
Sequential circuits

* The digital circuits we have seen so far (gates, multiplexer, demultiplexer, encoders,
decoders) are combinatorial in nature, i.e., the output(s) depends only on the
present values of the inputs and not on their past values.

* In sequential circuits, the “state” of the circuit is crucial in determining the output
values. For a given input combination, a sequential circuit may produce different
output values, depending on its previous state.

* In other words, a sequential circuit has a memory (of its past state) whereas a
combinatorial circuit has no memory.

* Sequential circuits (together with combinatorial circuits) make it possible to build
several useful applications, such as counters, registers, arithmetic/logic unit (ALU),
all the way to microprocessors.

M. B. Patil, IIT Bombay

Sequential circuits

* The digital circuits we have seen so far (gates, multiplexer, demultiplexer, encoders,
decoders) are combinatorial in nature, i.e., the output(s) depends only on the
present values of the inputs and not on their past values.

* In sequential circuits, the “state” of the circuit is crucial in determining the output
values. For a given input combination, a sequential circuit may produce different
output values, depending on its previous state.

* In other words, a sequential circuit has a memory (of its past state) whereas a
combinatorial circuit has no memory.

* Sequential circuits (together with combinatorial circuits) make it possible to build
several useful applications, such as counters, registers, arithmetic/logic unit (ALU),
all the way to microprocessors.

M. B. Patil, IIT Bombay

Sequential circuits

* The digital circuits we have seen so far (gates, multiplexer, demultiplexer, encoders,
decoders) are combinatorial in nature, i.e., the output(s) depends only on the
present values of the inputs and not on their past values.

* In sequential circuits, the “state” of the circuit is crucial in determining the output
values. For a given input combination, a sequential circuit may produce different
output values, depending on its previous state.

* In other words, a sequential circuit has a memory (of its past state) whereas a
combinatorial circuit has no memory.

* Sequential circuits (together with combinatorial circuits) make it possible to build
several useful applications, such as counters, registers, arithmetic/logic unit (ALU),
all the way to microprocessors.

M. B. Patil, IIT Bombay

Sequential circuits

* The digital circuits we have seen so far (gates, multiplexer, demultiplexer, encoders,
decoders) are combinatorial in nature, i.e., the output(s) depends only on the
present values of the inputs and not on their past values.

* In sequential circuits, the “state” of the circuit is crucial in determining the output
values. For a given input combination, a sequential circuit may produce different
output values, depending on its previous state.

* In other words, a sequential circuit has a memory (of its past state) whereas a
combinatorial circuit has no memory.

* Sequential circuits (together with combinatorial circuits) make it possible to build
several useful applications, such as counters, registers, arithmetic/logic unit (ALU),
all the way to microprocessors.

M. B. Patil, IIT Bombay

Sequential circuits

* The digital circuits we have seen so far (gates, multiplexer, demultiplexer, encoders,
decoders) are combinatorial in nature, i.e., the output(s) depends only on the
present values of the inputs and not on their past values.

* In sequential circuits, the “state” of the circuit is crucial in determining the output
values. For a given input combination, a sequential circuit may produce different
output values, depending on its previous state.

* In other words, a sequential circuit has a memory (of its past state) whereas a
combinatorial circuit has no memory.

* Sequential circuits (together with combinatorial circuits) make it possible to build
several useful applications, such as counters, registers, arithmetic/logic unit (ALU),
all the way to microprocessors.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0
1

0

10

0

1
0

1

1 0

1

1
X1

X2

previous

0

0
1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.

B = 0 ⇒ X2 = 1 ⇒ X1 =AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.
→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0

1

0

10

0

1
0

1

1 0

1

1
X1

X2

previous

0

0
1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.

B = 0 ⇒ X2 = 1 ⇒ X1 =AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.
→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0

1

0

10

0

1
0

1

1 0

1

1
X1

X2

previous

0

0
1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.
B = 0 ⇒ X2 = 1

⇒ X1 =AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.
→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0
1

0

10

0

1
0

1

1 0

1

1
X1

X2

previous

0

0
1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.
B = 0 ⇒ X2 = 1

⇒ X1 =AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.
→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0
1

0

10

0

1
0

1

1 0

1

1
X1

X2

previous

0

0
1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 =AX2 = 1 · 1 = 0.

Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.
→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0
1

0

10

0

1
0

1

1 0

1

1
X1

X2

previous

0

0
1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 =AX2 = 1 · 1 = 0.

Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.
→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0
1

0

10

0

1
0

1

1 0

1

1
X1

X2

previous

0

0
1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 =AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.
→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0
1

0

10

0

1

0

1

1 0

1

1
X1

X2

previous

0

0
1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 =AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.

→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0
1

0

10

0

1
0

1

1 0

1

1
X1

X2

previous

0

0
1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 =AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.
→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0
1

0

10

0

1
0

1

1 0

1

1

X1

X2

previous

0

0
1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 =AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.
→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0
1

0

10

0

1
0

1

1 0

1

1

X1

X2

previous

0

0
1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 =AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.
→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0
1

0

10

0

1
0

1

1 0

1

1
X1

X2

previous

0

0
1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 =AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.
→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0
1

0

10

0

1
0

1

1 0

1

1
X1

X2

previous

0

0
1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 =AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.
→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.

Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0
1

0

10

0

1
0

1

1 0

1

1
X1

X2

previous

0

0
1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 =AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.
→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.

The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0
1

0

10

0

1
0

1

1 0

1

1
X1

X2

previous

0

0
1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 =AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.
→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0
1

0

10

0

1
0

1

1 0

1

1
X1

X2

previous

0

0

1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 =AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.
→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

X1

X2

1

0
1

0

10

0

1
0

1

1 0

1

1
X1

X2

previous

0

0
1 1

* A, B: inputs, X1, X2: outputs

* Consider A= 1, B = 0.
B = 0 ⇒ X2 = 1 ⇒ X1 =AX2 = 1 · 1 = 0.
Overall, we have X1 = 0, X2 = 1.

* Consider A= 0, B = 1.
→ X1 = 1, X2 = 0.

* Consider A=B = 1.

X1 =AX2 =X2, X2 =B X1 =X1 ⇒ X1 =X2

If X1 = 1, X2 = 0 previously, the circuit continues to “hold” that state.
Similarly, if X1 = 0, X2 = 1 previously, the circuit continues to “hold” that state.
The circuit has “latched in” the previous state.

* For A=B = 0, X1 and X2 are both 1. This combination of A and B is not allowed for reasons that will
become clear later.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

X1

X2

R

S

R S QQ

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

* The combination A= 1, B = 0 serves to reset X1 to 0 (irrespective of the previous state of the latch).

* The combination A= 0, B = 1 serves to set X1 to 1 (irrespective of the previous state of the latch).

* In other words,
A= 1, B = 0 → latch gets reset to 0.
A= 0, B = 1 → latch gets set to 1.

* The A input is therefore called the RESET (R) input, and B is called the SET (S) input of the latch.

* X1 is denoted by Q, and X2 (which is X1 in all cases except for A=B = 0) is denoted by Q.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

X1

X2

R

S

R S QQ

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

* The combination A= 1, B = 0 serves to reset X1 to 0 (irrespective of the previous state of the latch).

* The combination A= 0, B = 1 serves to set X1 to 1 (irrespective of the previous state of the latch).

* In other words,
A= 1, B = 0 → latch gets reset to 0.
A= 0, B = 1 → latch gets set to 1.

* The A input is therefore called the RESET (R) input, and B is called the SET (S) input of the latch.

* X1 is denoted by Q, and X2 (which is X1 in all cases except for A=B = 0) is denoted by Q.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

X1

X2

R

S

R S QQ

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

* The combination A= 1, B = 0 serves to reset X1 to 0 (irrespective of the previous state of the latch).

* The combination A= 0, B = 1 serves to set X1 to 1 (irrespective of the previous state of the latch).

* In other words,
A= 1, B = 0 → latch gets reset to 0.
A= 0, B = 1 → latch gets set to 1.

* The A input is therefore called the RESET (R) input, and B is called the SET (S) input of the latch.

* X1 is denoted by Q, and X2 (which is X1 in all cases except for A=B = 0) is denoted by Q.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

X1

X2

R

S

R S QQ

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

* The combination A= 1, B = 0 serves to reset X1 to 0 (irrespective of the previous state of the latch).

* The combination A= 0, B = 1 serves to set X1 to 1 (irrespective of the previous state of the latch).

* In other words,
A= 1, B = 0 → latch gets reset to 0.
A= 0, B = 1 → latch gets set to 1.

* The A input is therefore called the RESET (R) input, and B is called the SET (S) input of the latch.

* X1 is denoted by Q, and X2 (which is X1 in all cases except for A=B = 0) is denoted by Q.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

X1

X2

R

S

R S QQ

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

* The combination A= 1, B = 0 serves to reset X1 to 0 (irrespective of the previous state of the latch).

* The combination A= 0, B = 1 serves to set X1 to 1 (irrespective of the previous state of the latch).

* In other words,
A= 1, B = 0 → latch gets reset to 0.
A= 0, B = 1 → latch gets set to 1.

* The A input is therefore called the RESET (R) input, and B is called the SET (S) input of the latch.

* X1 is denoted by Q, and X2 (which is X1 in all cases except for A=B = 0) is denoted by Q.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

X1

X2

R

S

R S QQ

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

* The combination A= 1, B = 0 serves to reset X1 to 0 (irrespective of the previous state of the latch).

* The combination A= 0, B = 1 serves to set X1 to 1 (irrespective of the previous state of the latch).

* In other words,
A= 1, B = 0 → latch gets reset to 0.
A= 0, B = 1 → latch gets set to 1.

* The A input is therefore called the RESET (R) input, and B is called the SET (S) input of the latch.

* X1 is denoted by Q, and X2 (which is X1 in all cases except for A=B = 0) is denoted by Q.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

A

B

A B X2X1

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

X1

X2

R

S

R S QQ

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

* The combination A= 1, B = 0 serves to reset X1 to 0 (irrespective of the previous state of the latch).

* The combination A= 0, B = 1 serves to set X1 to 1 (irrespective of the previous state of the latch).

* In other words,
A= 1, B = 0 → latch gets reset to 0.
A= 0, B = 1 → latch gets set to 1.

* The A input is therefore called the RESET (R) input, and B is called the SET (S) input of the latch.

* X1 is denoted by Q, and X2 (which is X1 in all cases except for A=B = 0) is denoted by Q.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

t

t

t

t

R S

t1 t2

Q

t3

Q

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

R

S

Q

Q
Q

Q

* Up to t = t1, R = 0, S = 1 → Q = 1.

* At t = t1, R goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

* At t = t2, S goes low → R = 1, S = 0 → Q = 0.

* At t = t3, S goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

t

t

t

t

R S

t1 t2

Q

t3

Q

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

R

S

Q

Q
Q

Q

* Up to t = t1, R = 0, S = 1 → Q = 1.

* At t = t1, R goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

* At t = t2, S goes low → R = 1, S = 0 → Q = 0.

* At t = t3, S goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

t

t

t

t

R S

t1 t2

Q

t3

Q

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

R

S

Q

Q
Q

Q

* Up to t = t1, R = 0, S = 1 → Q = 1.

* At t = t1, R goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

* At t = t2, S goes low → R = 1, S = 0 → Q = 0.

* At t = t3, S goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

t

t

t

t

R S

t1 t2

Q

t3

Q

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

R

S

Q

Q
Q

Q

* Up to t = t1, R = 0, S = 1 → Q = 1.

* At t = t1, R goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

* At t = t2, S goes low → R = 1, S = 0 → Q = 0.

* At t = t3, S goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

t

t

t

t

R S

t1 t2

Q

t3

Q

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

R

S

Q

Q
Q

Q

* Up to t = t1, R = 0, S = 1 → Q = 1.

* At t = t1, R goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

* At t = t2, S goes low → R = 1, S = 0 → Q = 0.

* At t = t3, S goes high → R = S = 1, and the latch holds its previous state
→ no change at the output.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

t

t

t

t

R S

t3t2

Q

t1

Q
R

S1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

Q

Q

t4 t5

?

?

Why not allow R = S = 0?

- It makes Q =Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting from R =S = 0), the final
outputs Q and Q cannot be uniquely determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0,
depending on the delays associated with the two NAND gates.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

t

t

t

t

R S

t3t2

Q

t1

Q
R

S1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

Q

Q

t4 t5

?

?

Why not allow R = S = 0?

- It makes Q =Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting from R =S = 0), the final
outputs Q and Q cannot be uniquely determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0,
depending on the delays associated with the two NAND gates.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

t

t

t

t

R S

t3t2

Q

t1

Q
R

S1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

Q

Q

t4 t5

?

?

Why not allow R = S = 0?

- It makes Q =Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting from R =S = 0), the final
outputs Q and Q cannot be uniquely determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0,
depending on the delays associated with the two NAND gates.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

t

t

t

t

R S

t3t2

Q

t1

Q
R

S1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

Q

Q

t4 t5

?

?

Why not allow R = S = 0?

- It makes Q =Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting from R = S = 0), the final
outputs Q and Q cannot be uniquely determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0,
depending on the delays associated with the two NAND gates.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

t

t

t

t

R S

t3t2

Q

t1

Q
R

S1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

Q

Q

t4

t5

?

?

Why not allow R = S = 0?

- It makes Q =Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting from R = S = 0), the final
outputs Q and Q cannot be uniquely determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0,
depending on the delays associated with the two NAND gates.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

t

t

t

t

R S

t3t2

Q

t1

Q
R

S1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

Q

Q

t4

t5

?

?

Why not allow R = S = 0?

- It makes Q =Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting from R = S = 0), the final
outputs Q and Q cannot be uniquely determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0,
depending on the delays associated with the two NAND gates.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

t

t

t

t

R S

t3t2

Q

t1

Q
R

S1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

Q

Q

t4 t5

?

?

Why not allow R = S = 0?

- It makes Q =Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting from R = S = 0), the final
outputs Q and Q cannot be uniquely determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0,
depending on the delays associated with the two NAND gates.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

t

t

t

t

R S

t3t2

Q

t1

Q
R

S1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

Q

Q

t4 t5

?

?

Why not allow R = S = 0?

