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 1904: the simplest vacuum tube – the diode – was invented by John Fleming.

 1907: De Forest invented the triode by inserting a third electrode between

cathode and anode.

Vacuum tubes 
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Vacuum Tubes
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Vacuum tubes: audio amplifier
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ENIAC computer (1946, Univ of Pennsylvania)
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 heralded as a "Giant Brain" by the press

 thousand times faster than electro-mechanical computer

 17,468 vacuum tubes, 7200 crystal diodes, 1,500 relays, 70,000 resistors,

10,000 capacitors, 6,000 manual switches, and approximately 5,000,000

hand-soldered joints.

 consumed 150 kW

 Input was possible from an IBM card reader

 100 kHz clock

 Several tubes burned out almost every day, leaving it non-functional

about half the time.

ENIAC computer 
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 could be programmed to perform complex sequences of operations,

including loops, branches, and subroutines.

 After the program was figured out on paper, the process of getting the 

program into ENIAC by manipulating its switches and cables could take

days. 

 The task of taking a problem and mapping it onto the machine was

complex, and usually took weeks.

 The programmers debugged problems by crawling inside the massive

structure to find bad joints and bad tubes.

 The first test problem consisted of computations for the hydrogen bomb.

ENIAC computer 
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ENIAC computer (1946, Univ of Pennsylvania)
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 The vacuum tube was a bulky and fragile device which consumed a significant power. 

 1947: Shockley, Bardeen, and Brattain at Bell Labs invented the first transistor.

 The first transistor was a “point contact transistor.” The modern transistor is a junction transistor,

and it is monolithic (in the same semiconductor piece).

The first transistor 



M.B.Patil, IIT Bombay

 The bipolar transistor continues to be an important device both as

a discrete device and as part of Integrated Circuits (IC).

 However, in digital circuits such as processors and memory, the

MOS (Metal Oxide Semiconductor) field-effect transistor has

surpassed the bipolar transistor because of the high integration

density and low power consumption it offers.

 1930: patent filed by Lilienfeld for field-effect transistor (FET).

 1958: Jack Kilby (Texas Instruments) demonstrated the first integrated

circuit (bipolar transistor, resistor, capacitor) fabricated on a single

piece of germanium.

 The rest is history!

Semiconductor technology 
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Semiconductor technology 
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Modern semiconductor technology

silicon wafer
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Modern semiconductor technology

Diffusion furnace
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Modern semiconductor technology
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Modern semiconductor technology



M.B.Patil, IIT Bombay

Modern semiconductor technology
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Fabrication of a p-n junction diode
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 Shrinking of the smallest definable dimension (“feature size”) on the chip has enabled a huge

number of transistors to be integrated on one chip.

 1970: feature size of 10  µm, 2010: 0.032 µm

 Moore’s law: a prediction by Gordon Moore (Intel founder) in 1965: number of transistors

will double every two years

 Increased functionality: “system on a chip” is now possible.

MOS technology: scaling 
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 Each vacuum tube is 5 cm x 5 cm: large area

 Each vacuum tube consumes, say, 1 W to 10 W power: total power in the MW range

 Need to remove the heat dissipated by the tubes

 Poor reliability because of a large number vacuum tubes/soldering joints

 Even if it was actually built, the speed would be much lower than a modern CPU

due to parasitic capacitances and inductances of the cables

Vacuum tube computer with 1 million tubes (not built)
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Vacuum tube computer with 1 million tubes (not built)

Compare that with your

mobile phone!
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* How is superposition applied in the context of circuits?

* Numerical examples

* Why does superposition work?
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Superposition

* Consider a circuit made up of elements of the following types:

- Resistor (V = R I )

- VCVS (V =αVc )

- VCCS (I = G Vc )

- CCVS (V = R Ic )

- CCCS (I = β Ic )

and independent sources of the following types:

- Independent DC voltage source (V = V0 (constant))

- Independent DC current source (I = I0 (constant))

* Such a circuit is linear, and we can use superposition to obtain its response (currents and voltages) when multiple
independent sources are involved.

* Superposition enables us to consider the independent sources one at a time (with the others deactivated), compute the
desired quantity of interest in each case, and get the net result by adding the individual contributions.
This procedure is generally simpler than considering all independent sources simultaneously.

* What do we mean by “deactivating” an independent source?

- Deactivating an independent current source ⇒ I0 = 0, i.e., replace the current source with an open circuit.

- Deactivating an independent voltage source ⇒ V0 = 0, i.e., replace the voltage source with a short circuit.
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Example 1

18V 3A

2Ω

4Ω

i1

i1

2Ω

4Ω
18V

Case 1: Keep Vs, deactivate Is.

i
(1)
1 = 3A

4Ω 3 A

i1

2Ω

Case 2: Keep Is, deactivate Vs.

i
(2)
1 = 3A× 2Ω

2Ω + 4Ω
= 1A

inet1 = i
(1)
1 + i

(2)
1 = 3 + 1 = 4A
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Example 2

1Ω

v

2 i

i 3Ω

6A

12V

2 i

vi 3Ω

1Ω

12V

Case 1: Keep Vs, deactivate Is.

