
Life Cycle Models

1

Software
Life Cycle

Conceptualize

Specify

Design

Code

Test

Maintain

Retire

Deliver

2

Life Cycle Model

• A software life cycle model (also process model or SDLC):

–A descriptive and diagrammatic model of software life

cycle:

–Identifies all the activities undertaken during product development,

–Establishes a precedence ordering among the different activities,

–Divides life cycle into phases.

3

Life Cycle Model (CONT.)

• Each life cycle phase consists of several activities.

–For example, the design stage might consist of:

•structured analysis

•structured design

•Design review

4

Why Model Life Cycle?
• A graphical and written description:

–Helps common understanding of activities among the software

developers.

–Helps to identify inconsistencies, redundancies, and omissions

in the development process.

–Helps in tailoring a process model for specific projects.

5

Life Cycle Model (CONT.)

• The development team must identify a suitable life cycle

model:

–and then adhere to it.

–Primary advantage of adhering to a life cycle model:

•Helps development of software in a systematic and disciplined

manner.

6

Life Cycle Model (CONT.)

• When a program is developed by a single programmer ---

–The problem is within the grasp of an individual.

–He has the freedom to decide his exact steps and still succeed --- called

Exploratory model--- One can use it in many ways

–CodeTestDesign

–CodeDesignTest  Change Code 

–Specify code Design Test etc.

7

Initial
Coding Do Until

Done

Test

Fix

Life Cycle Model (CONT.)

• When software is being developed by a team:

–There must be a precise understanding among team

members as to when to do what,

–Otherwise, it would lead to chaos and project failure.

8

Life Cycle Model (CONT.)

• A software project will never succeed if:

–one engineer starts writing code,

–another concentrates on writing the test document first,

–yet another engineer first defines the file structure

–another defines the I/O for his portion first.

9

Phase Entry and Exit Criteria

• A life cycle model:

–defines entry and exit criteria for every phase.

–A phase is considered to be complete:

•only when all its exit criteria are satisfied.

10

Life Cycle Model (CONT.)

• What is the phase exit criteria for the software requirements

specification phase?

–Software Requirements Specification (SRS) document is

complete, reviewed, and approved by the customer.

• A phase can start:

–Only if its phase-entry criteria have been satisfied.

11

Life Cycle Model: Milestones

• Milestones help software project managers:

–Track the progress of the project.

–Phase entry and exit are

important milestones.

12

Life Cycle and Project Management

•When a life cycle model is followed:

–The project manager can at any time fairly

accurately tell,

•At which stage (e.g., design, code, test, etc.) the

project is.

13

Project Management Without Life Cycle Model

• It becomes very difficult to track the progress of the project.

–The project manager would have to depend on the guesses

of the team members.

• This usually leads to a problem:

–known as the 99% complete syndrome.

14

Project Deliverables: Myth and Reality

Myth:

The only deliverable for a successful project is the working

program.

Reality:

Documentation of all aspects of software development are

needed to help in operation and maintenance.

15

Life Cycle Model (CONT.)

• Many life cycle models have been proposed.

• We confine our attention to only a few commonly used models.

–Waterfall

–V model,

–Evolutionary,

–Prototyping

–Spiral model,

–Agile models

Traditional models

16

Software Life Cycle

• Software life cycle (or software process):

–Series of identifiable stages that a software product

undergoes during its life time:

• Feasibility study

•Requirements analysis and specification,

•Design,

• Coding,

• Testing

•Maintenance.

17

Classical Waterfall Model
• Classical waterfall model divides life cycle into following phases:

–Feasibility study,

–Requirements analysis and specification,

–Design,

–Coding and unit testing,

– Integration and system testing,

–Maintenance.

Conceptualize

Specify

Design

Code

Test

Maintain

Retire

Deliver

18

Classical Waterfall ModelFeasibility Study

Req. Analysis

Design

Coding

Testing

Maintenance

Simplest and most
intuitive

19

Relative Effort for Phases
• Phases between feasibility study and

testing

–Called development phases.

• Among all life cycle phases

–Maintenance phase consumes maximum

effort.

• Among development phases,

–Testing phase consumes the maximum effort.