- It makes Q =Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting from R = S = 0), the final
outputs Q and Q cannot be uniquely determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0,
depending on the delays associated with the two NAND gates.

M. B. Patil, IIT Bombay

NAND latch (RS latch)

R

S

t

t

t

t

R S

t3t2

Q

t1

Q
R

S1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

Q

Q

t4 t5

?

?

Why not allow R = S = 0?

- It makes Q =Q = 1, i.e., Q and Q are not inverse of each other any more.

- More importantly, when R and S both become 1 simultaneously (starting from R = S = 0), the final
outputs Q and Q cannot be uniquely determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0,
depending on the delays associated with the two NAND gates.

M. B. Patil, IIT Bombay

NOR latch (RS latch)

R

S

R S QQ

1

1

0 0

0

0

1 1

1

1 0

0

previous

invalid

Q

Q

* The NOR latch is similar to the NAND latch:
When R = 1, S = 0, the latch gets reset to Q = 0.
When R = 0, S = 1, the latch gets set to Q = 1.

* For R = S = 0, the latch retains its previous state (i.e., the previous values of Q and Q).

* R = S = 1 is not allowed for reasons similar to those discussed in the context of the NAND latch.

M. B. Patil, IIT Bombay

NOR latch (RS latch)

R

S

R S QQ

1

1

0 0

0

0

1 1

1

1 0

0

previous

invalid

Q

Q

* The NOR latch is similar to the NAND latch:
When R = 1, S = 0, the latch gets reset to Q = 0.
When R = 0, S = 1, the latch gets set to Q = 1.

* For R = S = 0, the latch retains its previous state (i.e., the previous values of Q and Q).

* R = S = 1 is not allowed for reasons similar to those discussed in the context of the NAND latch.

M. B. Patil, IIT Bombay

NOR latch (RS latch)

R

S

R S QQ

1

1

0 0

0

0

1 1

1

1 0

0

previous

invalid

Q

Q

* The NOR latch is similar to the NAND latch:
When R = 1, S = 0, the latch gets reset to Q = 0.
When R = 0, S = 1, the latch gets set to Q = 1.

* For R = S = 0, the latch retains its previous state (i.e., the previous values of Q and Q).

* R = S = 1 is not allowed for reasons similar to those discussed in the context of the NAND latch.

M. B. Patil, IIT Bombay

NOR latch (RS latch)

R

S

R S QQ

1

1

0 0

0

0

1 1

1

1 0

0

previous

invalid

Q

Q

* The NOR latch is similar to the NAND latch:
When R = 1, S = 0, the latch gets reset to Q = 0.
When R = 0, S = 1, the latch gets set to Q = 1.

* For R = S = 0, the latch retains its previous state (i.e., the previous values of Q and Q).

* R = S = 1 is not allowed for reasons similar to those discussed in the context of the NAND latch.

M. B. Patil, IIT Bombay

Comparison of NAND and NOR latches

R

S

R

S

R S

R S

Q

Q

Q

Q

1

1

0 0

0

0

1 1

1

1 0

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

0

previous

invalid

Q

Q

Q

Q

M. B. Patil, IIT Bombay

NAND latch: alternative node names

R

S

R S QQ

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

QQRSS

R

1

1

1 1

0

0

0 0

1

1 0

Active low input nodes:

0

previous

invalid

Q

Q

M. B. Patil, IIT Bombay

NAND latch: alternative node names

R

S

R S QQ

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

Q

Q

QQRSS

R

1

1

1 1

0

0

0 0

1

1 0

Active low input nodes:

0

previous

invalid

Q

Q

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

B

A

Vs VoR

expected
t

Vo

Vs

actual
t

Vs

Vo

* When the switch is thrown from A to B, Vo is expected to go from 0V to Vs (say, 5V).

* However, mechanical switches suffer from “chatter” or “bouncing,” i.e., the transition from A to B is not a
single, clean one. As a result, Vo oscillates between 0V and 5V before settling to its final value (5V).

* In some applications, this chatter can cause malfunction → need a way to remove the chatter.

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

B

A

Vs VoR

expected
t

Vo

Vs

actual
t

Vs

Vo

* When the switch is thrown from A to B, Vo is expected to go from 0V to Vs (say, 5V).

* However, mechanical switches suffer from “chatter” or “bouncing,” i.e., the transition from A to B is not a
single, clean one. As a result, Vo oscillates between 0V and 5V before settling to its final value (5V).

* In some applications, this chatter can cause malfunction → need a way to remove the chatter.

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

B

A

Vs VoR

expected
t

Vo

Vs

actual
t

Vs

Vo

* When the switch is thrown from A to B, Vo is expected to go from 0V to Vs (say, 5V).

* However, mechanical switches suffer from “chatter” or “bouncing,” i.e., the transition from A to B is not a
single, clean one. As a result, Vo oscillates between 0V and 5V before settling to its final value (5V).

* In some applications, this chatter can cause malfunction → need a way to remove the chatter.

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

B

A

Vs VoR

expected
t

Vo

Vs

actual
t

Vs

Vo

* When the switch is thrown from A to B, Vo is expected to go from 0V to Vs (say, 5V).

* However, mechanical switches suffer from “chatter” or “bouncing,” i.e., the transition from A to B is not a
single, clean one. As a result, Vo oscillates between 0V and 5V before settling to its final value (5V).

* In some applications, this chatter can cause malfunction → need a way to remove the chatter.

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

B

A

Vs VoR

expected
t

Vo

Vs

actual
t

Vs

Vo

* When the switch is thrown from A to B, Vo is expected to go from 0V to Vs (say, 5V).

* However, mechanical switches suffer from “chatter” or “bouncing,” i.e., the transition from A to B is not a
single, clean one. As a result, Vo oscillates between 0V and 5V before settling to its final value (5V).

* In some applications, this chatter can cause malfunction → need a way to remove the chatter.

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

B

A

Vs VoR

expected
t

Vo

Vs

actual
t

Vs

Vo

* When the switch is thrown from A to B, Vo is expected to go from 0V to Vs (say, 5V).

* However, mechanical switches suffer from “chatter” or “bouncing,” i.e., the transition from A to B is not a
single, clean one. As a result, Vo oscillates between 0V and 5V before settling to its final value (5V).

* In some applications, this chatter can cause malfunction → need a way to remove the chatter.

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

R S
t

t

t

A

B

QQ

S

R

5V

5V

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

R

S

Q

Q

* Because of the chatter, the S and R inputs may have multiple transitions when the switch is thrown from
A to B.

* However, for S =R = 1, the previous value of Q is retained, causing a single transition in Q, as desired.

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

R S
t

t

t

A

B

QQ

S

R

5V

5V

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

R

S

Q

Q

* Because of the chatter, the S and R inputs may have multiple transitions when the switch is thrown from
A to B.

* However, for S =R = 1, the previous value of Q is retained, causing a single transition in Q, as desired.

M. B. Patil, IIT Bombay

Chatter (bouncing) due to a mechanical switch

R S
t

t

t

A

B

QQ

S

R

5V

5V

1

1

1 1

0

0

0 0

1

1 0

0

previous

invalid

R

S

Q

Q

* Because of the chatter, the S and R inputs may have multiple transitions when the switch is thrown from
A to B.

* However, for S =R = 1, the previous value of Q is retained, causing a single transition in Q, as desired.

M. B. Patil, IIT Bombay

The “clock”

* Complex digital circuits are generally designed for synchronous operation, i.e., transitions in the various
signals are synchronised with the clock.

* Synchronous circuits are easier to design and troubleshoot because the voltages at the nodes (both output
nodes and internal nodes) can change only at specific times.

* A clock is a periodic signal, with a positive-going transition and a negative-going transition.

positive edge negative edge

T

1

t
0

* The clock frequency determines the overall speed of the circuit. For example, a processor that operates
with a 1 GHz clock is 10 times faster than one that operates with a 100 MHz clock.

Intel 80286 (IBM PC-AT): 6 MHz
Modern CPU chips: 2 to 3 GHz.

M. B. Patil, IIT Bombay

The “clock”

* Complex digital circuits are generally designed for synchronous operation, i.e., transitions in the various
signals are synchronised with the clock.

* Synchronous circuits are easier to design and troubleshoot because the voltages at the nodes (both output
nodes and internal nodes) can change only at specific times.

* A clock is a periodic signal, with a positive-going transition and a negative-going transition.

positive edge negative edge

T

1

t
0

* The clock frequency determines the overall speed of the circuit. For example, a processor that operates
with a 1 GHz clock is 10 times faster than one that operates with a 100 MHz clock.

Intel 80286 (IBM PC-AT): 6 MHz
Modern CPU chips: 2 to 3 GHz.

M. B. Patil, IIT Bombay

The “clock”

* Complex digital circuits are generally designed for synchronous operation, i.e., transitions in the various
signals are synchronised with the clock.

* Synchronous circuits are easier to design and troubleshoot because the voltages at the nodes (both output
nodes and internal nodes) can change only at specific times.

* A clock is a periodic signal, with a positive-going transition and a negative-going transition.

positive edge negative edge

T

1

t
0

* The clock frequency determines the overall speed of the circuit. For example, a processor that operates
with a 1 GHz clock is 10 times faster than one that operates with a 100 MHz clock.

Intel 80286 (IBM PC-AT): 6 MHz
Modern CPU chips: 2 to 3 GHz.

M. B. Patil, IIT Bombay

The “clock”

* Complex digital circuits are generally designed for synchronous operation, i.e., transitions in the various
signals are synchronised with the clock.

* Synchronous circuits are easier to design and troubleshoot because the voltages at the nodes (both output
nodes and internal nodes) can change only at specific times.

* A clock is a periodic signal, with a positive-going transition and a negative-going transition.

positive edge negative edge

T

1

t
0

* The clock frequency determines the overall speed of the circuit. For example, a processor that operates
with a 1 GHz clock is 10 times faster than one that operates with a 100 MHz clock.

Intel 80286 (IBM PC-AT): 6 MHz
Modern CPU chips: 2 to 3 GHz.

M. B. Patil, IIT Bombay

The “clock”

* Complex digital circuits are generally designed for synchronous operation, i.e., transitions in the various
signals are synchronised with the clock.

* Synchronous circuits are easier to design and troubleshoot because the voltages at the nodes (both output
nodes and internal nodes) can change only at specific times.

* A clock is a periodic signal, with a positive-going transition and a negative-going transition.

positive edge negative edge

T

1

t
0

* The clock frequency determines the overall speed of the circuit. For example, a processor that operates
with a 1 GHz clock is 10 times faster than one that operates with a 100 MHz clock.

Intel 80286 (IBM PC-AT): 6 MHz
Modern CPU chips: 2 to 3 GHz.

M. B. Patil, IIT Bombay

Clocked RS latch

0 1

01

0 1

01

B

CLK R S
A B

Clocked RS latch NAND RS latch

invalid

previous

previous

previous

invalid

A

B

S

CLK

R

A Q
Q

Q
Q

1

1

0

0

0 0

11

1

1

1

1

0 X X
1

1

1 1

0

0

0 0
Q

Q

Q

Q

* When clock is inactive (0), A=B = 1, and the latch holds the previous state.

* When clock is active (1), A=S , B =R. Using the truth table for the NAND RS latch (right), we can
construct the truth table for the clocked RS latch.

* Note that the above table is sensitive to the level of the clock (i.e., whether CLK is 0 or 1).

M. B. Patil, IIT Bombay

Clocked RS latch

0 1

01

0 1

01

B

CLK R S
A B

Clocked RS latch NAND RS latch

invalid

previous

previous

previous

invalid

A

B

S

CLK

R

A Q
Q

Q
Q

1

1

0

0

0 0

11

1

1

1

1

0 X X
1

1

1 1

0

0

0 0
Q

Q

Q

Q

* When clock is inactive (0), A=B = 1, and the latch holds the previous state.

* When clock is active (1), A=S , B =R. Using the truth table for the NAND RS latch (right), we can
construct the truth table for the clocked RS latch.

* Note that the above table is sensitive to the level of the clock (i.e., whether CLK is 0 or 1).

M. B. Patil, IIT Bombay

Clocked RS latch

0 1

01

0 1

01

B

CLK R S
A B

Clocked RS latch NAND RS latch

invalid

previous

previous

previous

invalid

A

B

S

CLK

R

A Q
Q

Q
Q

1

1

0

0

0 0

11

1

1

1

1

0 X X
1

1

1 1

0

0

0 0
Q

Q

Q

Q

* When clock is inactive (0), A=B = 1, and the latch holds the previous state.

* When clock is active (1), A= S , B =R. Using the truth table for the NAND RS latch (right), we can
construct the truth table for the clocked RS latch.

* Note that the above table is sensitive to the level of the clock (i.e., whether CLK is 0 or 1).

M. B. Patil, IIT Bombay

Clocked RS latch

0 1

01

0 1

01

B

CLK R S
A B

Clocked RS latch NAND RS latch

invalid

previous

previous

previous

invalid

A

B

S

CLK

R

A Q
Q

Q
Q

1

1

0

0

0 0

11

1

1

1

1

0 X X
1

1

1 1

0

0

0 0
Q

Q

Q

Q

* When clock is inactive (0), A=B = 1, and the latch holds the previous state.

* When clock is active (1), A= S , B =R. Using the truth table for the NAND RS latch (right), we can
construct the truth table for the clocked RS latch.

* Note that the above table is sensitive to the level of the clock (i.e., whether CLK is 0 or 1).

M. B. Patil, IIT Bombay

Clocked RS latch

R

S

Q

0 1

01

CLK

B

CLK R S

invalid

previous

previous

S

CLK

R

A

 0.4 0.6 0.8 0.20

time (msec)

QQ

1

1

0

0

0 0

11

1

1

1

1

0 X X

SEQUEL file: ee101 rs 1.sqproj

Q

Q

M. B. Patil, IIT Bombay

Edge-triggered flip-flops

* The clocked RS latch seen previously is level-sensitive, i.e., if the clock is active (CLK = 1), the flip-flop
output is allowed to change, depending on the R and S inputs.

* In an edge-sensitive flip-flop, the output can change only at the active clock edge (i.e., CLK transition
from 0 to 1 or from 1 to 0).