⇒ i = 2A , v(1) = 6V .

KVL: − 12 + 3 i+ 2 i+ i = 0

v

2 i

i

6 A1Ω

3Ω

Case 2: Keep Is, deactivate Vs.

KVL: i+ (6 + i) 3 + 2 i = 0

⇒ i = −3A , v(2) = (−3 + 6)× 3 = 9V .

vnet = v(1) + v(2) = 6 + 9 = 15V

(SEQUEL file: ee101 superposition 2.sqproj)
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Example 3

R2R1

V1 VS2VS1

Find V1 using superposition.

R2R1

V1VS1

VS1 alone:

V
(1)
1 =

R2

R1 + R2
VS1

R2R1

V1 VS2

VS2 alone:

V
(2)
1 =

R1

R1 + R2
VS2

V
(net)
1 =V

(1)
1 + V

(2)
1 =

R2

R1 + R2
VS1 +

R1

R1 + R2
VS2
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Superposition: Why does it work?

R2

A B

V1 V2

0

R1 R3

IsVs

KCL at nodes A and B (taking current leaving a node as positive):

1

R1
(V1 − Vs ) +

1

R2
V1 +

1

R3
(V1 − V2) = 0 ,

−Is +
1

R3
(V2 − V1) = 0 .

Writing in a matrix form, we get (using G1 = 1/R1, etc.),[
G1 + G2 + G3 −G3

−G3 G3

] [
V1

V2

]
=

[
G1Vs

Is

]

i.e., A

[
V1

V2

]
=

[
G1Vs

Is

]
→
[

V1

V2

]
= A−1

[
G1Vs

Is

]
.
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Superposition: Why does it work?

R2

A B

V1 V2

0

R1 R3

IsVs

[
V1

V2

]
= A−1

[
G1Vs

Is

]
≡
[

m11 m12

m21 m22

] [
G1Vs

Is

]
=

[
m11G1 m12

m21G1 m22

] [
Vs

Is

]
.

We are now in a position to see why superposition works.

[
V1

V2

]
=

[
m11G1 m12

m21G1 m22

] [
Vs

0

]
+

[
m11G1 m12

m21G1 m22

] [
0
Is

]
≡
[

V
(1)
1

V
(1)
2

]
+

[
V

(2)
1

V
(2)
2

]
.

The first vector is the response due to Vs alone (and Is deactivated).

The second vector is the response due to Is alone (and Vs deactivated).

All other currents and voltages are linearly related to V1 and V2

⇒ Any voltage (node voltage or branch voltage) or current can also be computed using superposition.
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Thevenin’s theorem

R1

R2

R3

VRLI0

A

C

B

V1 V2

V3

0

R1

R2

R3

VRLI0

How is V related to the circuit parameters?

Assign node voltages with respect to a reference node.

Let G1≡ 1/R1, etc. Write KCL equation at each node, taking current leaving the node as positive.

KCL at A : G1 (V1 − V3) + G2 (V1 − V2)− I0 = 0 ,
KCL at B : G2 (V2 − V1) + GL (V2 − 0) = 0 ,
KCL at C : G1 (V3 − V1) + G3V3 + I0 = 0 .

Write in a matrix form:  G1 + G2 −G2 −G1

−G2 G2 + GL 0
−G1 0 G1 + G3

  V1

V2

V3

 =

 I0
0
−I0

 ,

i.e., GV = Is . We can solve this matrix equation to get V2, i.e., the voltage across RL.
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Thevenin’s theorem
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V2 can be found using Cramer’s rule: V2 =

det

 G1 + G2 I0 −G1

−G2 0 0
−G1 −I0 G1 + G3


det(G)

≡
∆1

det(G)

det(G) = det

 G1 + G2 −G2 −G1

−G2 G2 + GL 0
−G1 0 G1 + G3


= det

 G1 + G2 −G2 −G1

−G2 G2 0
−G1 0 G1 + G3

 + det

 G1 + G2 0 −G1

−G2 GL 0
−G1 0 G1 + G3


= ∆ + GL∆2 where ∆2 = det

 G1 + G2 0 −G1

−G2 1 0
−G1 0 G1 + G3

 .

i.e., V2 =
∆1

det(G)
=

∆1

∆ + GL∆2
(Note: ∆, ∆1, and ∆2 are independent of GL).
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V2 =
∆1

det(G)
=

∆1

∆ + GL∆2
.