0

10

20

30

40

50

60

R
e
q

.
S

p

D
e
si

g
n

C
o
d

in
g

T
e
st

M
a
in

tn
c
e

R
e
la
ti
ve

 E
ff

or
t

Process Model

• Most organizations usually define:

– Standards on the outputs (deliverables) produced at the end of every phase

– Entry and exit criteria for every phase.

• They also prescribe methodologies for:

– Specification,

– Design,

– Testing,

– Project management, etc.

Classical Waterfall Model (CONT.)

• The guidelines and methodologies of an organization:

–Called the organization's software development methodology.

• Software development organizations:

– Expect fresh engineers to master the organization's

software development methodology.

22

Feasibility
Dimensions

Feasibility Study

Schedule
feasibility

Technical
feasibility

Economic
feasibility
(also called
cost/benefit
feasibility)

23

Feasibility Study

• Main aim of feasibility study: determine whether developing the

software is:

– Financially worthwhile

– Technically feasible.

• Roughly understand what customer wants:

–Data which would be input to the system,

–Processing needed on these data,

–Output data to be produced by the system,

–Various constraints on the behavior of the system.

24

First Step

Case Study

• SPF Scheme for CFL

• CFL has a large number of employees, exceeding 50,000.

• Majority of these are casual labourers

• Mining being a risky profession:

– Casualties are high

• Though there is a PF:

– But settlement time is high

• There is a need of SPF:

– For faster disbursement of benefits

25

Feasibility: Case Study

• Manager visits main office, finds out the main
functionalities required

• Visits mine site, finds out the data to be input

• Suggests alternate solutions

• Determines the best solution

• Presents to the CFL Officials

• Go/No-Go Decision

26

Activities During Feasibility Study

• Work out an overall understanding of the problem.

• Formulate different solution strategies.

• Examine alternate solution strategies in terms of:

•resources required,

•cost of development, and

•development time.

27

Activities during Feasibility Study

• Perform a cost/benefit analysis:

–Determine which solution is the best.

–May also find that none of the solutions is

feasible due to:

• high cost,

• resource constraints,

• technical reasons.

28

Cost benefit analysis (CBA)
• Need to identify all costs --- these could be:

– Development costs

– Set-up

– Operational costs

• Identify the value of benefits

• Check benefits are greater than costs

29

The business case
• Benefits of delivered project

must outweigh costs

• Costs include:

- Development

- Operation

• Benefits:

– Quantifiable

– Non-quantifiable

Rs
Rs

Benefits

Costs

30

The business case

• Feasibility studies should help write a ‘business case’

• Should provide a justification for starting the project

• Should show that the benefits of the project will

exceed:

– Various costs

• Needs to take account of business risks

31

Writing an Effective Business Case1. Executive summary

2. Project background:

 The focus must be on what, exactly, the project is undertaking, and should not be confused with what might be a bigger picture.

3. Business opportunity

- What difference will it make?

- What if we don’t do it?

4. Costs

- Should include the cost of development, implementation, training, change management, and operations.

5. Benefits

 Benefits usually presented in terms of revenue generation and cost reductions.

6. Risks

− Identify risks.

− Explain how these will be managed.

32

Classical Waterfall Model

Feasibility Study

Req. Analysis

Design

Coding

Testing

Maintenance

33

Requirements Analysis and Specification

• Aim of this phase:

–Understand the exact requirements of the customer,

–Document them properly.

• Consists of two distinct activities:

–Requirements gathering and analysis

–Requirements specification.

34

Requirements Analysis and Specification
• Gather requirements data from the customer:

Analyze the collected data to understand what customer wants

• Remove requirements problems:

Inconsistencies

Anomalies

Incompleteness

• Organize into a Software Requirements Specification (SRS)
document.

35

Requirements Gathering
• Gathering relevant data:

–Usually collected from the end-users through interviews and

discussions.

–Example: for a business accounting software:

• Interview all the accountants of the organization to find out their

requirements.

36

Requirements Analysis (Cont...)

• The data you initially collect from the users:

–Usually contain several contradictions and ambiguities.

–Why?

–Each user typically has only a partial and incomplete view

of the system.

37

Requirements Analysis (Cont...)

• Ambiguities and contradictions:

–must be identified

–resolved by discussions with the customers.

• Next, requirements are organized:

–into a Software Requirements Specification (SRS) document.