* Edge-sensitive flip-flops are denoted by the following symbols:

R

CLK

S

R

CLK

S

negative edge−triggered flip−floppositive edge−triggered flip−flop

Q

Q

Q

Q

M. B. Patil, IIT Bombay

Edge-triggered flip-flops

* The clocked RS latch seen previously is level-sensitive, i.e., if the clock is active (CLK = 1), the flip-flop
output is allowed to change, depending on the R and S inputs.

* In an edge-sensitive flip-flop, the output can change only at the active clock edge (i.e., CLK transition
from 0 to 1 or from 1 to 0).

* Edge-sensitive flip-flops are denoted by the following symbols:

R

CLK

S

R

CLK

S

negative edge−triggered flip−floppositive edge−triggered flip−flop

Q

Q

Q

Q

M. B. Patil, IIT Bombay

Edge-triggered flip-flops

* The clocked RS latch seen previously is level-sensitive, i.e., if the clock is active (CLK = 1), the flip-flop
output is allowed to change, depending on the R and S inputs.

* In an edge-sensitive flip-flop, the output can change only at the active clock edge (i.e., CLK transition
from 0 to 1 or from 1 to 0).

* Edge-sensitive flip-flops are denoted by the following symbols:

R

CLK

S

R

CLK

S

negative edge−triggered flip−floppositive edge−triggered flip−flop

Q

Q

Q

Q

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

QQ

1

1

1 1

0

0

0 0
Q

Q

Truth table for JK flip−flop

CLK J K

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing
happens as long as CLK = 0.

* When CLK = 1:

- J =K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 =Qn, where n denotes the nth clock
pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S =Qn.

Case (i): Qn = 0 → S = 1 (i.e., R =S = 1) → Qn+1 =Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

QQ

1

1

1 1

0

0

0 0
Q

Q

Truth table for JK flip−flop

CLK J K

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing
happens as long as CLK = 0.

* When CLK = 1:

- J =K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 =Qn, where n denotes the nth clock
pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S =Qn.

Case (i): Qn = 0 → S = 1 (i.e., R =S = 1) → Qn+1 =Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

QQ

1

1

1 1

0

0

0 0
Q

Q

Truth table for JK flip−flop

CLK J K

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing
happens as long as CLK = 0.

* When CLK = 1:

- J =K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 =Qn, where n denotes the nth clock
pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S =Qn.

Case (i): Qn = 0 → S = 1 (i.e., R =S = 1) → Qn+1 =Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

QQ

1

1

1 1

0

0

0 0
Q

Q

Truth table for JK flip−flop

CLK J K

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing
happens as long as CLK = 0.

* When CLK = 1:

- J =K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 =Qn, where n denotes the nth clock
pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S =Qn.

Case (i): Qn = 0 → S = 1 (i.e., R =S = 1) → Qn+1 =Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

QQ

1

1

1 1

0

0

0 0
Q

Q

Truth table for JK flip−flop

CLK J K

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing
happens as long as CLK = 0.

* When CLK = 1:

- J =K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 =Qn, where n denotes the nth clock
pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S =Qn.

Case (i): Qn = 0 → S = 1 (i.e., R =S = 1) → Qn+1 =Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

QQ

1

1

1 1

0

0

0 0
Q

Q

Truth table for JK flip−flop

CLK J K

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing
happens as long as CLK = 0.

* When CLK = 1:

- J =K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 =Qn, where n denotes the nth clock
pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S =Qn.

Case (i): Qn = 0 → S = 1 (i.e., R =S = 1) → Qn+1 =Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

QQ

1

1

1 1

0

0

0 0
Q

Q

Truth table for JK flip−flop

CLK J K

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing
happens as long as CLK = 0.

* When CLK = 1:

- J =K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 =Qn, where n denotes the nth clock
pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S =Qn.

Case (i): Qn = 0 → S = 1 (i.e., R =S = 1) → Qn+1 =Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

QQ

1

1

1 1

0

0

0 0
Q

Q

Truth table for JK flip−flop

CLK J K

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing
happens as long as CLK = 0.

* When CLK = 1:

- J =K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 =Qn, where n denotes the nth clock
pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S =Qn.

Case (i): Qn = 0 → S = 1 (i.e., R = S = 1) → Qn+1 =Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

QQ

1

1

1 1

0

0

0 0
Q

Q

Truth table for JK flip−flop

CLK J K

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing
happens as long as CLK = 0.

* When CLK = 1:

- J =K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 =Qn, where n denotes the nth clock
pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S =Qn.

Case (i): Qn = 0 → S = 1 (i.e., R = S = 1) → Qn+1 =Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

QQ

1

1

1 1

0

0

0 0
Q

Q

Truth table for JK flip−flop

CLK J K

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing
happens as long as CLK = 0.

* When CLK = 1:

- J =K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 =Qn, where n denotes the nth clock
pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S =Qn.

Case (i): Qn = 0 → S = 1 (i.e., R = S = 1) → Qn+1 =Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

QQ

1

1

1 1

0

0

0 0
Q

Q

Truth table for JK flip−flop

CLK J K

0 XX previous (Qn)

Q (Qn+1)

1 0 0 previous (Qn)

1 10 0

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing
happens as long as CLK = 0.

* When CLK = 1:

- J =K = 0 → R = S = 1, RS latch holds previous Q, i.e., Qn+1 =Qn, where n denotes the nth clock
pulse (This notation will become clear shortly).

- J = 0, K = 1 → R = 1, S =Qn.

Case (i): Qn = 0 → S = 1 (i.e., R = S = 1) → Qn+1 =Qn = 0.

Case (ii): Qn = 1 → S = 0 (i.e., R = 1, S = 0) → Qn+1 = 0.

In either case, Qn+1 = 0 → For J = 0, K = 1, Qn+1 = 0.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

Truth table for JK flip−flop

CLK J K

QQ

1

1

1 1

0

0

0 0

0 XX previous (Qn)

1 00

1 10

previous (Qn)

0

Q

Q

Q (Qn+1)

1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R =Qn =Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 =Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R =Qn, S =Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 =Qn.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

Truth table for JK flip−flop

CLK J K

QQ

1

1

1 1

0

0

0 0

0 XX previous (Qn)

1 00

1 10

previous (Qn)

0

Q

Q

Q (Qn+1)

1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R =Qn =Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 =Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R =Qn, S =Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 =Qn.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

Truth table for JK flip−flop

CLK J K

QQ

1

1

1 1

0

0

0 0

0 XX previous (Qn)

1 00

1 10

previous (Qn)

0

Q

Q

Q (Qn+1)

1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R =Qn =Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 =Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R =Qn, S =Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 =Qn.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

Truth table for JK flip−flop

CLK J K

QQ

1

1

1 1

0

0

0 0

0 XX previous (Qn)

1 00

1 10

previous (Qn)

0

Q

Q

Q (Qn+1)

1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R =Qn =Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 =Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R =Qn, S =Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 =Qn.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

Truth table for JK flip−flop

CLK J K

QQ

1

1

1 1

0

0

0 0

0 XX previous (Qn)

1 00

1 10

previous (Qn)

0

Q

Q

Q (Qn+1)

1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R =Qn =Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 =Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R =Qn, S =Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 =Qn.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

Truth table for JK flip−flop

CLK J K

QQ

1

1

1 1

0

0

0 0

0 XX previous (Qn)

1 00

1 10

previous (Qn)

0

Q

Q

Q (Qn+1)

1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R =Qn =Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 =Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R =Qn, S =Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 =Qn.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

Truth table for JK flip−flop

CLK J K

QQ

1

1

1 1

0

0

0 0

0 XX previous (Qn)

1 00

1 10

previous (Qn)

0

Q

Q

Q (Qn+1)

1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R =Qn =Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 =Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R =Qn, S =Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 =Qn.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

Truth table for JK flip−flop

CLK J K

QQ

1

1

1 1

0

0

0 0

0 XX previous (Qn)

1 00

1 10

previous (Qn)

0

Q

Q

Q (Qn+1)

1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R =Qn =Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 =Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R =Qn, S =Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 =Qn.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

Truth table for JK flip−flop

CLK J K

QQ

1

1

1 1

0

0

0 0

0 XX previous (Qn)

1 00

1 10

previous (Qn)

0

Q

Q

Q (Qn+1)

1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R =Qn =Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 =Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R =Qn, S =Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 =Qn.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

Truth table for JK flip−flop

CLK J K

QQ

1

1

1 1

0

0

0 0

0 XX previous (Qn)

1 00

1 10

previous (Qn)

0

Q

Q

Q (Qn+1)

1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R =Qn =Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 =Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R =Qn, S =Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 =Qn.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

1 0

10

Truth table for RS latch

invalid

previous

R S R

S

Truth table for JK flip−flop

CLK J K

QQ

1

1

1 1

0

0

0 0

0 XX previous (Qn)

1 00

1 10

previous (Qn)

0

Q

Q

Q (Qn+1)

1 1 0 1

1 1 1 toggles (Qn)

* When CLK = 1:

- Consider J = 1, K = 0 → S = 1, R =Qn =Qn.

Case (i): Qn = 0 → R = 0 (i.e., R = 0, S = 1) → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1 (i.e., R = 1, S = 1) → Qn+1 =Qn = 1.

→ For J = 1, K = 0, Qn+1 = 1.

- Consider J = 1, K = 1 → R =Qn, S =Qn.

Case (i): Qn = 0 → R = 0, S = 1 → Qn+1 = 1.

Case (ii): Qn = 1 → R = 1, S = 0 → Qn+1 = 0.

→ For J = 1, K = 1, Qn+1 =Qn.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

R

S

Truth table for JK flip−flop

CLK J K

1 00

1 10

1 1 1

1 1 0

0 XX

previous (Qn)

0

toggles (Qn)

1

previous (Qn)

Q

Q

Q (Qn+1)

Consider J =K = 1 and CLK = 1.

As long as CLK = 1, Q will keep toggling! (The frequency will depend on the delay values of the various gates).

→ Use the “Master-slave” configuration.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

R

S

Truth table for JK flip−flop

CLK J K

1 00

1 10

1 1 1

1 1 0

0 XX

previous (Qn)

0

toggles (Qn)

1

previous (Qn)

Q

Q

Q (Qn+1)

Consider J =K = 1 and CLK = 1.

As long as CLK = 1, Q will keep toggling! (The frequency will depend on the delay values of the various gates).

→ Use the “Master-slave” configuration.

M. B. Patil, IIT Bombay

JK flip-flop: introduction

J

CLK

K

RS latch

R

S

Truth table for JK flip−flop

CLK J K

1 00

1 10

1 1 1

1 1 0

0 XX

previous (Qn)

0

toggles (Qn)

1

previous (Qn)

Q

Q

Q (Qn+1)

Consider J =K = 1 and CLK = 1.

As long as CLK = 1, Q will keep toggling! (The frequency will depend on the delay values of the various gates).

→ Use the “Master-slave” configuration.

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

RS latch 2RS latch 1

J

K

Master Slave

Q1
QR2

S2

R1

S1

CLKCLK

Q

J KCLK

0 0

0 1

1 0

1 1

1

Qn

Qn

0

Qn+1

* When CLK goes high, only the first latch is affected; the second latch retains its previous value (because
CLK = 0 → R2 = S2 = 1).

* When CLK goes low, the output of the first latch (Q1) is retained (since R1 =S1 = 1), and Q1 can now
affect Q.

* In other words, the effect of any changes in J and K appears at the output Q only when CLK makes a
transition from 1 to 0.
This is therefore a negative edge-triggered flip-flop.

* Note that the JK flip-flop allows all four input combinations.

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

RS latch 2RS latch 1

J

K

Master Slave

Q1
QR2

S2

R1

S1

CLKCLK

Q

J KCLK

0 0

0 1

1 0

1 1

1

Qn

Qn

0

Qn+1

* When CLK goes high, only the first latch is affected; the second latch retains its previous value (because
CLK = 0 → R2 = S2 = 1).

* When CLK goes low, the output of the first latch (Q1) is retained (since R1 =S1 = 1), and Q1 can now
affect Q.

* In other words, the effect of any changes in J and K appears at the output Q only when CLK makes a
transition from 1 to 0.
This is therefore a negative edge-triggered flip-flop.

* Note that the JK flip-flop allows all four input combinations.

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

RS latch 2RS latch 1

J

K

Master Slave

Q1
QR2

S2

R1

S1

CLKCLK

Q

J KCLK

0 0

0 1

1 0

1 1

1

Qn

Qn

0

Qn+1

* When CLK goes high, only the first latch is affected; the second latch retains its previous value (because
CLK = 0 → R2 = S2 = 1).

* When CLK goes low, the output of the first latch (Q1) is retained (since R1 = S1 = 1), and Q1 can now
affect Q.

* In other words, the effect of any changes in J and K appears at the output Q only when CLK makes a
transition from 1 to 0.
This is therefore a negative edge-triggered flip-flop.

* Note that the JK flip-flop allows all four input combinations.

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

RS latch 2RS latch 1

J

K

Master Slave

Q1
QR2

S2

R1

S1

CLKCLK

Q

J KCLK

0 0

0 1

1 0

1 1

1

Qn

Qn

0

Qn+1

* When CLK goes high, only the first latch is affected; the second latch retains its previous value (because
CLK = 0 → R2 = S2 = 1).

* When CLK goes low, the output of the first latch (Q1) is retained (since R1 = S1 = 1), and Q1 can now
affect Q.

* In other words, the effect of any changes in J and K appears at the output Q only when CLK makes a
transition from 1 to 0.
This is therefore a negative edge-triggered flip-flop.

* Note that the JK flip-flop allows all four input combinations.

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

RS latch 2RS latch 1

J

K

Master Slave

Q1
QR2

S2

R1

S1

CLKCLK

Q

J KCLK

0 0

0 1

1 0

1 1

1

Qn

Qn

0

Qn+1

* When CLK goes high, only the first latch is affected; the second latch retains its previous value (because
CLK = 0 → R2 = S2 = 1).

* When CLK goes low, the output of the first latch (Q1) is retained (since R1 = S1 = 1), and Q1 can now
affect Q.

* In other words, the effect of any changes in J and K appears at the output Q only when CLK makes a
transition from 1 to 0.
This is therefore a negative edge-triggered flip-flop.