The “open-circuit” value of V2 is obtained by substituting RL =∞, i.e., GL = 0, leading to VOC
2 =

∆1

∆
.

We can now write V2 =
∆1/∆

1 + GL∆2/∆
=

VOC
2

1 +
∆2

RL∆

=
RL

RL +
∆2

∆

VOC
2 .

Note that ∆2/∆ has units of resistance. Define RTh = ∆2/∆ (Thevenin resistance). Then we have

V2 =
RL

RL + RTh

VOC
2 .

STOP
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Thevenin’s theorem

V2 =
RL

RL + RTh

VOC
2 .

This is simply a voltage division formula, corresponding to the following “Thevenin equivalent circuit” (with VTh = VOC
2 ).

RTh

RL
V2VTh

This allows us to replace the original circuit with an equivalent, simpler circuit.

R1

R2

R3

RL

RTh

RLVThI0
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Thevenin’s theorem

Circuit
(resistors,
voltage sources,
current sources,
CCVS, CCCS,
VCVS, VCCS) B

A

A

B

RTh

VTh

* Since the two circuits are equivalent, the open-circuit voltage must be the same in both cases. Let Voc be
the open-circuit voltage for the left circuit. For the Thevenin equivalent circuit, the open-circuit voltage is
simply VTh since there is no voltage drop across RTh in this case.
→ VTh =Voc

* RTh can be found by different methods.
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Thevenin’s theorem: RTh

Method 1:

Circuit
(resistors,

A

voltage sources,

current sources,

CCVS, CCCS,

VCVS, VCCS) B

A

B

RTh

VTh

Circuit
(resistors,

voltage sources,

current sources,

CCVS, CCCS,

VCVS, VCCS)

A

B

A

B

RTh

A

B

Is

Vs

A

B

IsVs

* Deactivate all independent sources. This amounts to making VTh = 0 in the Thevenin equivalent circuit.

* Often, RTh can be found by inspection of the original circuit (with independent sources deactivated).

* RTh can also be found by connecting a test source to the original circuit (with independent sources
deactivated): RTh =Vs/Is .
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Thevenin’s theorem: RTh

Method 2:

Original

Circuit

A

B

Original

Circuit

A

B

A

B

A

B

RTh

RTh

VTh

VTh

Isc Isc

Voc Voc

* For the Thevenin equivalent circuit, Voc =VTh, Isc =
VTh

RTh
=

Voc

RTh
→ RTh =

Voc

Isc
.

* In the original circuit, find Voc and Isc → RTh =
Voc

Isc
.

* Note: We do not deactivate any sources in this case.
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Thevenin’s theorem: example

A

B

3Ω

R3

RL

R1

R2

6Ω 2Ω

9V

B

A

RL≡

RTh

VTh

A

B

2Ω

3Ω

6Ω

9V
Voc

VTh :

Voc = 9 V× 3Ω

6Ω + 3Ω

= 9V× 1

3
= 3V

A

B

2Ω6Ω

3Ω

RTh :

RTh = (R1 ‖ R2) + R3 = (3 ‖ 6) + 2

= 3×
(
1× 2

1 + 2

)
+ 2 = 4Ω

A

B

3V≡ RL

4Ω A

B

3V≡ RL

4Ω
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Thevenin’s theorem: example

A B

2Ω

4Ω4Ω

6 A
12Ω 12Ω

48 V

A B

C

RTh:

2Ω

4Ω 4Ω

12Ω 12Ω

A B

C

≡ 4Ω
3Ω

RTh = 7Ω⇒

A B

C

Voc

Voc:

2Ω

4Ω 4Ω

i

6 A12Ω
12Ω

48 V

VAB = VA − VB

= 24V+ 36V = 60 V

= VAC + VCB

= (VA − VC) + (VC − VB)

Note: i = 0 (since there is no return path).

VTh = 60V

RTh = 7Ω

A B

7Ω

60V

M. B. Patil, IIT Bombay



Thevenin’s theorem: example

A B

2Ω

4Ω4Ω

6 A
12Ω 12Ω

48 V

A B

C

RTh:

2Ω

4Ω 4Ω

12Ω 12Ω

A B

C

≡ 4Ω
3Ω

RTh = 7Ω⇒

A B

C

Voc

Voc:

2Ω

4Ω 4Ω

i

6 A12Ω
12Ω

48 V

VAB = VA − VB

= 24V+ 36V = 60 V

= VAC + VCB

= (VA − VC) + (VC − VB)

Note: i = 0 (since there is no return path).