38

Classical
Waterfall Model

Feasibility Study

Req. Analysis

Design

Coding

Testing

Maintenance

Design

39

Design
• During design phase requirements specification is

transformed into :

– A form suitable for implementation in some programming

language.

• Two commonly used design approaches:

–Traditional approach,

–Object oriented approach

40

Traditional Design Approach

• Consists of two activities:

–Structured analysis (typically carried out by

using DFD)

–Structured design

41

Structured Design
• High-level design:

–decompose the system into modules,

–represent invocation relationships among

the modules.

• Detailed design:

–different modules designed in greater detail:

• data structures and algorithms for each module are designed.

root

Handle-order Handle-indent Handle-query

Get-order
Accept-
order Process-

order

order query

indent

42

Object-Oriented Design

• First identify various objects (real world entities) occurring in the

problem:

– Identify the relationships among the objects.

–For example, the objects in a pay-roll software may be:

• employees,

• managers,

• pay-roll register,

• Departments, etc.

43

Object Oriented Design (CONT.)

• Object structure:

–Refined to obtain the detailed design.

• OOD has several advantages:

– Lower development effort,

– Lower development time,

–Better maintainability.

44

Classical Waterfall
Model

Feasibility Study

Req. Analysis

Design

Coding

Testing

Maintenance

Coding

45

Coding and Unit Testing
• During this phase:

–Each module of the design is coded,

–Each module is unit tested

• That is, tested independently as a stand alone unit, and

debugged.

–Each module is documented.

46

Classical Waterfall
Model

Feasibility Study

Req. Analysis

Design

Coding

Testing

Maintenance

Testing

47

Integration and System Testing

• Different modules are integrated in a planned

manner:

–Modules are usually integrated through a number of

steps.

• During each integration step,

–the partially integrated system is tested.

M1

M4M3

M2 M5

M8M6

M7

48

System Testing
• After all the modules have been successfully integrated and

tested:

–System testing is carried out.

• Goal of system testing:

–Ensure that the developed system functions according to its requirements

as specified in the SRS document.

49

Classical Waterfall
Model

Feasibility Study

Req. Analysis

Design

Coding

Testing

MaintenanceMaintenance

50

Maintenance

• Maintenance of any software:

–Requires much more effort than the effort to develop

the product itself.

–Development effort to maintenance effort is typically

40:60.

51

Types of Maintenance?
• Corrective maintenance:

– Correct errors which were not discovered during the product
development phases.

• Perfective maintenance:

– Improve implementation of the system

– enhance functionalities of the system.

• Adaptive maintenance:

– Port software to a new environment,

• e.g. to a new computer or to a new operating system.

52

Iterative Waterfall Model

• Classical waterfall model is idealistic:

–Assumes that no defect is introduced during any

development activity.

–In practice:

•Defects do get introduced in almost every phase of the life cycle.

53

Iterative Waterfall Model (CONT.)

• Defects usually get detected much later in the life cycle:

–For example, a design defect might go unnoticed till the

coding or testing phase.

–The later the phase in which the defect gets detected, the

more expensive is its removal --- why?

54

Iterative Waterfall Model (CONT.)

• Once a defect is detected:

–The phase in which it occurred needs to be reworked.

– Redo some of the work done during that and all subsequent

phases.

• Therefore need feedback paths in the classical waterfall

model.

55

Iterative Waterfall Model (CONT.)
Feasibility Study

Req. Analysis

Design

Coding

Testing

Maintenance

56

Phase Containment of Errors (Cont...)

• Errors should be detected:

 In the same phase in which they are introduced.

• For example:

 If a design problem is detected in the design phase itself,

The problem can be taken care of much more easily

Than say if it is identified at the end of the integration and system testing

phase.

57

Phase Containment of Errors

• Reason: rework must be carried out not only to the design but also

to code and test phases.

• The principle of detecting errors as close to its point of introduction

as possible:

– is known as phase containment of errors.

• Iterative waterfall model is by far the most widely used model.

–Almost every other model is derived from the waterfall model.

