vs o 102(0°) 3.58 £ (36.8°) A
Zeo 279 /(—36.8°)
Z,+2
=BT 570, (4a6%) A
Z3+ (22 + Zy)
z
I = &

O X 1,=0546/(—70.6°) A
Z3+(Z2+24) ( )

M. B. Patil, IIT Bombay



Circuit example (continued)

i 20 100
A — A
Jic i
10/0v L
@f—SO He Tomp 2 ’“Hé =
3
\ 10 £ (0° -
o Vs o 102(0°) 3.58 £(36.8°) A
Zrq 279 /(—36.8°) 2k
Z,+Z -
= \B2FZ) 379, (sa6% A _
Z3+ (22 + Zy) T r
Z [
L= > x1,=0.546/(—70.6°) A
Z3+(Z2 + Z4) oF
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