VTh = 60V

RTh = 7Ω

A B

7Ω

60V

M. B. Patil, IIT Bombay



Thevenin’s theorem: example

A B

2Ω

4Ω4Ω

6 A
12Ω 12Ω

48 V

A B

C

RTh:

2Ω

4Ω 4Ω

12Ω 12Ω

A B

C

≡ 4Ω
3Ω

RTh = 7Ω⇒

A B

C

Voc

Voc:

2Ω

4Ω 4Ω

i

6 A12Ω
12Ω

48 V

VAB = VA − VB

= 24V+ 36V = 60 V

= VAC + VCB

= (VA − VC) + (VC − VB)

Note: i = 0 (since there is no return path).

VTh = 60V

RTh = 7Ω

A B

7Ω

60V

M. B. Patil, IIT Bombay



Thevenin’s theorem: example

A B

2Ω

4Ω4Ω

6 A
12Ω 12Ω

48 V

A B

C

RTh:

2Ω

4Ω 4Ω

12Ω 12Ω

A B

C

≡ 4Ω
3Ω

RTh = 7Ω⇒

A B

C

Voc

Voc:

2Ω

4Ω 4Ω

i

6 A12Ω
12Ω

48 V

VAB = VA − VB

= 24V+ 36V = 60 V

= VAC + VCB

= (VA − VC) + (VC − VB)

Note: i = 0 (since there is no return path).

VTh = 60V

RTh = 7Ω

A B

7Ω

60V

M. B. Patil, IIT Bombay



Thevenin’s theorem: example

A B

2Ω

4Ω4Ω

6 A
12Ω 12Ω

48 V

A B

C

RTh:

2Ω

4Ω 4Ω

12Ω 12Ω

A B

C

≡ 4Ω
3Ω

RTh = 7Ω⇒

A B

C

Voc

Voc:

2Ω

4Ω 4Ω

i

6 A12Ω
12Ω

48 V

VAB = VA − VB

= 24V+ 36V = 60 V

= VAC + VCB

= (VA − VC) + (VC − VB)

Note: i = 0 (since there is no return path).

VTh = 60V

RTh = 7Ω

A B

7Ω

60V

M. B. Patil, IIT Bombay



Thevenin’s theorem: example

A B

2Ω

4Ω4Ω

6 A
12Ω 12Ω

48 V

A B

C

RTh:

2Ω

4Ω 4Ω

12Ω 12Ω

A B

C

≡ 4Ω
3Ω

RTh = 7Ω⇒

A B

C

Voc

Voc:

2Ω

4Ω 4Ω

i

6 A12Ω
12Ω

48 V

VAB = VA − VB

= 24V+ 36V = 60 V

= VAC + VCB

= (VA − VC) + (VC − VB)

Note: i = 0 (since there is no return path).

VTh = 60V

RTh = 7Ω

A B

7Ω

60V

M. B. Patil, IIT Bombay



Thevenin’s theorem: example

A B

2Ω

4Ω4Ω

6 A
12Ω 12Ω

48 V

A B

C

RTh:

2Ω

4Ω 4Ω

12Ω 12Ω

A B

C

≡ 4Ω
3Ω

RTh = 7Ω⇒

A B

C

Voc

Voc:

2Ω

4Ω 4Ω

i

6 A12Ω
12Ω

48 V

VAB = VA − VB

= 24V+ 36V = 60 V

= VAC + VCB

= (VA − VC) + (VC − VB)

Note: i = 0 (since there is no return path).

VTh = 60V

RTh = 7Ω

A B

7Ω

60V

M. B. Patil, IIT Bombay



Thevenin’s theorem: example

A B

2Ω

4Ω4Ω

6 A
12Ω 12Ω

48 V

A B

C

RTh:

2Ω

4Ω 4Ω

12Ω 12Ω

A B

C

≡ 4Ω
3Ω

RTh = 7Ω⇒

A B

C

Voc

Voc:

2Ω

4Ω 4Ω

i

6 A12Ω
12Ω

48 V

VAB = VA − VB

= 24V+ 36V = 60 V

= VAC + VCB

= (VA − VC) + (VC − VB)

Note: i = 0 (since there is no return path).

VTh = 60V

RTh = 7Ω

A B

7Ω

60V

M. B. Patil, IIT Bombay



Graphical method for finding VTh and RTh

RTh

V

I

I

V

VTh

VTh

VTh

RTh

I =
VTh − V

RTh
(Note: negative slope for I versus V plot)

I = 0 → V =VTh (same as Voc)

V = 0 → I =
VTh

RTh
(same as Isc)

i.e., a plot of I versus V can be used to find VTh and RTh.

(Instead of a voltage source, we could also connect a resistor load (R), vary R, and then plot I versus V .)
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Graphical method for finding VTh and RTh

SEQUEL file: ee101 thevenin 1.sqproj
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Connect a voltage source between A and B.

Plot i versus v.

Voc= intercept on the v-axis.

Isc= intercept on the i-axis.
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Thevenin’s theorem: example
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Thevenin’s theorem: example
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Norton equivalent circuit (source transformation)

A

B

VTh

RTh

A

B

RNIN

A A

B B

RNVTh Isc IscIN

RTh

* Consider the open circuit case.