58

Iterative Waterfall Model (CONT.)
Feasibility Study

Req. Analysis

Design

Coding

Testing

Maintenance

59

Waterfall Strengths

• Easy to understand, easy to use, especially by

inexperienced staff

• Milestones are well understood by the team

• Provides requirements stability during development

• Facilitates strong management control (plan, staff, track)

60

Waterfall Deficiencies

• All requirements must be known upfront – in most

projects requirement change occurs after project start

• Can give a false impression of progress

• Integration is one big bang at the end

• Little opportunity for customer to pre-view the system.

61

When to use the Waterfall Model?

• Requirements are well known and stable

• Technology is understood

• Development team have experience with similar

projects

62

Classical Waterfall Model (CONT.)

• Irrespective of the life cycle model actually followed:

–The documents should reflect a classical waterfall model

of development.

–Facilitates comprehension of the documents.

63

Classical Waterfall Model (CONT.)

• Metaphor of mathematical theorem proving:

–A mathematician presents a proof as a single chain of

deductions,

• Even though the proof might have come from a convoluted set

of partial attempts, blind alleys and backtracks.

64

7/18/2020

V Model

65

V Model
• It is a variant of the Waterfall

– emphasizes verification and validation

– V&V activities are spread over the entire life cycle.

• In every phase of development:

– Testing activities are planned in parallel with

development.

66

Project Planning
Production,
Operation &
Maintenance

Requirements
Specification

System Testing

High Level Design Integration Testing

Detailed Design Unit testing

Coding

67

V Model Steps
• Planning

• Requirements Analysis and
Specification

• High-level Design

• Detailed Design

• System test design

• Integration Test dsign

• Unit test design

68

V Model: Strengths

• Starting from early stages of software development:

– Emphasizes planning for verification and validation of

the software

• Each deliverable is made testable

• Easy to use

69

V Model Weaknesses

• Does not support overlapping of phases

• Does not handle iterations or phases

• Does not easily accommodate later

changes to requirements

• Does not provide support for effective risk handling

70

Project
Planning

Production,
Operation &
Maintenance

Requirements
Specification

System Testing

High Level Design
Integration

Testing

Detailed Design Unit testing

Coding

When to use V Model

• Natural choice for systems requiring high reliability:

– Embedded control applications, safety-critical software

• All requirements are known up-front

• Solution and technology are known

71

7/18/2020

Prototyping Model

72

Prototyping Model
• A derivative of waterfall model.

• Before starting actual development,

– A working prototype of the system should first be built.

• A prototype is a toy implementation of a system:

–Limited functional capabilities,

–Low reliability,

–Inefficient performance.

73

Prototype Construction

Design

Coding

Testing

Maintenance

Reasons for prototyping
• Learning by doing: useful where requirements are

only partially known

• Improved communication

• Improved user involvement

• Reduced need for documentation

• Reduced maintenance costs

74

Prototype Construction

Design

Coding

Testing

Maintenance

Reasons for Developing a Prototype
• Illustrate to the customer:

–input data formats, messages, reports, or interactive

dialogs.

• Examine technical issues associated with product

development:

–Often major design decisions depend on issues like:

•Response time of a hardware controller,

• Efficiency of a sorting algorithm, etc.

75

Prototyping Model (CONT.)

•Another reason for developing a prototype:

–It is impossible to “get it right” the first time,

–We must plan to throw away the first version:

• If we want to develop a good software.

76

Prototyping Model

• Start with approximate requirements.

• Carry out a quick design.

• Prototype is built using several short-cuts:

–Short-cuts might involve:

•Using inefficient, inaccurate, or dummy functions.

•A table look-up rather than performing the actual computations.

77

Prototype Construction

Design

Coding

Testing

Maintenance

Prototyping Model (CONT.)

Test

Requirements
Gathering Quick Design

Refine
Requirements

Build Prototype

Customer
Evaluation of
Prototype

Design

Implement

Maintain

Customer

satisfied

78

Prototyping Model (CONT.)

• The developed prototype is submitted to the customer for

his evaluation:

–Based on the user feedback, the prototype is refined.

–This cycle continues until the user approves the

prototype.

• The actual system is developed using the waterfall model.

79

Test

Requirements

Gathering Quick Design

Refine
Requirements

Build Prototype

Customer
Evaluation of
Prototype Design

Implement

Maintain

Customer

satisfied

Prototyping Model (CONT.)