* Note that the JK flip-flop allows all four input combinations.

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

RS latch 2RS latch 1

J

K

Master Slave

Q1
QR2

S2

R1

S1

CLKCLK

Q

J KCLK

0 0

0 1

1 0

1 1

1

Qn

Qn

0

Qn+1

* When CLK goes high, only the first latch is affected; the second latch retains its previous value (because
CLK = 0 → R2 = S2 = 1).

* When CLK goes low, the output of the first latch (Q1) is retained (since R1 = S1 = 1), and Q1 can now
affect Q.

* In other words, the effect of any changes in J and K appears at the output Q only when CLK makes a
transition from 1 to 0.
This is therefore a negative edge-triggered flip-flop.

* Note that the JK flip-flop allows all four input combinations.

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

RS latch 2RS latch 1

J

K

Master Slave

J KCLK

t

t

t

t

t

t

t

t

t

CLK

Q1
QR2

S2

R1

S1

Q1

R2

S2

Q

J

K

R1

S1

0 0

0 1

1 0

1 1

1

Qn

Qn

0

CLKCLK

Q

Qn+1

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

RS latch 2RS latch 1

J

K

Master Slave

J KCLK

t

t

t

t

t

t

t

t

t

CLK

Q1
QR2

S2

R1

S1

Q1

R2

S2

Q

J

K

R1

S1

0 0

0 1

1 0

1 1

1

Qn

Qn

0

CLKCLK

Q

Qn+1

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

RS latch 2RS latch 1

J

K

Master Slave

J KCLK

t

t

t

t

t

t

t

t

t

CLK

Q1
QR2

S2

R1

S1

Q1

R2

S2

Q

J

K

R1

S1

0 0

0 1

1 0

1 1

1

Qn

Qn

0

CLKCLK

Q

Qn+1

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

RS latch 2RS latch 1

J

K

Master Slave

J KCLK

t

t

t

t

t

t

t

t

t

CLK

Q1
QR2

S2

R1

S1

Q1

R2

S2

Q

J

K

R1

S1

0 0

0 1

1 0

1 1

1

Qn

Qn

0

CLKCLK

Q

Qn+1

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

RS latch 2RS latch 1

J

K

Master Slave

J KCLK

t

t

t

t

t

t

t

t

t

CLK

Q1
QR2

S2

R1

S1

Q1

R2

S2

Q

J

K

R1

S1

0 0

0 1

1 0

1 1

1

Qn

Qn

0

CLKCLK

Q

Qn+1

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

RS latch 2RS latch 1

J

K

Master Slave

J KCLK

t

t

t

t

t

t

t

t

t

CLK

Q1
QR2

S2

R1

S1

Q1

R2

S2

Q

J

K

R1

S1

0 0

0 1

1 0

1 1

1

Qn

Qn

0

CLKCLK

Q

Qn+1

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

RS latch 2RS latch 1

J

K

Master Slave

J KCLK

t

t

t

t

t

t

t

t

t

CLK

Q1
QR2

S2

R1

S1

Q1

R2

S2

Q

J

K

R1

S1

0 0

0 1

1 0

1 1

1

Qn

Qn

0

CLKCLK

Q

Qn+1

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

RS latch 2RS latch 1

J

K

Master Slave

J KCLK

t

t

t

t

t

t

t

t

t

CLK

Q1
QR2

S2

R1

S1

Q1

R2

S2

Q

J

K

R1

S1

0 0

0 1

1 0

1 1

1

Qn

Qn

0

CLKCLK

Q

Qn+1

M. B. Patil, IIT Bombay

JK flip-flop (Master-Slave)

RS latch 2RS latch 1

J

K

Master Slave

J KCLK

t

t

t

t

t

t

t

t

t

CLK

Q1
QR2

S2

R1

S1

Q1

R2

S2

Q

J

K

R1

S1

0 0

0 1

1 0

1 1

1

Qn

Qn

0

CLKCLK

Q

Qn+1

M. B. Patil, IIT Bombay

JK flip-flop

J

CLK

K

J

CLK

K

J K CLK J K

positive edge−triggered JK flip−flop

CLK

negative edge−triggered JK flip−flop

Q

Q

Q

Q

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0

1

Qn

0

Qn Qn

Qn

1

Qn+1 Qn+1

* Both negative (e.g., 74ALS112A, CD54ACT112) and positive (e.g., 74ALS109A, CD4027) edge-triggered
JK flip-flops are available as ICs.

M. B. Patil, IIT Bombay

JK flip-flop

J

CLK

K

J

CLK

K

J K CLK J K

positive edge−triggered JK flip−flop

CLK

negative edge−triggered JK flip−flop

Q

Q

Q

Q

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0

1

Qn

0

Qn Qn

Qn

1

Qn+1 Qn+1

* Both negative (e.g., 74ALS112A, CD54ACT112) and positive (e.g., 74ALS109A, CD4027) edge-triggered
JK flip-flops are available as ICs.

M. B. Patil, IIT Bombay

JK flip-flop

J

K

CLK

SlaveMaster

Q1

Q1

Q

CLK

Q

CLK

t2Bt2At1Bt1A

Consider a negative edge-triggered JK flip-flop.

* As seen earlier, when CLK is high (i.e., t1A < t < t1B , etc.), the input J and K determine the Master
latch output Q1.
During this time, no change is visible at the flip-flop output Q.

* When the clock goes low, the Slave flip-flop becomes active, making it possible for Q to change.

* In short, although the flip-flop output Q can only change after the active edge, (t1B , t2B , etc.), the new Q
value is determined by J and K values just before the active edge.
This is a very important point!

M. B. Patil, IIT Bombay

JK flip-flop

J

K

CLK

SlaveMaster

Q1

Q1

Q

CLK

Q

CLK

t2Bt2At1Bt1A

Consider a negative edge-triggered JK flip-flop.

* As seen earlier, when CLK is high (i.e., t1A < t < t1B , etc.), the input J and K determine the Master
latch output Q1.
During this time, no change is visible at the flip-flop output Q.

* When the clock goes low, the Slave flip-flop becomes active, making it possible for Q to change.

* In short, although the flip-flop output Q can only change after the active edge, (t1B , t2B , etc.), the new Q
value is determined by J and K values just before the active edge.
This is a very important point!

M. B. Patil, IIT Bombay

JK flip-flop

J

K

CLK

SlaveMaster

Q1

Q1

Q

CLK

Q

CLK

t2Bt2At1Bt1A

Consider a negative edge-triggered JK flip-flop.

* As seen earlier, when CLK is high (i.e., t1A < t < t1B , etc.), the input J and K determine the Master
latch output Q1.
During this time, no change is visible at the flip-flop output Q.

* When the clock goes low, the Slave flip-flop becomes active, making it possible for Q to change.

* In short, although the flip-flop output Q can only change after the active edge, (t1B , t2B , etc.), the new Q
value is determined by J and K values just before the active edge.
This is a very important point!

M. B. Patil, IIT Bombay

JK flip-flop

J

K

CLK

SlaveMaster

Q1

Q1

Q

CLK

Q

CLK

t2Bt2At1Bt1A

Consider a negative edge-triggered JK flip-flop.

* As seen earlier, when CLK is high (i.e., t1A < t < t1B , etc.), the input J and K determine the Master
latch output Q1.
During this time, no change is visible at the flip-flop output Q.

* When the clock goes low, the Slave flip-flop becomes active, making it possible for Q to change.

* In short, although the flip-flop output Q can only change after the active edge, (t1B , t2B , etc.), the new Q
value is determined by J and K values just before the active edge.

This is a very important point!

M. B. Patil, IIT Bombay

JK flip-flop

J

K

CLK

SlaveMaster

Q1

Q1

Q

CLK

Q

CLK

t2Bt2At1Bt1A

Consider a negative edge-triggered JK flip-flop.

* As seen earlier, when CLK is high (i.e., t1A < t < t1B , etc.), the input J and K determine the Master
latch output Q1.
During this time, no change is visible at the flip-flop output Q.

* When the clock goes low, the Slave flip-flop becomes active, making it possible for Q to change.

* In short, although the flip-flop output Q can only change after the active edge, (t1B , t2B , etc.), the new Q
value is determined by J and K values just before the active edge.
This is a very important point!

M. B. Patil, IIT Bombay

JK flip-flop

J

CLK

K

J K

CLK

J

K

Q

positive edge−triggered JK flip−flop

CLK

 0

time (msec)

 0.1 0.2 0.3 0.4 0.5 0.6

Q

Q

0 0

0 1

1 0

1 1

Qn

0

Qn

1

Qn+1

J

CLK

K

CLK J K

CLK

J

K

Q

negative edge−triggered JK flip−flop

 0

time (msec)

 0.1 0.2 0.3 0.4 0.5 0.6

Q

Q
0 0

0 1

1 0

1 1

0

1

Qn

Qn

Qn+1

M. B. Patil, IIT Bombay

JK flip-flop

J

CLK

K

J K

CLK

J

K

Q

positive edge−triggered JK flip−flop

CLK

 0

time (msec)

 0.1 0.2 0.3 0.4 0.5 0.6

Q

Q

0 0

0 1

1 0

1 1

Qn

0

Qn

1

Qn+1

J

CLK

K

CLK J K

CLK

J

K

Q

negative edge−triggered JK flip−flop

 0

time (msec)

 0.1 0.2 0.3 0.4 0.5 0.6

Q

Q
0 0

0 1

1 0

1 1

0

1

Qn

Qn

Qn+1

M. B. Patil, IIT Bombay

JK flip-flop

1

CLK

t

t

t

J K

CLK

CLK

J2
Q2

Q1

K2

J1

K1

Q2

QJ

QK

QJ

QK

t5t4t3t2t1

Q1

0 0

0 1

1 0

1 1

J1=K1=1. Assume Q1=Q2=0 initially.

Qn

0

Qn

1

Qn+1

t Q2 (t = t+k)K2 (t = t−k)J2 (t = t−k)

t2

t3

t4

t5

t1

1 0 1

0 1 0

1 0 1

1 00

1 00

* Since J1 = K1 = 1, Q1 toggles after every active clock edge.

* J2 = Q1, K2 = Q1. We need to look at J2 and K2 values just before the active edge, to determine the next value of Q2.

* It is convenient to construct a table listing J2 and K2 to figure out the next Q2 value.

M. B. Patil, IIT Bombay

JK flip-flop

1

CLK

t

t

t

J K

CLK

CLK

J2
Q2

Q1

K2

J1

K1

Q2

QJ

QK

QJ

QK

t5t4t3t2t1

Q1

0 0

0 1

1 0

1 1

J1=K1=1. Assume Q1=Q2=0 initially.

Qn

0

Qn

1

Qn+1

t Q2 (t = t+k)K2 (t = t−k)J2 (t = t−k)

t2

t3

t4

t5

t1

1 0 1

0 1 0

1 0 1

1 00

1 00

* Since J1 = K1 = 1, Q1 toggles after every active clock edge.

* J2 = Q1, K2 = Q1. We need to look at J2 and K2 values just before the active edge, to determine the next value of Q2.

* It is convenient to construct a table listing J2 and K2 to figure out the next Q2 value.

M. B. Patil, IIT Bombay

JK flip-flop

1

CLK

t

t

t

J K

CLK

CLK

J2
Q2

Q1

K2

J1

K1

Q2

QJ

QK

QJ

QK

t5t4t3t2t1

Q1

0 0

0 1

1 0

1 1

J1=K1=1. Assume Q1=Q2=0 initially.

Qn

0

Qn

1

Qn+1

t Q2 (t = t+k)K2 (t = t−k)J2 (t = t−k)

t2

t3

t4

t5

t1

1 0 1

0 1 0

1 0 1

1 00

1 00

* Since J1 = K1 = 1, Q1 toggles after every active clock edge.

* J2 = Q1, K2 = Q1. We need to look at J2 and K2 values just before the active edge, to determine the next value of Q2.

* It is convenient to construct a table listing J2 and K2 to figure out the next Q2 value.

M. B. Patil, IIT Bombay

JK flip-flop

1

CLK

t

t

t

J K

CLK

CLK

J2
Q2

Q1

K2

J1

K1

Q2

QJ

QK

QJ

QK

t5t4t3t2t1

Q1

0 0

0 1

1 0

1 1

J1=K1=1. Assume Q1=Q2=0 initially.

Qn

0

Qn

1

Qn+1

t Q2 (t = t+k)K2 (t = t−k)J2 (t = t−k)

t2

t3

t4

t5

t1

1 0 1

0 1 0

1 0 1

1 00

1 00

* Since J1 = K1 = 1, Q1 toggles after every active clock edge.

* J2 = Q1, K2 = Q1. We need to look at J2 and K2 values just before the active edge, to determine the next value of Q2.

* It is convenient to construct a table listing J2 and K2 to figure out the next Q2 value.

M. B. Patil, IIT Bombay

JK flip-flop

1

CLK

t

t

t

J K

CLK

CLK

J2
Q2

Q1

K2

J1

K1

Q2

QJ

QK

QJ

QK

t5t4t3t2t1

Q1

0 0

0 1

1 0

1 1

J1=K1=1. Assume Q1=Q2=0 initially.

Qn

0

Qn

1

Qn+1

t Q2 (t = t+k)K2 (t = t−k)J2 (t = t−k)

t2

t3

t4

t5

t1

1 0 1

0 1 0

1 0 1

1 00

1 00

* Since J1 = K1 = 1, Q1 toggles after every active clock edge.

* J2 = Q1, K2 = Q1. We need to look at J2 and K2 values just before the active edge, to determine the next value of Q2.

* It is convenient to construct a table listing J2 and K2 to figure out the next Q2 value.

M. B. Patil, IIT Bombay

JK flip-flop

1

CLK

t

t

t

J K

CLK

CLK

J2
Q2

Q1

K2

J1

K1

Q2

QJ

QK

QJ

QK

t5t4t3t2t1

Q1

0 0

0 1

1 0

1 1

J1=K1=1. Assume Q1=Q2=0 initially.

Qn

0

Qn

1

Qn+1

t Q2 (t = t+k)K2 (t = t−k)J2 (t = t−k)

t2

t3

t4

t5

t1

1 0 1

0 1 0

1 0 1

1 00

1 00

* Since J1 = K1 = 1, Q1 toggles after every active clock edge.