Thevenin circuit: VAB = VTh .

Norton circuit: VAB = IN RN .

⇒ VTh = IN RN .

* Consider the short circuit case.

Thevenin circuit: Isc = VTh/RTh .

Norton circuit: Isc = IN .

⇒ VTh =
VTh

RTh
RN → RTh = RN .

RN = RTh, IN =
VTh

RTh
RTh = RN , VTh = INRN
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Maximum power transfer

Circuit
(resistors,

voltage sources,

current sources,

CCVS, CCCS,

VCVS, VCCS)

A

B

RL

iL

A

B

iL

RLVTh

RTh

Pmax
L

PL

RL

RL=RTh

* Power “transferred” to load is, PL = i2L RL .

* For a given black box, what is the value of RL for
which PL is maximum?

* Replace the black box with its Thevenin
equivalent.

* iL =
VTh

RTh + RL
, PL = V 2

Th ×
RL

(RTh + RL)2
.

* For
dPL

dRL
= 0 , we need

(RTh + RL)2 − RL × 2 (RTh + RL)

(RTh + RL)4
= 0 ,

i.e., RTh + RL = 2RL ⇒ RL = RTh .
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A

B

12 V

Find RL for which PL is maximum.

R3

R2 RL

R1

2Ω3Ω

6Ω
2A

A

B

RTh:

R3

R2

R1

2Ω3Ω

6Ω

RTh = (R1 ‖ R2) + R3 = (3 ‖ 6) + 2

= 3×
(
1× 2

1 + 2

)
+ 2 = 4Ω

A

B

6Ω12 V

Voc:

R3

R2

R1

2Ω3Ω

2 A

A

B

A

B

12 V

R3 R3

R2 R2

R1 R1

2Ω 2Ω3Ω 3Ω

6Ω 6Ω
2 A

Use superposition to find Voc:

V(1)
oc = 12× 6

9
= 8 V V(2)

oc = 4Ω× 2A = 8V

Voc = V(1)
oc + V(2)

oc = 8+ 8 = 16V

A

B

iL

RL

Pmax
L = 22 × 4 = 16W .

PL is maximum when RL = RTh = 4Ω

⇒ iL = VTh/(2RTh) = 2 A

RTh

VTh
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Maximum power transfer: simulation results

SEQUEL file: ee101 maxpwr 1.sqproj
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Maximum power transfer (sinusoidal steady state)

ZL

I

VTh

ZTh

Let ZL = RL + jXL, ZTh = RTh + jXTh, and I = Im ∠φ .

The power absorbed by ZL is,

P =
1

2
I 2
mRL

=
1

2

∣∣∣∣ VTh

ZTh + ZL

∣∣∣∣2 RL

=
1

2

|VTh|2

(RTh + RL)2 + (XTh + XL)2
RL .

For P to be maximum, (XTh + XL) must be zero. ⇒ XL = −XTh.

With XL = −XTh, we have,

P =
1

2

|VTh|2

(RTh + RL)2
RL ,

which is maximum for RL = RTh.

Therefore, for maximum power transfer to the load ZL, we need,

RL = RTh, XL = −XTh, i.e., ZL = Z∗
Th.
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Impedance matching

Input

signal

Audio

Amp

1 k

8Ω

N1 : N2

1 k

(
N1

N2

)2

× 8Ω

Calculate the turns ratio to provide maximum power transfer of the audio signal.

ZL = Z∗
Th →

(
N1

N2

)2

× 8 Ω = 1 kΩ →
N1

N2
=

√
1000

8
= 11.2
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Sinusoidal steady state

t=0

Vc

R

Vm cosωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V
(h)
c (t) + V

(p)
c (t) .

V
(h)
c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V
(h)
c (t) = A exp(−t/τ) , with τ = RC .

V
(p)
c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V
(p)
c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left and right sides.

M. B. Patil, IIT Bombay



Sinusoidal steady state

t=0

Vc

R

Vm cosωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V
(h)
c (t) + V

(p)
c (t) .

V
(h)
c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V
(h)
c (t) = A exp(−t/τ) , with τ = RC .

V
(p)
c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V
(p)
c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left and right sides.

M. B. Patil, IIT Bombay



Sinusoidal steady state

t=0

Vc

R

Vm cosωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V
(h)
c (t) + V

(p)
c (t) .

V
(h)
c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V
(h)
c (t) = A exp(−t/τ) , with τ = RC .

V
(p)
c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V
(p)
c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left and right sides.

M. B. Patil, IIT Bombay



Sinusoidal steady state

t=0

Vc

R

Vm cosωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V
(h)
c (t) + V

(p)
c (t) .