• Requirements analysis and specification

phase becomes redundant:

–Final working prototype (incorporating all user

feedbacks) serves as an animated requirements specification.

• Design and code for the prototype is usually thrown away:

–However, experience gathered from developing the prototype helps

a great deal while developing the actual software.

80

Prototype Construction

Design

Coding

Testing

Maintenance

Prototyping Model (CONT.)

• Even though construction of a working prototype model involves

additional cost --- overall development cost usually lower for:

–Systems with unclear user requirements,

–Systems with unresolved technical issues.

• Many user requirements get properly defined and technical issues

get resolved:

–These would have appeared later as change requests and resulted in

incurring massive redesign costs.

81

Prototyping: advantages

• The resulting software is usually more usable

• User needs are better accommodated

• The design is of higher quality

• The resulting software is easier to maintain

• Overall, the development incurs less cost

82

Prototyping: disadvantages

• For some projects, it is expensive

• Susceptible to over-engineering:

– Designers start to incorporate sophistications that they

could not incorporate in the prototype.

83

Major difficulties of Waterfall-Based Models

1. Difficulty in accommodating change requests during

development.

 40% of the requirements change during development

2. High cost incurred in developing custom applications.

3. “Heavy weight processes.”

84

Major difficulties of Waterfall-Based Life Cycle Models

• Requirements for the system are determined at the

start:

– Are assumed to be fixed from that point on.

– Long term planning is made based on this.

85

“… the assumption that one can specify a satisfactory

system in advance, get bids for its construction, have

it built, and install it. …this assumption is

fundamentally wrong and many software acquisition

problems spring from this…” Frederick Brooks

86

7/18/2020

Incremental Model

87

• “The basic idea… take advantage of what was being
learned during the development of earlier, incremental,
deliverable versions of the system. Learning comes
from both the development and use of the system…
Start with a simple implementation of a subset of the
software requirements and iteratively enhance the
evolving sequence of versions. At each version design
modifications are made along with adding new
functional capabilities. “ Victor Basili

88

Incremental and Iterative
Development (IID)

• Key characteristics

–Builds system incrementally

–Consists of a planned number of iterations

–Each iteration produces a working program

• Benefits

–Facilitates and manages changes

• Foundation of agile techniques and the basis for

–Rational Unified Process (RUP)

–Extreme Programming (XP)

89

Customer’s Perspective

A
B

C

A A

BB

90

Incremental Model

Final
System

Develop
Increment

Validate
Increment

Integrate
Increment

Validate
System

Requirements
Outline

Split into
Features Design

91

Incremental Model: Requirements

S
li
ce

S
li
ce

S
li
ce

S
li
ce

S
li
ce

S
li
ce

S
li
ce

S
li
ce

S
li
ce

S
li
ce

S
li
ce

S
li
ce

Requirements: High Level Analysis

92

Split into
Features

Incremental Model
• Waterfall: single release

• Iterative: many releases (increments)

–First increment: core functionality

–Successive increments: add/fix functionality

–Final increment: the complete product

• Each iteration: a short mini-project with a separate lifecycle

–e.g., waterfall

93

Incremental delivery

design build install
Customer
Feedback

design build install
Customer
Feedback

design build install
Customer
Feedback

increment
1

increment
2

increment
3

94

The
incremental

process

Identify System Objectives

Evaluate the results

Implement the increment

Build the increment

Design increment

Plan increments

FeedbackRepeat for each
increment

Planned
incremental
delivery

Incremental delivery plan

95

Which step first?

• Some steps will be pre-requisite because of physical dependencies

• Others may be in any order

• Value to cost ratios may be used

– V/C where

– V is a score 1-10 representing value to customer

– C is a score 0-10 representing cost to developers

96

V/C ratios: an example
step value cost ratio

profit reports 9 2 4.5 2nd

online database 1 9 0.11 5th

ad hoc enquiry 5 5 1 4th

purchasing plans 9 4 2.25 3rd

profit-based pay for

managers

9 1 9 1st

97

Evolutionary Model
with Iterations

98

An Evolutionary and Iterative Development Process...

• Recognizes the reality of changing requirements

–Capers Jones’s research on 8000 projects: 40% of final

requirements arrived after development had already begun

• Promotes early risk mitigation:

– Breaks down the system into mini-projects and focuses on the riskier issues first.