* J2 = Q1, K2 = Q1. We need to look at J2 and K2 values just before the active edge, to determine the next value of Q2.

* It is convenient to construct a table listing J2 and K2 to figure out the next Q2 value.

M. B. Patil, IIT Bombay

JK flip-flop

1

CLK

t

t

t

J K

CLK

CLK

J2
Q2

Q1

K2

J1

K1

Q2

QJ

QK

QJ

QK

t5t4t3t2t1

Q1

0 0

0 1

1 0

1 1

J1=K1=1. Assume Q1=Q2=0 initially.

Qn

0

Qn

1

Qn+1

t Q2 (t = t+k)K2 (t = t−k)J2 (t = t−k)

t2

t3

t4

t5

t1

1 0 1

0 1 0

1 0 1

1 00

1 00

* Since J1 = K1 = 1, Q1 toggles after every active clock edge.

* J2 = Q1, K2 = Q1. We need to look at J2 and K2 values just before the active edge, to determine the next value of Q2.

* It is convenient to construct a table listing J2 and K2 to figure out the next Q2 value.

M. B. Patil, IIT Bombay

1

J KCLK

t

t

t

CLK

t

CLK

0

1

0

1

0

1

t5t4t3t2t1

QJ

QK

QJ

QK

QJ

QK

Q0 Q1 Q2

0 0

0 1

1 0

1 1

Qn

0

Qn

1

Q0

Q1

Q2

Qn+1

t

t1

tk
− tk

+

t2

t3

t4

t5

1 11 0 0 10 0 0

K2J2K1J1K0J0 Q2Q1 Q1Q0 Q0Q2

11 0

1

0 0

1

1

0

01 1 001 0 01 11 1

1

0 0

1

0

1

1 1 0 01 1 01 1 10 1

0

1 0

1

0

1

10 1 1 11 1 0 0 01 1

1

0 1

0

0

1

11 0 0 01 1 1 1 00 0

0

1 1

0

1

0

M. B. Patil, IIT Bombay

1

J KCLK

t

t

t

CLK

t

CLK

0

1

0

1

0

1

t5t4t3t2t1

QJ

QK

QJ

QK

QJ

QK

Q0 Q1 Q2

0 0

0 1

1 0

1 1

Qn

0

Qn

1

Q0

Q1

Q2

Qn+1

t

t1

tk
− tk

+

t2

t3

t4

t5

1 11 0 0 10 0 0

K2J2K1J1K0J0 Q2Q1 Q1Q0 Q0Q2

11 0

1

0 0

1

1

0

01 1 001 0 01 11 1

1

0 0

1

0

1

1 1 0 01 1 01 1 10 1

0

1 0

1

0

1

10 1 1 11 1 0 0 01 1

1

0 1

0

0

1

11 0 0 01 1 1 1 00 0

0

1 1

0

1

0

M. B. Patil, IIT Bombay

1

J KCLK

t

t

t

CLK

t

CLK

0

1

0

1

0

1

t5t4t3t2t1

QJ

QK

QJ

QK

QJ

QK

Q0 Q1 Q2

0 0

0 1

1 0

1 1

Qn

0

Qn

1

Q0

Q1

Q2

Qn+1

t

t1

tk
− tk

+

t2

t3

t4

t5

1 11 0 0 10 0 0

K2J2K1J1K0J0 Q2Q1 Q1Q0 Q0Q2

11 0

1

0 0

1

1

0

01 1 001 0 01 11 1

1

0 0

1

0

1

1 1 0 01 1 01 1 10 1

0

1 0

1

0

1

10 1 1 11 1 0 0 01 1

1

0 1

0

0

1

11 0 0 01 1 1 1 00 0

0

1 1

0

1

0

M. B. Patil, IIT Bombay

1

J KCLK

t

t

t

CLK

t

CLK

0

1

0

1

0

1

t5t4t3t2t1

QJ

QK

QJ

QK

QJ

QK

Q0 Q1 Q2

0 0

0 1

1 0

1 1

Qn

0

Qn

1

Q0

Q1

Q2

Qn+1

t

t1

tk
− tk

+

t2

t3

t4

t5

1 11 0 0 10 0 0

K2J2K1J1K0J0 Q2Q1 Q1Q0 Q0Q2

11 0

1

0 0

1

1

0

01 1 001 0 01

11 1

1

0 0

1

0

1

1 1 0 01 1 01 1 10 1

0

1 0

1

0

1

10 1 1 11 1 0 0 01 1

1

0 1

0

0

1

11 0 0 01 1 1 1 00 0

0

1 1

0

1

0

M. B. Patil, IIT Bombay

1

J KCLK

t

t

t

CLK

t

CLK

0

1

0

1

0

1

t5t4t3t2t1

QJ

QK

QJ

QK

QJ

QK

Q0 Q1 Q2

0 0

0 1

1 0

1 1

Qn

0

Qn

1

Q0

Q1

Q2

Qn+1

t

t1

tk
− tk

+

t2

t3

t4

t5

1 11 0 0 10 0 0

K2J2K1J1K0J0 Q2Q1 Q1Q0 Q0Q2

11 0

1

0 0

1

1

0

01 1 001 0 01 11 1

1

0 0

1

0

1

1 1 0 01 1 01 1 10 1

0

1 0

1

0

1

10 1 1 11 1 0 0 01 1

1

0 1

0

0

1

11 0 0 01 1 1 1 00 0

0

1 1

0

1

0

M. B. Patil, IIT Bombay

1

J KCLK

t

t

t

CLK

t

CLK

0

1

0

1

0

1

t5t4t3t2t1

QJ

QK

QJ

QK

QJ

QK

Q0 Q1 Q2

0 0

0 1

1 0

1 1

Qn

0

Qn

1

Q0

Q1

Q2

Qn+1

t

t1

tk
− tk

+

t2

t3

t4

t5

1 11 0 0 10 0 0

K2J2K1J1K0J0 Q2Q1 Q1Q0 Q0Q2

11 0

1

0 0

1

1

0

01 1 001 0 01 11 1

1

0 0

1

0

1

1 1 0 01 1 01 1

10 1

0

1 0

1

0

1

10 1 1 11 1 0 0 01 1

1

0 1

0

0

1

11 0 0 01 1 1 1 00 0

0

1 1

0

1

0

M. B. Patil, IIT Bombay

1

J KCLK

t

t

t

CLK

t

CLK

0

1

0

1

0

1

t5t4t3t2t1

QJ

QK

QJ

QK

QJ

QK

Q0 Q1 Q2

0 0

0 1

1 0

1 1

Qn

0

Qn

1

Q0

Q1

Q2

Qn+1

t

t1

tk
− tk

+

t2

t3

t4

t5

1 11 0 0 10 0 0

K2J2K1J1K0J0 Q2Q1 Q1Q0 Q0Q2

11 0

1

0 0

1

1

0

01 1 001 0 01 11 1

1

0 0

1

0

1

1 1 0 01 1 01 1 10 1

0

1 0

1

0

1

10 1 1 11 1 0 0 01 1

1

0 1

0

0

1

11 0 0 01 1 1 1 00 0

0

1 1

0

1

0

M. B. Patil, IIT Bombay

1

J KCLK

t

t

t

CLK

t

CLK

0

1

0

1

0

1

t5t4t3t2t1

QJ

QK

QJ

QK

QJ

QK

Q0 Q1 Q2

0 0

0 1

1 0

1 1

Qn

0

Qn

1

Q0

Q1

Q2

Qn+1

t

t1

tk
− tk

+

t2

t3

t4

t5

1 11 0 0 10 0 0

K2J2K1J1K0J0 Q2Q1 Q1Q0 Q0Q2

11 0

1

0 0

1

1

0

01 1 001 0 01 11 1

1

0 0

1

0

1

1 1 0 01 1 01 1 10 1

0

1 0

1

0

1

10 1 1 11 1 0 0

01 1

1

0 1

0

0

1

11 0 0 01 1 1 1 00 0

0

1 1

0

1

0

M. B. Patil, IIT Bombay

1

J KCLK

t

t

t

CLK

t

CLK

0

1

0

1

0

1

t5t4t3t2t1

QJ

QK

QJ

QK

QJ

QK

Q0 Q1 Q2

0 0

0 1

1 0

1 1

Qn

0

Qn

1

Q0

Q1

Q2

Qn+1

t

t1

tk
− tk

+

t2

t3

t4

t5

1 11 0 0 10 0 0

K2J2K1J1K0J0 Q2Q1 Q1Q0 Q0Q2

11 0

1

0 0

1

1

0

01 1 001 0 01 11 1

1

0 0

1

0

1

1 1 0 01 1 01 1 10 1

0

1 0

1

0

1

10 1 1 11 1 0 0 01 1

1

0 1

0

0

1

11 0 0 01 1 1 1 00 0

0

1 1

0

1

0

M. B. Patil, IIT Bombay

1

J KCLK

t

t

t

CLK

t

CLK

0

1

0

1

0

1

t5t4t3t2t1

QJ

QK

QJ

QK

QJ

QK

Q0 Q1 Q2

0 0

0 1

1 0

1 1

Qn

0

Qn

1

Q0

Q1

Q2

Qn+1

t

t1

tk
− tk

+

t2

t3

t4

t5

1 11 0 0 10 0 0

K2J2K1J1K0J0 Q2Q1 Q1Q0 Q0Q2

11 0

1

0 0

1

1

0

01 1 001 0 01 11 1

1

0 0

1

0

1

1 1 0 01 1 01 1 10 1

0

1 0

1

0

1

10 1 1 11 1 0 0 01 1

1

0 1

0

0

1

11 0 0 01 1 1 1

00 0

0

1 1

0

1

0

M. B. Patil, IIT Bombay

1

J KCLK

t

t

t

CLK

t

CLK

0

1

0

1

0

1

t5t4t3t2t1

QJ

QK

QJ

QK

QJ

QK

Q0 Q1 Q2

0 0

0 1

1 0

1 1

Qn

0

Qn

1

Q0

Q1

Q2

Qn+1

t

t1

tk
− tk

+

t2

t3

t4

t5

1 11 0 0 10 0 0

K2J2K1J1K0J0 Q2Q1 Q1Q0 Q0Q2

11 0

1

0 0

1

1

0

01 1 001 0 01 11 1

1

0 0

1

0

1

1 1 0 01 1 01 1 10 1

0

1 0

1

0

1

10 1 1 11 1 0 0 01 1

1

0 1

0

0

1

11 0 0 01 1 1 1 00 0

0

1 1

0

1

0

M. B. Patil, IIT Bombay

1

J KCLK

t

t

t

CLK

t

CLK

0

1

0

1

0

1

t5t4t3t2t1

QJ

QK

QJ

QK

QJ

QK

Q0 Q1 Q2

0 0

0 1

1 0

1 1

Qn

0

Qn

1

Q0

Q1

Q2

Qn+1

t

t1

tk
− tk

+

t2

t3

t4

t5

1 11 0 0 10 0 0

K2J2K1J1K0J0 Q2Q1 Q1Q0 Q0Q2

11 0

1

0 0

1

1

0

01 1 001 0 01 11 1

1

0 0

1

0

1

1 1 0 01 1 01 1 10 1

0

1 0

1

0

1

10 1 1 11 1 0 0 01 1

1

0 1

0

0

1

11 0 0 01 1 1 1 00 0

0

1 1

0

1

0

M. B. Patil, IIT Bombay

JK flip-flop: asynchronous inputs

J KCLK

Rd

Sd

CLK

Rd

QJ

QK

Sd

Qn

Qn

0 0

0 1

1 0

1 1

X X X

X X X

X X X

0 1

1 0

1 1

0

0

0

0

0

0

0

0

1

invalid

0

1 operation
normal

0

Qn+1

* Clocked flip-flops are also provided with asynchronous or direct Set and Reset inputs, Sd and Rd , (also
called Preset and Clear, respectively) which override all other inputs (J, K, CLK).

* The Sd and Rd inputs may be active low; in that case, they are denoted by Sd and Rd .

* The asynchronous inputs are convenient for starting up a circuit in a known state.

M. B. Patil, IIT Bombay

JK flip-flop: asynchronous inputs

J KCLK

Rd

Sd

CLK

Rd

QJ

QK

Sd

Qn

Qn

0 0

0 1

1 0

1 1

X X X

X X X

X X X

0 1

1 0

1 1

0

0

0

0

0

0

0

0

1

invalid

0

1 operation
normal

0

Qn+1

* Clocked flip-flops are also provided with asynchronous or direct Set and Reset inputs, Sd and Rd , (also
called Preset and Clear, respectively) which override all other inputs (J, K, CLK).

* The Sd and Rd inputs may be active low; in that case, they are denoted by Sd and Rd .

* The asynchronous inputs are convenient for starting up a circuit in a known state.

M. B. Patil, IIT Bombay

JK flip-flop: asynchronous inputs

J KCLK

Rd

Sd

CLK

Rd

QJ

QK

Sd

Qn

Qn

0 0

0 1

1 0

1 1

X X X

X X X

X X X

0 1

1 0

1 1

0

0

0

0

0

0

0

0

1

invalid

0

1 operation
normal

0

Qn+1

* Clocked flip-flops are also provided with asynchronous or direct Set and Reset inputs, Sd and Rd , (also
called Preset and Clear, respectively) which override all other inputs (J, K, CLK).

* The Sd and Rd inputs may be active low; in that case, they are denoted by Sd and Rd .

* The asynchronous inputs are convenient for starting up a circuit in a known state.

M. B. Patil, IIT Bombay

JK flip-flop: asynchronous inputs

J KCLK

Rd

Sd

CLK

Rd

QJ

QK

Sd

Qn

Qn

0 0

0 1

1 0

1 1

X X X

X X X

X X X

0 1

1 0

1 1

0

0

0

0

0

0

0

0

1

invalid

0

1 operation
normal

0

Qn+1

* Clocked flip-flops are also provided with asynchronous or direct Set and Reset inputs, Sd and Rd , (also
called Preset and Clear, respectively) which override all other inputs (J, K, CLK).

* The Sd and Rd inputs may be active low; in that case, they are denoted by Sd and Rd .

* The asynchronous inputs are convenient for starting up a circuit in a known state.