V
(h)
c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V
(h)
c (t) = A exp(−t/τ) , with τ = RC .

V
(p)
c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V
(p)
c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left and right sides.

M. B. Patil, IIT Bombay



Sinusoidal steady state

t=0

Vc

R

Vm cosωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V
(h)
c (t) + V

(p)
c (t) .

V
(h)
c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V
(h)
c (t) = A exp(−t/τ) , with τ = RC .

V
(p)
c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V
(p)
c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left and right sides.

M. B. Patil, IIT Bombay



Sinusoidal steady state

t=0

Vc

R

Vm cosωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V
(h)
c (t) + V

(p)
c (t) .

V
(h)
c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V
(h)
c (t) = A exp(−t/τ) , with τ = RC .

V
(p)
c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V
(p)
c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left and right sides.

M. B. Patil, IIT Bombay



Sinusoidal steady state

t=0

Vc

R

Vm cosωt C

R (C V ′c ) + Vc = Vm cos ωt , t > 0 . (1)

The solution Vc (t) is made up of two components, Vc (t) = V
(h)
c (t) + V

(p)
c (t) .

V
(h)
c (t) satisfies the homogeneous differential equation,

R C V ′c + Vc = 0 , (2)

from which, V
(h)
c (t) = A exp(−t/τ) , with τ = RC .

V
(p)
c (t) is a particular solution of (1). Since the forcing function is Vm cos ωt, we try

V
(p)
c (t) = C1 cos ωt + C2 sin ωt .

Substituting in (1), we get,

ωR C (−C1 sin ωt + C2 cos ωt) + C1 cos ωt + C2 sin ωt = Vm cos ωt .

C1 and C2 can be found by equating the coefficients of sin ωt and cos ωt on the left and right sides.

M. B. Patil, IIT Bombay



Sinusoidal steady state
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2 kΩ

0.5µF
Vm cosωt

Vm = 1V
f = 1 kHz

Vc

Vc (V)

* The complete solution is Vc (t) = A exp(−t/τ) + C1 cos ωt + C2 sin ωt .

* As t →∞, the exponential term becomes zero, and we are left with Vc (t) = C1 cos ωt + C2 sin ωt .

* This is known as the “sinusoidal steady state” response since all quantities (currents and voltages) in the
circuit are sinusoidal in nature.

* Any circuit containing resistors, capacitors, inductors, sinusoidal voltage and current sources (of the same
frequency), dependent (linear) sources behaves in a similar manner, viz., each current and voltage in the
circuit becomes purely sinusoidal as t →∞.
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Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents and voltages.

* A phasor is a complex number,

X = Xm 6 θ = Xm exp(jθ) ,

with the following interpretation in the time domain.

x(t) = Re
[
X e jωt

]
= Re

[
Xm e jθ e jωt

]
= Re

[
Xm e j(ωt+θ)

]
= Xm cos (ωt + θ)

* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steady state.

* Note that a phasor can be written in the polar form or rectangular form,
X = Xm 6 θ = Xm exp(jθ) = Xm cos θ + j Xm sin θ .

The term ωt is always implicit.

θ

Xm

Re (X)

Im (X)

X
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X = Xm 6 θ = Xm exp(jθ) = Xm cos θ + j Xm sin θ .

The term ωt is always implicit.
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Phasors: examples

Frequency domainTime domain

v1(t)=3.2 cos (ωt+30◦)V

V1 = 3.2 6 30◦ = 3.2 exp (jπ/6)V

i(t) = −1.5 cos (ωt+ 60◦)A

= 1.5 cos (ωt− 2π/3)A

= 1.5 cos (ωt+ π/3− π)A

I = 1.5 6 (−2π/3)A

v2(t) = −0.1 cos (ωt) V

= 0.1 cos (ωt+ π) V

V2 = 0.1 6 π V

i2(t) = 0.18 sin (ωt) A

= 0.18 cos (ωt− π/2) A

I2 = 0.18 6 (−π/2) A

I3 = 1+ j 1 A

=
√
2 6 45◦ A

i3(t) =
√
2 cos (ωt+ 45◦) A
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Addition of phasors

Consider addition of two sinusoidal quantities:

v(t) = v1(t) + v2(t)

= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

Now consider addition of the phasors corresponding to v1(t) and v2(t).

V = V1 + V2

= Vm1e jθ1 + Vm2e jθ2

In the time domain, V corresponds to ṽ(t), with

ṽ(t) = Re
[
Ve jωt

]
= Re

[(
Vm1e jθ1 + Vm2e jθ2

)
e jωt

]
= Re

[
Vm1e j(ωt+θ1) + Vm2e j(ωt+θ2)

]
= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

which is the same as v(t).
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ṽ(t) = Re
[
Ve jωt

]
= Re

[(
Vm1e jθ1 + Vm2e jθ2

)
e jωt

]

= Re
[
Vm1e j(ωt+θ1) + Vm2e j(ωt+θ2)

]
= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

which is the same as v(t).