– “plan a little, design a little, and code a little”

• Encourages all development participants to be involved earlier on,:

– End users, Testers, integrators, and technical writers

99

Evolutionary Model with Iteration

• “A complex system will be most successful if implemented in

small steps… “retreat” to a previous successful step on

failure… opportunity to receive some feedback from the real

world before throwing in all resources… and you can correct

possible errors…” Tom Glib in Software Metrics

100

Evolutionary model with iteration

• Evolutionary iterative development implies that the

requirements, plan, estimates, and solution evolve or are refined

over the course of the iterations, rather than fully defined and

“frozen” in a major up-front specification effort before the

development iterations begin. Evolutionary methods are

consistent with the pattern of unpredictable discovery and

change in new product development.” Craig Larman

101

Evolutionary Model

• First develop the core modules of the software.

• The initial skeletal software is refined into increasing

levels of capability: (Iterations)

–By adding new functionalities in successive versions.

102

Activities in an Iteration

• Software developed over several “mini waterfalls”.

• The result of a single iteration:

–Ends with delivery of some tangible code

–An incremental improvement to the software --- leads

to evolutionary development

103

Evolutionary Model with Iteration

• Outcome of each iteration: tested, integrated, executable system

• Iteration length is short and fixed

– Usually between 2 and 6 weeks

– Development takes many iterations (for example: 10-15)

• Does not “freeze” requirements and then conservatively design :

– Opportunity exists to modify requirements as well as the design…

104

Evolutionary Model (CONT.)

• Successive versions:

–Functioning systems capable of performing some useful

work.

–A new release may include new functionality:

•Also existing functionality in the current release might

have been enhanced.

105

Evolutionary Model
• Evolves an initial implementation with user feedback:

–Multiple versions until the final version.

Specification

Development

Validation

Initial Rough
Requirements

Final
version

Initial
version

Intermediate
versions

106

Advantages of Evolutionary Model

• Users get a chance to experiment with a partially developed system:

–Much before the full working version is released,

• Helps finding exact user requirements:

–Software more likely to meet exact user requirements.

• Core modules get tested thoroughly:

–Reduces chances of errors in final delivered software.

107

Advantages of evolutionary model

• Better management of complexity by developing one increment at a

time.

• Better management of changing requirements.

• Can get customer feedback and incorporate them much more

efficiently:

–As compared when customer feedbacks come only after the development

work is complete.

108

Advantages of Evolutionary Model with Iteration

• Training can start on an earlier release

–customer feedback taken into account

• Frequent releases allow developers to fix

unanticipated problems quicker.

109

Evolutionary Model: Problems
• The process is intangible:

–No regular, well-defined deliverables.

• The process is unpredictable:

–Hard to manage, e.g., scheduling, workforce allocation, etc.

• Systems are rather poorly structured:

–Continual, unpredictable changes tend to degrade the software structure.

• Systems may not even converge to a final version.

110

7/18/2020

RAD Model

111

Rapid Application Development (RAD) Model

• Sometimes referred to as the rapid prototyping model.

• Major aims:

– Decrease the time taken and the cost incurred to develop

software systems.

– Facilitate accommodating change requests as early as possible:

• Before large investments have been made in development and testing.

112

Important Underlying Principle

• A way to reduce development time and cost, and yet

have flexibility to incorporate changes:

• Make only short term plans and make heavy reuse of

existing code.

113

Methodology

•Plans are made for one increment at a time.

• The time planned for each iteration is called a time box.

•Each iteration (increment):

• Enhances the implemented functionality of the application

a little.

114

Methodology
• During each iteration,

• A quick-and-dirty prototype-style software for some

selected functionality is developed.

• The customer evaluates the prototype and gives his

feedback.

• The prototype is refined based on the customer feedback.

115

How Does RAD Facilitate Faster Development?

• RAD achieves fast creation of working prototypes.

– Through use of specialized tools.

• These specialized tools usually support the following

features:

– Visual style of development.

– Use of reusable components.

– Use of standard APIs (Application Program Interfaces).

116

For which Applications is RAD Suitable?

•Customized product developed for one or two

customers only

•Performance and reliability are not critical.