M. B. Patil, IIT Bombay

D flip-flop

J

K

J

K

D

CLK

D

CLK

CLK

CLK D

D

Q

CLK

D

Q

t

t

t

t

t

t

positive edge−triggered D flip−flop

negative edge−triggered D flip−flop

D
D

CLK

D

CLK

CLK

t5

t5

t4

t4

t3

t3

t2

t2

t1

t1

Q

Q

Q

Q

Q

Q

Q

Q

0

1

0

1

0

1

1

0

Qn+1

Qn+1

* The D flip-flop can be used to delay the Data (D) signal by one clock period.

* With J = D, K = D, we have either J = 0, K = 1 or J = 1, K = 0; the next Q is 0 in the first case, 1 in the second case.
* Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with S = D, R = D.

M. B. Patil, IIT Bombay

D flip-flop

J

K

J

K

D

CLK

D

CLK

CLK

CLK D

D

Q

CLK

D

Q

t

t

t

t

t

t

positive edge−triggered D flip−flop

negative edge−triggered D flip−flop

D
D

CLK

D

CLK

CLK

t5

t5

t4

t4

t3

t3

t2

t2

t1

t1

Q

Q

Q

Q

Q

Q

Q

Q

0

1

0

1

0

1

1

0

Qn+1

Qn+1

* The D flip-flop can be used to delay the Data (D) signal by one clock period.

* With J = D, K = D, we have either J = 0, K = 1 or J = 1, K = 0; the next Q is 0 in the first case, 1 in the second case.
* Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with S = D, R = D.

M. B. Patil, IIT Bombay

D flip-flop

J

K

J

K

D

CLK

D

CLK

CLK

CLK D

D

Q

CLK

D

Q

t

t

t

t

t

t

positive edge−triggered D flip−flop

negative edge−triggered D flip−flop

D
D

CLK

D

CLK

CLK

t5

t5

t4

t4

t3

t3

t2

t2

t1

t1

Q

Q

Q

Q

Q

Q

Q

Q

0

1

0

1

0

1

1

0

Qn+1

Qn+1

* The D flip-flop can be used to delay the Data (D) signal by one clock period.

* With J = D, K = D, we have either J = 0, K = 1 or J = 1, K = 0; the next Q is 0 in the first case, 1 in the second case.

* Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with S = D, R = D.

M. B. Patil, IIT Bombay

D flip-flop

J

K

J

K

D

CLK

D

CLK

CLK

CLK D

D

Q

CLK

D

Q

t

t

t

t

t

t

positive edge−triggered D flip−flop

negative edge−triggered D flip−flop

D
D

CLK

D

CLK

CLK

t5

t5

t4

t4

t3

t3

t2

t2

t1

t1

Q

Q

Q

Q

Q

Q

Q

Q

0

1

0

1

0

1

1

0

Qn+1

Qn+1

* The D flip-flop can be used to delay the Data (D) signal by one clock period.

* With J = D, K = D, we have either J = 0, K = 1 or J = 1, K = 0; the next Q is 0 in the first case, 1 in the second case.
* Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with S = D, R = D.

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 00 1 1 01 0 1 10 1 0 10 0 1 00 0 0 10 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 0

1 1 0 00 1 1 01 0 1 10 1 0 10 0 1 00 0 0 10 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 0

0 1 1 01 0 1 10 1 0 10 0 1 00 0 0 10 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 00 1 1 0

1 0 1 10 1 0 10 0 1 00 0 0 10 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 00 1 1 01 0 1 1

0 1 0 10 0 1 00 0 0 10 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 00 1 1 01 0 1 10 1 0 1

0 0 1 00 0 0 10 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 00 1 1 01 0 1 10 1 0 10 0 1 0

0 0 0 10 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 00 1 1 01 0 1 10 1 0 10 0 1 00 0 0 1

0 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 00 1 1 01 0 1 10 1 0 10 0 1 00 0 0 10 0 0 0

0 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 00 1 1 01 0 1 10 1 0 10 0 1 00 0 0 10 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Parallel transfer between shift registers

Register B

Register A

CLK

D D D

D D D

D

D

B1
B0B1B2B3B3

A3 A2 A1 A0

A3 A2 A1 A0

B2 B0

Q

Q

Q

Q

Q Q

Q

Q Q

Q Q

Q

Q

Q

QQ

* After the active clock edge, the contents of the A register (A3A2A1A0) are copied to the B register.

M. B. Patil, IIT Bombay

Parallel transfer between shift registers

Register B

Register A

CLK

D D D

D D D

D

D

B1
B0B1B2B3B3

A3 A2 A1 A0

A3 A2 A1 A0

B2 B0

Q

Q

Q

Q

Q Q

Q

Q Q

Q Q

Q

Q

Q

QQ

* After the active clock edge, the contents of the A register (A3A2A1A0) are copied to the B register.

M. B. Patil, IIT Bombay

Bidirectional shift register

DDD D

CLK

D3D2D1D0 Q1 Q2 Q3Q0

DL

DR

Q

M

Q

Q Q Q

Q

Q

Q

M

* When the mode input (M) is 1, we have
D0 =DR , D1 =Q0, D2 =Q1, D3 =Q2.

* When the mode input (M) is 0, we have
D0 =Q1, D1 =Q2, D2 =Q3, D3 =DL.

* M = 1 → shift right operation.
M = 0 → shift left operation.

M. B. Patil, IIT Bombay

Bidirectional shift register

DDD D

CLK

D3D2D1D0 Q1 Q2 Q3Q0

DL

DR

Q

M

Q

Q Q Q

Q

Q

Q

M

* When the mode input (M) is 1, we have
D0 =DR , D1 =Q0, D2 =Q1, D3 =Q2.

* When the mode input (M) is 0, we have
D0 =Q1, D1 =Q2, D2 =Q3, D3 =DL.

* M = 1 → shift right operation.
M = 0 → shift left operation.

M. B. Patil, IIT Bombay

Bidirectional shift register

DDD D

CLK

D3D2D1D0 Q1 Q2 Q3Q0

DL

DR

Q

M

Q

Q Q Q

Q

Q

Q

M

* When the mode input (M) is 1, we have
D0 =DR , D1 =Q0, D2 =Q1, D3 =Q2.

* When the mode input (M) is 0, we have
D0 =Q1, D1 =Q2, D2 =Q3, D3 =DL.

* M = 1 → shift right operation.
M = 0 → shift left operation.

M. B. Patil, IIT Bombay

Bidirectional shift register

DDD D

CLK

D3D2D1D0 Q1 Q2 Q3Q0

DL

DR

Q

M

Q

Q Q Q

Q

Q

Q

M

* When the mode input (M) is 1, we have
D0 =DR , D1 =Q0, D2 =Q1, D3 =Q2.

* When the mode input (M) is 0, we have
D0 =Q1, D1 =Q2, D2 =Q3, D3 =DL.

* M = 1 → shift right operation.
M = 0 → shift left operation.

M. B. Patil, IIT Bombay

Shift left operation

0 1 0 110 0 0 0
original

number
dec. 13

2021222324252627

1 0 11 00 0 0

after

shift left
dec. 26

Shift left → × 2

M. B. Patil, IIT Bombay

Shift left operation

0 1 0 110 0 0 0
original

number
dec. 13

2021222324252627

1 0 11 00 0 0

after

shift left
dec. 26

Shift left → × 2

M. B. Patil, IIT Bombay

Shift left operation

0 1 0 110 0 0 0
original

number
dec. 13

2021222324252627

1 0 11 00 0 0

after

shift left
dec. 26

Shift left → × 2

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1
M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 000 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 000 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 000 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 000 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 000 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 000 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00

000 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 00

0 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 000 0 0

0 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 000 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

Counters

Reset

State transition diagram General configuration

Clock Counter

Decoding
logic

k

1

2

3

4

Q0

Q1

Q2

QN−1

* A counter with k states is called a modulo-k (mod-k) counter.

* A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).

* If there are N flip-flops in a counter, there are 2N possible states (since each flip-flop can have Q = 0 or
Q = 1). It is possible to exclude some of these states.
→ N flip-flops can be used to make a mod-k counter with k ≤ 2N .

* Typically, a reset facility is also provided, which can be used to force a certain state to initialize the
counter.

M. B. Patil, IIT Bombay

Counters

Reset

State transition diagram General configuration

Clock Counter

Decoding
logic

k

1

2

3

4

Q0

Q1

Q2

QN−1

* A counter with k states is called a modulo-k (mod-k) counter.

* A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).

* If there are N flip-flops in a counter, there are 2N possible states (since each flip-flop can have Q = 0 or
Q = 1). It is possible to exclude some of these states.
→ N flip-flops can be used to make a mod-k counter with k ≤ 2N .

* Typically, a reset facility is also provided, which can be used to force a certain state to initialize the
counter.

M. B. Patil, IIT Bombay

Counters

Reset

State transition diagram General configuration

Clock Counter

Decoding
logic

k

1

2

3

4

Q0

Q1

Q2

QN−1

* A counter with k states is called a modulo-k (mod-k) counter.

* A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).

* If there are N flip-flops in a counter, there are 2N possible states (since each flip-flop can have Q = 0 or
Q = 1). It is possible to exclude some of these states.
→ N flip-flops can be used to make a mod-k counter with k ≤ 2N .

* Typically, a reset facility is also provided, which can be used to force a certain state to initialize the
counter.

M. B. Patil, IIT Bombay

Counters

Reset

State transition diagram General configuration

Clock Counter

Decoding
logic

k

1

2

3

4

Q0

Q1

Q2

QN−1

* A counter with k states is called a modulo-k (mod-k) counter.

* A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).

* If there are N flip-flops in a counter, there are 2N possible states (since each flip-flop can have Q = 0 or
Q = 1). It is possible to exclude some of these states.
→ N flip-flops can be used to make a mod-k counter with k ≤ 2N .

* Typically, a reset facility is also provided, which can be used to force a certain state to initialize the
counter.

M. B. Patil, IIT Bombay

Counters

Reset

State transition diagram General configuration

Clock Counter

Decoding
logic

k

1

2

3

4

Q0

Q1

Q2

QN−1

* A counter with k states is called a modulo-k (mod-k) counter.

* A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).

* If there are N flip-flops in a counter, there are 2N possible states (since each flip-flop can have Q = 0 or
Q = 1). It is possible to exclude some of these states.
→ N flip-flops can be used to make a mod-k counter with k ≤ 2N .

* Typically, a reset facility is also provided, which can be used to force a certain state to initialize the
counter.

M. B. Patil, IIT Bombay

Counters: example

1

t

t

t

State transition diagram

k

1

2

3

4

CLK

CLK

t

state

0 1 1 0 1 0

0

01

01

11

110

0 0

0

1

0

1

0

1

t5t4t3t2t1

QJ

QK

QJ

QK

QJ

QK

Q0 Q1 Q2

01

2

3

4

5

1

Q0

Q1

Q2

1 1 0

1 1 1

0 1 1

1 0 1

0 0 0

0 0

Q1Q0 Q2

M. B. Patil, IIT Bombay

Counters

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1

CLK

X

8T

t

t

Reset

Clock Counter

Decoding
logic

k

1

2

3

4

Q0

Q1

Q2

QN−1

X is 1 for state 3; else, it is 0.

* The counter outputs (i.e., the flip-flop outputs, Q0, Q1, · · · QN−1) can be decoded using appropriate logic.
* In particular, it is possible to have a decoder output (say, X) which is 1 only for state i , and 0 otherwise.
→ For k clock pulses, we get a single pulse at X , i.e., the clock frequency has been divided by k. For this reason, a
mod-k counter is also called a divide-by-k counter.

M. B. Patil, IIT Bombay

Counters

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1

CLK

X

8T

t

t

Reset

Clock Counter

Decoding
logic

k

1

2

3

4

Q0

Q1

Q2

QN−1

X is 1 for state 3; else, it is 0.

* The counter outputs (i.e., the flip-flop outputs, Q0, Q1, · · · QN−1) can be decoded using appropriate logic.

* In particular, it is possible to have a decoder output (say, X) which is 1 only for state i , and 0 otherwise.
→ For k clock pulses, we get a single pulse at X , i.e., the clock frequency has been divided by k. For this reason, a
mod-k counter is also called a divide-by-k counter.

M. B. Patil, IIT Bombay

Counters

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1

CLK

X

8T

t

t

Reset

Clock Counter

Decoding
logic

k

1

2

3

4

Q0

Q1

Q2

QN−1

X is 1 for state 3; else, it is 0.

* The counter outputs (i.e., the flip-flop outputs, Q0, Q1, · · · QN−1) can be decoded using appropriate logic.
* In particular, it is possible to have a decoder output (say, X) which is 1 only for state i , and 0 otherwise.
→ For k clock pulses, we get a single pulse at X , i.e., the clock frequency has been divided by k. For this reason, a
mod-k counter is also called a divide-by-k counter.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.
* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.
* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal

flip-flip operation.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.

* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.
* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal

flip-flip operation.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.
* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.

* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.
* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal

flip-flip operation.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.
* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal
flip-flip operation.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.
* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal
flip-flip operation.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.
* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal
flip-flip operation.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.
* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal
flip-flip operation.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.
* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal
flip-flip operation.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.
* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.
* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal

flip-flip operation. M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

0

1

0

0

1

1

0

CLK

J

FF0 FF1 FF2CLK

1

00 repeats

Q2 Q1

Q0

Q1 Q2Q0

Q1

Q2

Q0

Q Q

Q Q

Q

Q

* The counter has 8 states, Q2Q1Q0 = 000, 001, 010, 011, 100, 101, 110, 111.
→ it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up from 000 to 111).

* If the clock frequency is fc , the frequency at the Q0, Q1, Q2 outputs is fc/2, fc/4, fc/8, respectively. For this counter,
therefore, div-by-2, div-by-4, div-by-8 outputs are already available, without requiring decoding logic.

* This type of counter is called a “ripple” counter since the clock transitions ripple through the flip-flops.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

0

1

0

0

1

1

0

CLK

J

FF0 FF1 FF2CLK

1

00 repeats

Q2 Q1

Q0

Q1 Q2Q0

Q1

Q2

Q0

Q Q

Q Q

Q

Q

* The counter has 8 states, Q2Q1Q0 = 000, 001, 010, 011, 100, 101, 110, 111.
→ it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up from 000 to 111).