M. B. Patil, IIT Bombay



Addition of phasors

Consider addition of two sinusoidal quantities:

v(t) = v1(t) + v2(t)

= Vm1 cos (ωt + θ1) + Vm2 cos (ωt + θ2)

Now consider addition of the phasors corresponding to v1(t) and v2(t).

V = V1 + V2

= Vm1e jθ1 + Vm2e jθ2

In the time domain, V corresponds to ṽ(t), with
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Addition of phasors

* Addition of sinusoidal quantities in the time domain can be replaced by addition
of the corresponding phasors in the sinusoidal steady state.

* The KCL and KVL equations,∑
ik (t) = 0 at a node, and∑
vk (t) = 0 in a loop,

amount to addition of sinusoidal quantities and can therefore be replaced by the
corresponding phasor equations,∑

Ik = 0 at a node, and∑
Vk = 0 in a loop.
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Impedance of a resistor

i(t)

Vv(t)

R ZI

Let i(t) = Im cos (ωt + θ).

v(t) = R i(t)

= R Im cos (ωt + θ)

≡ Vm cos (ωt + θ).

The phasors corresponding to i(t) and v(t) are, respectively,

I = Im 6 θ, V = R × Im 6 θ.

We have therefore the following relationship between V and I: V = R × I.

Thus, the impedance of a resistor, defined as, Z = V/I, is

Z = R + j 0
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We have therefore the following relationship between V and I: V = R × I.

Thus, the impedance of a resistor, defined as, Z = V/I, is

Z = R + j 0
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Impedance of a capacitor

C

v(t)

Ii(t)

V

Z

Let v(t) = Vm cos (ωt + θ).

i(t) = C
dv

dt
= −C ω Vm sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

i(t) = C ω Vm cos (ωt + θ + π/2).

In terms of phasors, V = Vm 6 θ, I = ωCVm 6 (θ+π/2).

I can be rewritten as,

I = ωCVm e j(θ+π/2) = ωCVm e jθ e jπ/2 = jωC
(
Vm e jθ

)
= jωC V

Thus, the impedance of a capacitor, Z = V/I, is Z = 1/(jωC) ,

and the admittance of a capacitor, Y = I/V, is Y = jωC .
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Impedance of an inductor

v(t)

Li(t) I

V

Z

Let i(t) = Im cos (ωt + θ).

v(t) = L
di

dt
= −Lω Im sin (ωt + θ).

Using the identity, cos (φ+ π/2) = − sin φ, we get

v(t) = Lω Im cos (ωt + θ + π/2).

In terms of phasors, I = Im 6 θ, V = ωLIm 6 (θ+π/2).

V can be rewritten as,

V = ωLIm e j(θ+π/2) = ωLIm e jθ e jπ/2 = jωL
(
Im e jθ

)
= jωL I

Thus, the impedance of an indcutor, Z = V/I, is Z = jωL ,

and the admittance of an inductor, Y = I/V, is Y = 1/(jωL) .
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Sources

Vsvs(t)Isis(t)

* An independent sinusoidal current source, is(t) = Im cos (ωt + θ), can be represented by the phasor Im 6 θ

(i.e., a constant complex number).

* An independent sinusoidal voltage source, vs(t) = Vm cos (ωt + θ), can be represented by the phasor
Vm 6 θ (i.e., a constant complex number).

* Dependent (linear) sources can be treated in the sinusoidal steady state in the same manner as a resistor,
i.e., by the corresponding phasor relationship.
For example, for a CCVS, we have,
v(t) = r ic (t) in the time domain.
V = r Ic in the frequency domain.
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations
∑

ik (t) = 0 and
∑

vk (t) = 0 can be written as
∑

Ik = 0 and∑
Vk = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z I in the frequency domain, which is similar
to V = R I in DC conditions (except that we are dealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., Vs = constant
(a complex number).

* For dependent sources, a time-domain relationship such as i(t) = β ic (t) translates to I = β Ic in the
frequency domain.

* Circuit analysis in the sinusoidal steady state using phasors is therefore very similar to DC circuits with
independent and dependent sources, and resistors.

* Series/parallel formulas for resistors, nodal analysis, mesh analysis, Thevenin’s and Norton’s theorems can
be directly applied to circuits in the sinusoidal steady state.
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RL circuit

I

Vm 6 0◦ jωL

R

0

1

−1
 
 
 
 
 
 
 
 
 
 
 

time (ms)

 0  10  20  30

R = 1Ω

L = 1.6mH

vs(t) (V)

i(t) (A)

I =
Vm∠0

R + jωL
≡ Im∠(−θ),

where Im =
Vm√

R2 + ω2L2
, and θ = tan−1(ωL/R).