•The system can be split into several independent

modules.

117

For Which Applications RAD is Unsuitable?

• Few plug-in components are available

• High performance or reliability required

• No precedence for similar products exists

• The system cannot be modularized.

118

Prototyping versus RAD
•In prototyping model:

• The developed prototype is primarily used to gain

insights into the solution

• Choose between alternatives

• Elicit customer feedback.

•The developed prototype:

• Usually thrown away.

119

Prototyping versus RAD
• In contrast:

• In RAD the developed prototype evolves into deliverable

software.

• RAD leads to faster development compared to traditional

models:

• However, the quality and reliability would possibly be poorer.

120

RAD versus Iterative Waterfall Model
• In the iterative waterfall model,

– All product functionalities are developed together.

• In the RAD model on the other hand,

– Product functionalities are developed incrementally through heavy code

and design reuse.

– Customer feedback is obtained on the developed prototype after each

iteration:

• Based on this the prototype is refined.

121

RAD versus Iterative Waterfall Model
• The iterative waterfall model:

– Does not facilitate accommodating requirement change requests.

• Iterative waterfall model does have some important

advantages:

– Use of the iterative waterfall model leads to production of good

documentation.

– Also, the developed software usually has better quality and

reliability than that developed using RAD.

122

RAD versus
Evolutionary

Model

• Incremental development:

– Occurs in both evolutionary and RAD models.

• However, in RAD:

– Each increment is a quick and dirty prototype,

– Whereas in the evolutionary model each increment is

systematically developed using the iterative waterfall model.

• Also, RAD develops software in shorter increments:

– The incremental functionalities are fairly large in the evolutionary

model.

123

7/18/2020

Unified Process

124

Unified Process

• Developed Ivar Jacobson, Grady Booch and James
Rumbaugh

– Incremental and iterative

• Rational Unified Process (RUP) is version tailored by
Rational Software:

– Acquired by IBM in February 2003.

125

Four Phases --- and iterative Development at Every phase

• Inception Phase

• Elaboration Phase

• Construction Phase

• Transition Phase

126

The duration of and iteration may vary from two weeks or less.

Inception Elaboration Construction Transition

Iterations Iterations IterationsIterations

Unified Process Iterations in Phases

127

Unified process
Communication

Planning

ModelingConstruction

Deployment

software
increment

inception

elaborationtransition

construction

128

Unified process work products

Inception phase
vision document
initial use-case model
initial business case
initial risk list
project plan
prototype(s)
...

Elaboration phase
use-case model
requirements
analysis model
preliminary model
revised risk list
preliminary
manual
...

Construction phase
design model
SW components
test plan
test procedure
test cases
user manual
installation manual
...

Transition phase
SW increment
beta test reports
user feedback
...

129

Structure of RUP Process
• Two dimensions.

• Horizontal axis:

– Represents time and shows the lifecycle aspects of the

process.

• Vertical axis:

– Represents core process workflows.

130

Two dimensions of Unified Process

131

Inception activities
• Formulate scope of project

• Risk management, staffing, project plan

• Synthesize a candidate architecture.

132

Outcome of Inception
Phase

• Initial requirements capture

• Cost Benefit Analysis

• Initial Risk Analysis

• Project scope definition

• Defining a candidate architecture

• Development of a disposable prototype

• Initial Use Case Model (10% - 20% complete)

• First pass Domain Model

133

Spiral Model
• Proposed by Boehm in 1988.

• Each loop of the spiral represents a phase of the software
process:
– the innermost loop might be concerned with system feasibility,

– the next loop with system requirements definition,

– the next one with system design, and so on.

• There are no fixed phases in this model, the phases
shown in the figure are just examples.

Spiral Model (CONT.)

• The team must decide:

– how to structure the project into phases.

• Start work using some generic model:

– add extra phases

• for specific projects or when problems are identified during a
project.

• Each loop in the spiral is split into four sectors (quadrants).

Spiral Model

Determine
Objectives

Identify &
Resolve Risks

Develop Next
Level of Product

Customer
Evaluation of
Prototype

Objective Setting (First Quadrant)

• Identify objectives of the phase,

• Examine the risks associated with these objectives.

–Risk:

• Any adverse circumstance that might hamper

successful completion of a software project.