* If the clock frequency is fc , the frequency at the Q0, Q1, Q2 outputs is fc/2, fc/4, fc/8, respectively. For this counter,
therefore, div-by-2, div-by-4, div-by-8 outputs are already available, without requiring decoding logic.

* This type of counter is called a “ripple” counter since the clock transitions ripple through the flip-flops.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

0

1

0

0

1

1

0

CLK

J

FF0 FF1 FF2CLK

1

00 repeats

Q2 Q1

Q0

Q1 Q2Q0

Q1

Q2

Q0

Q Q

Q Q

Q

Q

* The counter has 8 states, Q2Q1Q0 = 000, 001, 010, 011, 100, 101, 110, 111.
→ it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up from 000 to 111).

* If the clock frequency is fc , the frequency at the Q0, Q1, Q2 outputs is fc/2, fc/4, fc/8, respectively. For this counter,
therefore, div-by-2, div-by-4, div-by-8 outputs are already available, without requiring decoding logic.

* This type of counter is called a “ripple” counter since the clock transitions ripple through the flip-flops.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

0

1

0

0

1

1

0

CLK

J

FF0 FF1 FF2CLK

1

00 repeats

Q2 Q1

Q0

Q1 Q2Q0

Q1

Q2

Q0

Q Q

Q Q

Q

Q

* The counter has 8 states, Q2Q1Q0 = 000, 001, 010, 011, 100, 101, 110, 111.
→ it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up from 000 to 111).

* If the clock frequency is fc , the frequency at the Q0, Q1, Q2 outputs is fc/2, fc/4, fc/8, respectively. For this counter,
therefore, div-by-2, div-by-4, div-by-8 outputs are already available, without requiring decoding logic.

* This type of counter is called a “ripple” counter since the clock transitions ripple through the flip-flops. M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

0

1

1

0

0

1

1

0

0

0

1

1

1

1

0

0

0

0

1

0

1

0

0

1

1

0

CLK

J

FF0 FF1 FF2CLK

1

00 repeats

Q2 Q1

Q0

Q1 Q2Q0

Q1

Q2

Q0

Q Q

Q Q

Q

Q

* If positive edge-triggered flip-flops are used, we get a binary down counter (counting down from 111 to 000).

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

0

1

1

0

0

1

1

0

0

0

1

1

1

1

0

0

0

0

1

0

1

0

0

1

1

0

CLK

J

FF0 FF1 FF2CLK

1

00 repeats

Q2 Q1

Q0

Q1 Q2Q0

Q1

Q2

Q0

Q Q

Q Q

Q

Q

* If positive edge-triggered flip-flops are used, we get a binary down counter (counting down from 111 to 000).

M. B. Patil, IIT Bombay

Binary ripple counters

1

J

K

J

K

J

K K

J

KK

J J

1

FF0 FF1 FF2

FF0 FF1 FF2

CLK

CLK

Q0

Q0

Q1

Q1

Q2

Q2

Q

Q

Q

Q

Q

Q

Q

Q Q

Q

Q

Q

* Home work: Sketch the waveforms (CLK, Q0, Q1, Q2), and tabulate the counter states in each case.

M. B. Patil, IIT Bombay

Up-down binary ripple counters

CLK

K K

J

K

JJ

FF0 FF1 FF2CLK

1

t

t

t

t

CLK

t

t

t

t

M=1 M=0

Q0 Q1 Q2

Q0

Q1

Q2

Q0

Q1

Q2

Q Q

Q Q

Q

Q

M

M

* When Mode (M) = 1, the counter counts up; else, it counts down. (SEQUEL file: ee101 counter 3.sqproj)

M. B. Patil, IIT Bombay

Up-down binary ripple counters

CLK

K K

J

K

JJ

FF0 FF1 FF2CLK

1

t

t

t

t

CLK

t

t

t

t

M=1 M=0

Q0 Q1 Q2

Q0

Q1

Q2

Q0

Q1

Q2

Q Q

Q Q

Q

Q

M

M

* When Mode (M) = 1, the counter counts up; else, it counts down. (SEQUEL file: ee101 counter 3.sqproj)

M. B. Patil, IIT Bombay

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

0

0

0 01 1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

0

K K

J J

K

J

K

0

J

FF0 FF1 FF2 FF3CLK

1

0 0 0 0 repeats

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time (msec)

Q2Q3

Q3

Q2

Q1

Q0

Q1

Q3Q2Q1Q0

Q0

Q

Q

Q

Q

Q

Q Q

Q

Rd Rd

Sd Sd Sd

Rd Rd

Sd

SEQUEL file: ee101 counter 5.sqproj

Decade counter using direct inputs

* When the counter reaches
Q3Q2Q1Q0 = 1010 (i.e., decimal 10),
Q3Q1 = 1, and the flip-flops are
cleared to Q3Q2Q1Q0 = 0000.

* The counter counts from 0000
(decimal 0) to 1001 (decimal 9)
→ “decade counter.”

M. B. Patil, IIT Bombay

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

0

0

0 01 1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

0

K K

J J

K

J

K

0

J

FF0 FF1 FF2 FF3CLK

1

0 0 0 0 repeats

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time (msec)

Q2Q3

Q3

Q2

Q1

Q0

Q1

Q3Q2Q1Q0

Q0

Q

Q

Q

Q

Q

Q Q

Q

Rd Rd

Sd Sd Sd

Rd Rd

Sd

SEQUEL file: ee101 counter 5.sqproj

Decade counter using direct inputs

* When the counter reaches
Q3Q2Q1Q0 = 1010 (i.e., decimal 10),
Q3Q1 = 1, and the flip-flops are
cleared to Q3Q2Q1Q0 = 0000.

* The counter counts from 0000
(decimal 0) to 1001 (decimal 9)
→ “decade counter.”

M. B. Patil, IIT Bombay

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

0

0

0 01 1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

0

K K

J J

K

J

K

0

J

FF0 FF1 FF2 FF3CLK

1

0 0 0 0 repeats

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time (msec)

Q2Q3

Q3

Q2

Q1

Q0

Q1

Q3Q2Q1Q0

Q0

Q

Q

Q

Q

Q

Q Q

Q

Rd Rd

Sd Sd Sd

Rd Rd

Sd

SEQUEL file: ee101 counter 5.sqproj

Decade counter using direct inputs

* When the counter reaches
Q3Q2Q1Q0 = 1010 (i.e., decimal 10),
Q3Q1 = 1, and the flip-flops are
cleared to Q3Q2Q1Q0 = 0000.

* The counter counts from 0000
(decimal 0) to 1001 (decimal 9)
→ “decade counter.”

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles after every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)
* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles after every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)
* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.

* FF0 toggles after every active edge.
FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles after every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles after every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles after every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles after every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles after every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles after every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)
* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1

KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.

→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.

→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.

→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10

1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01

X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1

X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

2

3

4

5

K K K

CLK

J

J Kstate

1 0 0 0
CLK

J J

repeats

Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn Qn+1

K2 K1 K0

J2 J1 J0
Q

Q2

Q

Q

Q

Q1
Q

Q

Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. This can be done
with K-maps. (If the number of flip-flops is more than 4, other techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

2

3

4

5

K K K

CLK

J

J Kstate

1 0 0 0
CLK

J J

repeats

Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn Qn+1

K2 K1 K0

J2 J1 J0
Q

Q2

Q

Q

Q

Q1
Q

Q

Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. This can be done
with K-maps. (If the number of flip-flops is more than 4, other techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

2

3

4

5

K K K

CLK

J

J Kstate

1 0 0 0
CLK

J J

repeats

Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn Qn+1

K2 K1 K0

J2 J1 J0
Q

Q2

Q

Q

Q

Q1
Q

Q

Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. This can be done
with K-maps. (If the number of flip-flops is more than 4, other techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

2

3

4

5

K K K

CLK

J

J Kstate

1 0 0 0
CLK

J J

repeats

Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn Qn+1

K2 K1 K0

J2 J1 J0
Q

Q2

Q

Q

Q

Q1
Q

Q

Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. This can be done
with K-maps. (If the number of flip-flops is more than 4, other techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

2

3

4

5

K K K

CLK

J

J Kstate

1 0 0 0
CLK

J J

repeats

Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn Qn+1

K2 K1 K0

J2 J1 J0
Q

Q2

Q

Q

Q

Q1
Q

Q

Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. This can be done
with K-maps. (If the number of flip-flops is more than 4, other techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

2

3

4

5

K K K

CLK

J

J Kstate

1 0 0 0
CLK

J J

repeats

Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn Qn+1

K2 K1 K0

J2 J1 J0
Q

Q2

Q

Q

Q

Q1
Q

Q

Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. This can be done
with K-maps. (If the number of flip-flops is more than 4, other techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn

0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn

0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X

0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X

1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X

1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X

X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X

X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0

1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X

X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1

X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1

0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X

0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

0 0X X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X X1 1

1 0 X 0 XX

X0 0

0 11

0

00 01 11 10

0

1

X 0

1 X

00 01 11 10

0

1 X X

011

1

0

00 01 11 10

X X

1 1

X

0

1

X 0 X

X 1

00 01 11 10

00 01 11 10

0

1

X X 1

X X

00 01 11 10

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

0

Q2Q1 Q2Q1

Q0Q0

Q2Q1 Q2Q1

Q0Q0

Q2Q1

Q0

Q2Q1

Q0

K0

K0

J0

J0

K1

K1

J1

J1

K2

K2

J2

J2

Q2 Q1 Q0

X

X X

X

X X

X

X X X X

X

X X

X

X X

X

* We treat the unused states (Q2Q1Q0 = 101, 110, 111) as (additional) don’t care conditions. Since these are different
from the don’t care conditions arising from the state transition table, we mark them with a different colour.

* We will assume that a suitable initialization facility is provided to ensure that the counter starts up in one of the five
allowed states (say, Q2Q1Q0 = 000).

* From the K-maps, J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.

M. B. Patil, IIT Bombay

Design of synchronous counters

0 0X X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X X1 1

1 0 X 0 XX

X0 0

0 11

0

00 01 11 10

0

1

X 0

1 X

00 01 11 10

0

1 X X

011

1

0

00 01 11 10

X X

1 1

X

0

1

X 0 X

X 1

00 01 11 10

00 01 11 10

0

1

X X 1

X X

00 01 11 10

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

0

Q2Q1 Q2Q1

Q0Q0

Q2Q1 Q2Q1

Q0Q0

Q2Q1

Q0

Q2Q1

Q0

K0

K0

J0

J0

K1

K1

J1

J1

K2

K2

J2

J2

Q2 Q1 Q0

X

X X

X

X X

X

X X X X

X

X X

X

X X

X

* We treat the unused states (Q2Q1Q0 = 101, 110, 111) as (additional) don’t care conditions. Since these are different
from the don’t care conditions arising from the state transition table, we mark them with a different colour.

* We will assume that a suitable initialization facility is provided to ensure that the counter starts up in one of the five
allowed states (say, Q2Q1Q0 = 000).

* From the K-maps, J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.

M. B. Patil, IIT Bombay

Design of synchronous counters

0 0X X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X X1 1

1 0 X 0 XX

X0 0

0 11

0

00 01 11 10

0

1

X 0

1 X

00 01 11 10

0

1 X X

011

1

0

00 01 11 10

X X

1 1

X

0

1

X 0 X

X 1

00 01 11 10

00 01 11 10

0

1

X X 1

X X

00 01 11 10

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

0

Q2Q1 Q2Q1

Q0Q0

Q2Q1 Q2Q1

Q0Q0

Q2Q1

Q0

Q2Q1

Q0

K0

K0

J0

J0

K1

K1

J1

J1

K2

K2

J2

J2

Q2 Q1 Q0

X

X X

X

X X

X

X X X X

X

X X

X

X X

X

* We treat the unused states (Q2Q1Q0 = 101, 110, 111) as (additional) don’t care conditions. Since these are different
from the don’t care conditions arising from the state transition table, we mark them with a different colour.

* We will assume that a suitable initialization facility is provided to ensure that the counter starts up in one of the five
allowed states (say, Q2Q1Q0 = 000).

* From the K-maps, J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.

M. B. Patil, IIT Bombay

Design of synchronous counters

0 0X X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X X1 1

1 0 X 0 XX

X0 0

0 11

0

00 01 11 10

0

1

X 0

1 X

00 01 11 10

0

1 X X

011

1

0

00 01 11 10

X X

1 1

X

0

1

X 0 X

X 1

00 01 11 10

00 01 11 10

0

1

X X 1

X X

00 01 11 10

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

0

Q2Q1 Q2Q1

Q0Q0

Q2Q1 Q2Q1

Q0Q0

Q2Q1

Q0

Q2Q1

Q0

K0

K0

J0

J0

K1

K1

J1

J1

K2

K2

J2

J2

Q2 Q1 Q0

X

X X

X

X X

X

X X X X

X

X X

X

X X

X

* We treat the unused states (Q2Q1Q0 = 101, 110, 111) as (additional) don’t care conditions. Since these are different
from the don’t care conditions arising from the state transition table, we mark them with a different colour.

* We will assume that a suitable initialization facility is provided to ensure that the counter starts up in one of the five
allowed states (say, Q2Q1Q0 = 000).

* From the K-maps, J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.

M. B. Patil, IIT Bombay

Design of synchronous counters: verification

K K K

J J J

CLK

1

CLK

 0.04 0.14 0.24 0.34

time (msec)

SEQUEL file: ee101 counter 6.sqproj

K2 K1 K0

J0
Q

Q Q

Q2
Q

Q1

Q

Q
Q0J2 J1

Q0

Q1

Q2

* J2 =Q1Q0,

K2 = 1,

J1 =Q0,

K1 =Q0,

J0 =Q2,

K0 = 1.

* Note that the design is independent
of whether positive or negative
edge-triggered flip-flops are used.

M. B. Patil, IIT Bombay

Design of synchronous counters: verification

K K K

J J J

CLK

1

CLK

 0.04 0.14 0.24 0.34

time (msec)

SEQUEL file: ee101 counter 6.sqproj

K2 K1 K0

J0
Q

Q Q

Q2
Q

Q1

Q

Q
Q0J2 J1

Q0

Q1

Q2

* J2 =Q1Q0,

K2 = 1,

J1 =Q0,

K1 =Q0,

J0 =Q2,

K0 = 1.