In the time domain, i(t) = Im cos (ωt − θ), which lags the source voltage since the peak (or zero) of i(t) occurs
t = θ/ω seconds after that of the source voltage.

For R = 1 Ω, L = 1.6 mH, f = 50 Hz, θ = 26.6◦, tlag = 1.48 ms.

(SEQUEL file: ee101 rl ac 1.sqproj)
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RL circuit

I

VR

VLVs

R

jωLVm 6 0◦

Re (V)

Im (V)

θ

VR

VL

Vs

I =
Vm∠0

R + jωL
≡ Im∠(−θ),

where Im =
Vm√

R2 + ω2L2
, and θ = tan−1(ωL/R).

VR = I× R = R Im ∠(−θ) ,

VL = I× jωL = ωImL∠(−θ + π/2) ,

The KVL equation, Vs = VR + VL, can be represented in the complex plane by a “phasor diagram.”

If R � |jωL|, θ → 0, |VR| ' |Vs| = Vm.

If R � |jωL|, θ → π/2, |VL| ' |Vs| = Vm.
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RC circuit

I

1/jωCVm 6 0◦

R

0

−1

1

 
 
 
 
 
 
 
 
 
 
 

time (ms)

 0  10  20  30

R = 1Ω

C = 5.3mF

vs(t) (V)

i(t) (A)

I =
Vm∠0

R + 1/jωC
≡ Im∠θ,

where Im =
ωCVm√

1 + (ωRC)2
, and θ = π/2− tan−1(ωRC).

In the time domain, i(t) = Im cos (ωt + θ), which leads the source voltage since the peak (or zero) of i(t)
occurs t = θ/ω seconds before that of the source voltage.

For R = 1 Ω, C = 5.3 mF, f = 50 Hz, θ = 31◦, tlead = 1.72 ms.

(SEQUEL file: ee101 rc ac 1.sqproj)
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VR = I× R = R Im ∠θ ,

VC = I× (1/jωC) = (Im/ωC)∠(θ − π/2) ,

The KVL equation, Vs = VR + VC, can be represented in the complex plane by a “phasor diagram.”

If R � |1/jωC |, θ → 0, |VR| ' |Vs| = Vm.

If R � |1/jωC |, θ → π/2, |VC| ' |Vs| = Vm.
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Series/parallel connections

B

A

B

A

(ω=100 rad/s)

Z
0.25 H

100 µF

Z1

Z2

Z1 = j× 100× 0.25 = j 25Ω

Z2 = −j/(100× 100× 10−6) = −j 100Ω

Z = Z1 + Z2 = −j 75Ω

B

A

B

A

(ω=100 rad/s)

Z
100 µF

0.25 H
Z2Z1

Z =
Z1Z2

Z1 + Z2

=
25× 100

−j 75

=
(j 25)× (−j 100)

j 25− j 100

= j 33.3Ω
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Impedance example

B

A

B

A

Obtain Z in polar form.

(ω=100 rad/s)

j 10 Ω Z10 Ω
Z1 Z2

Z =
10× j10

10+ j10
=

j10

1+ j

=
j10

1+ j
× 1− j

1− j

Convert to polar form → Z = 7.07 6 45◦Ω

=
10+ j10

2
= 5+ j5Ω

Method 1:

Method 2:

= 5
√
2 6 (π/2− π/4) = 7.07 6 45◦Ω

Z =
10× j10

10+ j10
=

100 6 π/2

10
√
2 6 π/4
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Circuit example

iL

is

15 mH

iC

2mF

10Ω2Ω

f = 50 Hz
10 6 0◦ V

Z3 Z4

Z1

IC

Vs

Z2Is

IL

ZEQVs

Is

Z3 =
1

j × 2π × 50× 2× 10−3
= −j 1.6 Ω

Z4 = j 2π × 50× 15× 10−3 = j 4.7 Ω

ZEQ = Z1 + Z3 ‖ (Z2 + Z4)

= 2 + (−j 1.6) ‖ (10 + j 4.7) = 2 +
(−j 1.6)× (10 + j 4.7)

−j 1.6 + 10 + j 4.7

= 2 +
1.6∠ (−90◦)× 11.05∠ (25.2◦)

10.47∠ (17.2◦)
= 2 +

17.7∠ (−64.8◦)

10.47∠ (17.2◦)

= 2 + 1.69∠ (−82◦) = 2 + (0.235− j 1.67)

= 2.235− j 1.67 = 2.79∠ (−36.8◦) Ω
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17.7∠ (−64.8◦)

10.47∠ (17.2◦)

= 2 + 1.69∠ (−82◦) = 2 + (0.235− j 1.67)

= 2.235− j 1.67 = 2.79∠ (−36.8◦) Ω
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Circuit example (continued)
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