* Note that the design is independent
of whether positive or negative
edge-triggered flip-flops are used.

M. B. Patil, IIT Bombay

Design of synchronous counters: verification

K K K

J J J

CLK

1

CLK

 0.04 0.14 0.24 0.34

time (msec)

SEQUEL file: ee101 counter 6.sqproj

K2 K1 K0

J0
Q

Q Q

Q2
Q

Q1

Q

Q
Q0J2 J1

Q0

Q1

Q2

* J2 =Q1Q0,

K2 = 1,

J1 =Q0,

K1 =Q0,

J0 =Q2,

K0 = 1.

* Note that the design is independent
of whether positive or negative
edge-triggered flip-flops are used.

M. B. Patil, IIT Bombay

Combination of counters: Approach 1

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Decoding

Logic

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 1 2 3 1

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 1

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Decoding

Logic

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 1 2 3 1

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 1

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Decoding

Logic

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 1 2 3 1

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 1

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Decoding

Logic

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 1 2 3 1

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 1

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Decoding

Logic

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 1 2 3 1

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 1

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Decoding

Logic

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 1 2 3 1

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: example

K K K K

t t

CLK

t t

t

t

mod−2 counter mod−5 counter

J

CLK

1

CLK

1

J JJ

CLK

Q0 Q0

Q1

Q2

J0

K0

Q

Q
Q0 J2

K2

Q

Q Q

Q0
Q

K0

Q

Q
K1

Q2 J0Q1J1

M. B. Patil, IIT Bombay

Combination of counters: example

K K K
K

J

CLK

1

t

t

t

t

t

CLK

1

J JJ

51 2 3 4 5 6 7 8 9 10 1 2 3 4 6 7 8 9 10

QA

Q0

Q1

Q2

SEQUEL file: ee101 counter 7.sqproj

JA

KA

Q

Q
QA

J2

K2

Q

Q Q

Q0
Q

K0

Q

Q
K1

Q2 J0Q1J1

M. B. Patil, IIT Bombay

Combination of counters: Approach 2

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 13 2 13 3 3 3 31 1 1 12 2 2 2 2

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 2 3 1 2 2 2 2 23 1 3 1 3 1 13

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 2

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 13 2 13 3 3 3 31 1 1 12 2 2 2 2

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 2 3 1 2 2 2 2 23 1 3 1 3 1 13

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 2

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 13 2 13 3 3 3 31 1 1 12 2 2 2 2

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 2 3 1 2 2 2 2 23 1 3 1 3 1 13

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 2

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 13 2 13 3 3 3 31 1 1 12 2 2 2 2

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 2 3 1 2 2 2 2 23 1 3 1 3 1 13

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 2

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 13 2 13 3 3 3 31 1 1 12 2 2 2 2

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 2 3 1 2 2 2 2 23 1 3 1 3 1 13

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 2

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 13 2 13 3 3 3 31 1 1 12 2 2 2 2

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 2 3 1 2 2 2 2 23 1 3 1 3 1 13

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 2

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 13 2 13 3 3 3 31 1 1 12 2 2 2 2

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 2 3 1 2 2 2 2 23 1 3 1 3 1 13

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: example (same as before)

K K K K

t t

CLK

t t

t

t

mod−2 counter mod−5 counter

J

CLK

1

CLK

1

J JJ

CLK

Q0 Q0

Q1

Q2

J0

K0

Q

Q
Q0 J2

K2

Q

Q Q

Q0
Q

K0

Q

Q
K1

Q2 J0Q1J1

M. B. Patil, IIT Bombay

Combination of counters: example

K K K

t

t

t

t

t

CLK

K

1

J JJ
J

1

CLK

51 2 3 4 5 6 7 8 9 10 1 2 3 4 6 7 8 9 10

QA

Q0

Q1

Q2

SEQUEL file: ee101 counter 8.sqproj

J2

K2

Q

Q Q

Q0
Q

K0

Q

Q
K1

Q2 J0Q1J1JA

KA

Q

Q
QA

M. B. Patil, IIT Bombay

555 timer IC

The 555 timer is useful in timer, pulse generation, and oscillator applications. We will look at two common
applications.

* Monostable multivibrator

t

t

T

Vout

Vtrigger

* Astable multivibrator

t

T

Vout

M. B. Patil, IIT Bombay

555 timer IC

The 555 timer is useful in timer, pulse generation, and oscillator applications. We will look at two common
applications.

* Monostable multivibrator

t

t

T

Vout

Vtrigger

* Astable multivibrator

t

T

Vout

M. B. Patil, IIT Bombay

555 timer IC

The 555 timer is useful in timer, pulse generation, and oscillator applications. We will look at two common
applications.

* Monostable multivibrator

t

t

T

Vout

Vtrigger

* Astable multivibrator

t

T

Vout

M. B. Patil, IIT Bombay

555 timer

R S

Threshold

Trigger

Discharge

Out
buffer

Q

R

R

R

Q

Q

Q

R

S

1

1

0 0

0

0

1

1 0

0

previous

VCC

OutThreshold

Trigger

Discharge

2VCC

3

VCC

3

Q

Q

R

S

STOP

M. B. Patil, IIT Bombay

555 timer

R S

Threshold

Trigger

Discharge

Out
buffer

Q

R

R

R

Q

Q

Q

R

S

1

1

0 0

0

0

1

1 0

0

previous

VCC

OutThreshold

Trigger

Discharge

2VCC

3

VCC

3

Q

Q

R

S

STOP

M. B. Patil, IIT Bombay

555 timer

R S

Threshold

Trigger

Discharge

Out
buffer

Q

R

R

R

Q

Q

Q

R

S

1

1

0 0

0

0

1

1 0

0

previous

VCC

OutThreshold

Trigger

Discharge

2VCC

3

VCC

3

Q

Q

R

S

STOP

M. B. Patil, IIT Bombay

555 monostable multivibrator

VC C

R

OutThreshold

Discharge

Trigger

2VCC

3

VCC

3

Q

Q

R

S

VCC

t

t

t

t

t

Trigger

S

R

Q

VC

to VCC

2VCC

3

T

VC (t) = VCC

(
1− e−t/τ

)
→ 2VCC

3
= VCC

(
1− e−T/τ

)
→ e−T/τ =

1

3
→ T = τ log 3 ≈ 1.1 τ

SEQUEL file: ic555 mono 1.sqproj

M. B. Patil, IIT Bombay

555 monostable multivibrator

VC C

R

OutThreshold

Discharge

Trigger

2VCC

3

VCC

3

Q

Q

R

S

VCC

t

t

t

t

t

Trigger

S

R

Q

VC

to VCC

2VCC

3

T

VC (t) = VCC

(
1− e−t/τ

)
→ 2VCC

3
= VCC

(
1− e−T/τ

)
→ e−T/τ =

1

3
→ T = τ log 3 ≈ 1.1 τ

SEQUEL file: ic555 mono 1.sqproj

M. B. Patil, IIT Bombay

555 monostable multivibrator

VC C

R

OutThreshold

Discharge

Trigger

2VCC

3

VCC

3

Q

Q

R

S

VCC

t

t

t

t

t

Trigger

S

R

Q

VC

to VCC

2VCC

3

T

VC (t) = VCC

(
1− e−t/τ

)
→ 2VCC

3
= VCC

(
1− e−T/τ

)
→ e−T/τ =

1

3
→ T = τ log 3 ≈ 1.1 τ

SEQUEL file: ic555 mono 1.sqproj

M. B. Patil, IIT Bombay

555 monostable multivibrator

VC C

R

OutThreshold

Discharge

Trigger

2VCC

3

VCC

3

Q

Q

R

S

VCC

t

t

t

t

t

Trigger

S

R

Q

VC

to VCC

2VCC

3

T

VC (t) = VCC

(
1− e−t/τ

)
→ 2VCC

3
= VCC

(
1− e−T/τ

)
→ e−T/τ =

1

3
→ T = τ log 3 ≈ 1.1 τ

SEQUEL file: ic555 mono 1.sqproj

M. B. Patil, IIT Bombay

555 monostable multivibrator

VC C

R

OutThreshold

Discharge

Trigger

2VCC

3

VCC

3

Q

Q

R

S

VCC

t

t

t

t

t

Trigger

S

R

Q

VC

to VCC

2VCC

3

TVC (t) = VCC

(
1− e−t/τ

)

→ 2VCC

3
= VCC

(
1− e−T/τ

)
→ e−T/τ =

1

3
→ T = τ log 3 ≈ 1.1 τ

SEQUEL file: ic555 mono 1.sqproj

M. B. Patil, IIT Bombay

555 monostable multivibrator

VC C

R

OutThreshold

Discharge

Trigger

2VCC

3

VCC

3

Q

Q

R

S

VCC

t

t

t

t

t

Trigger

S

R

Q

VC

to VCC

2VCC

3

TVC (t) = VCC

(
1− e−t/τ

)
→ 2VCC

3
= VCC

(
1− e−T/τ

)

→ e−T/τ =
1

3
→ T = τ log 3 ≈ 1.1 τ

SEQUEL file: ic555 mono 1.sqproj

M. B. Patil, IIT Bombay

555 monostable multivibrator

VC C

R

OutThreshold

Discharge

Trigger

2VCC

3

VCC

3

Q

Q

R

S

VCC

t

t

t

t

t

Trigger

S

R

Q

VC

to VCC

2VCC

3

TVC (t) = VCC

(
1− e−t/τ

)
→ 2VCC

3
= VCC

(
1− e−T/τ

)
→ e−T/τ =

1

3
→ T = τ log 3 ≈ 1.1 τ

SEQUEL file: ic555 mono 1.sqproj

M. B. Patil, IIT Bombay

555 monostable multivibrator

VC C

R

OutThreshold

Discharge

Trigger

2VCC

3

VCC

3

Q

Q

R

S

VCC

t

t

t

t

t

Trigger

S

R

Q

VC

to VCC

2VCC

3

TVC (t) = VCC

(
1− e−t/τ

)
→ 2VCC

3
= VCC

(
1− e−T/τ

)
→ e−T/τ =

1

3
→ T = τ log 3 ≈ 1.1 τ

SEQUEL file: ic555 mono 1.sqproj

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Charging:

VC (0) =
VCC

3
, VC (∞) = VCC .

Let VC (t) = Ae−t/τ1 + B

→ B = VCC , A = −2VCC

3
2VCC

3
= −2VCC

3
e−TH/τ1 + VCC

→ TH = τ1 log 2, with τ1 = (Ra + Rb)C .

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Charging:

VC (0) =
VCC

3
, VC (∞) = VCC .

Let VC (t) = Ae−t/τ1 + B

→ B = VCC , A = −2VCC

3
2VCC

3
= −2VCC

3
e−TH/τ1 + VCC

→ TH = τ1 log 2, with τ1 = (Ra + Rb)C .

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Charging:

VC (0) =
VCC

3
, VC (∞) = VCC .

Let VC (t) = Ae−t/τ1 + B

→ B = VCC , A = −2VCC

3
2VCC

3
= −2VCC

3
e−TH/τ1 + VCC

→ TH = τ1 log 2, with τ1 = (Ra + Rb)C .

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Charging:

VC (0) =
VCC

3
, VC (∞) = VCC .

Let VC (t) = Ae−t/τ1 + B

→ B = VCC , A = −2VCC

3

2VCC

3
= −2VCC

3
e−TH/τ1 + VCC

→ TH = τ1 log 2, with τ1 = (Ra + Rb)C .

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Charging:

VC (0) =
VCC

3
, VC (∞) = VCC .

Let VC (t) = Ae−t/τ1 + B

→ B = VCC , A = −2VCC

3
2VCC

3
= −2VCC

3
e−TH/τ1 + VCC

→ TH = τ1 log 2, with τ1 = (Ra + Rb)C .

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Charging:

VC (0) =
VCC

3
, VC (∞) = VCC .

Let VC (t) = Ae−t/τ1 + B

→ B = VCC , A = −2VCC

3
2VCC

3
= −2VCC

3
e−TH/τ1 + VCC

→ TH = τ1 log 2, with τ1 = (Ra + Rb)C .

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Discharging: VC (0) =
2VCC

3
, VC (∞) = 0.

→ VC (t) =
2VCC

3
e−t/τ2

VCC

3
=

2VCC

3
e−TL/τ2

→ TL = τ2 log 2, with τ2 = RbC .

SEQUEL file: ic555 astable 1.sqproj

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Discharging: VC (0) =
2VCC

3
, VC (∞) = 0.

→ VC (t) =
2VCC

3
e−t/τ2

VCC

3
=

2VCC

3
e−TL/τ2

→ TL = τ2 log 2, with τ2 = RbC .

SEQUEL file: ic555 astable 1.sqproj

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Discharging: VC (0) =
2VCC

3
, VC (∞) = 0.

→ VC (t) =
2VCC

3
e−t/τ2

VCC

3
=

2VCC

3
e−TL/τ2

→ TL = τ2 log 2, with τ2 = RbC .

SEQUEL file: ic555 astable 1.sqproj

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Discharging: VC (0) =
2VCC

3
, VC (∞) = 0.

→ VC (t) =
2VCC

3
e−t/τ2

VCC

3
=

2VCC

3
e−TL/τ2

→ TL = τ2 log 2, with τ2 = RbC .

SEQUEL file: ic555 astable 1.sqproj

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Discharging: VC (0) =
2VCC

3
, VC (∞) = 0.

→ VC (t) =
2VCC

3
e−t/τ2

VCC

3
=

2VCC

3
e−TL/τ2

→ TL = τ2 log 2, with τ2 = RbC .

SEQUEL file: ic555 astable 1.sqproj

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Discharging: VC (0) =
2VCC

3
, VC (∞) = 0.

→ VC (t) =
2VCC

3
e−t/τ2

VCC

3
=

2VCC

3
e−TL/τ2

→ TL = τ2 log 2, with τ2 = RbC .

SEQUEL file: ic555 astable 1.sqproj

M. B. Patil, IIT Bombay