• Find alternate solutions possible.

Risk Assessment and Reduction (Second Quadrant)

• For each identified project risk,

–a detailed analysis is carried out.

• Steps are taken to reduce the risk.

• For example, if there is a risk that requirements are
inappropriate:

–A prototype system may be developed.

Spiral Model (CONT.)

• Development and Validation (Third quadrant):

– develop and validate the next level of the product.

• Review and Planning (Fourth quadrant):

– review the results achieved so far with the customer and
plan the next iteration around the spiral.

• With each iteration around the spiral:

–progressively more complete version of the software gets
built.

Spiral Model as
a Meta Model

• Subsumes all discussed models:

– a single loop spiral represents waterfall model.

– uses an evolutionary approach --

• iterations over the spiral are evolutionary levels.

– enables understanding and reacting to risks during each iteration
along the spiral.

– Uses:

• prototyping as a risk reduction mechanism

• retains the step-wise approach of the waterfall model.

7/18/2020

Agile Models

141

What is Agile Software Development?

• Agile: Easily moved, light, nimble, active software

processes

• How agility achieved?

– Fitting the process to the project

– Avoidance of things that waste time

142

Agile Model
• To overcome the shortcomings of the waterfall model of

development.

– Proposed in mid-1990s

• The agile model was primarily designed:

– To help projects to adapt to change requests

• In the agile model:

– The requirements are decomposed into many small incremental parts

that can be developed over one to four weeks each.

143

Ideology: Agile Manifesto
• Individuals and interactions over

– process and tools

• Working Software over

– comprehensive documentation

• Customer collaboration over

– contract negotiation

• Responding to change over

– following a plan

http://www.agilemanifesto.org

144

Agile Methodologies• XP

• Scrum

• Unified process

• Crystal

• DSDM

• Lean

145

Agile Model: Principal Techniques
• User stories:

– Simpler than use cases.

• Metaphors:

– Based on user stories, developers propose a common vision of what is

required.

• Spike:

– Simple program to explore potential solutions.

• Refactor:

– Restructure code without affecting behavior, improve efficiency, structure, etc.

146

Agile Model: Nitty Gritty

• At a time, only one increment is planned, developed,

deployed at the customer site.

– No long-term plans are made.

• An iteration may not add significant functionality,

– But still a new release is invariably made at the end of each

iteration

– Delivered to the customer for regular use.

147

Methodology
• Face-to-face communication favoured over written

documents.

• To facilitate face-to-face communication,

– Development team to share a single office space.

– Team size is deliberately kept small (5-9 people)

– This makes the agile model most suited to the development of

small projects.

148

Co
m

m
un

ica
tio

n
Ef

fe
ct

ive
ne

ss

Richness of Communication Channel
Cold Hot

Paper

Audiotape

Videotape

Email

conversation

Phone

conversation

Video

conversation

Face-to-face

conversation

Face-to-face

at whiteboard

Documentation

Options

Modeling

Options

Copyright 2002-2005 Scott W. Ambler

Original Diagram Copyright 2002 Alistair Cockburn

Effectiveness of
Communication Modes

149

Agile Model: Principles
• The primary measure of progress:

– Incremental release of working software

• Important principles behind agile model:

– Frequent delivery of versions --- once every few weeks.

– Requirements change requests are easily accommodated.

– Close cooperation between customers and developers.

– Face-to-face communication among team members.

150

Agile Documentation• Travel light:
– You need far less documentation than you think.

• Agile documents:
– Are concise

– Describe information that is less likely to change

– Describe “good things to know”

– Are sufficiently accurate, consistent, and detailed

• Valid reasons to document:
– Project stakeholders require it

– To define a contract model

– To support communication with an external group

– To think something through

151

Agile Software Requirements Management

{Each iteration implement the highest-

priority requirements

Each new requirement is

prioritized and added to

the stack

Requirements may be

reprioritized at any time

Requirements may be

removed at any time

Requirements

High

Priority

Low

Priority

Copyright 2004 Scott W. Ambler

152

Adoption Detractors
• Sketchy definitions, make it possible to have

– Inconsistent and diverse definitions

• High quality people skills required

• Short iterations inhibit long-term perspective

• Higher risks due to feature creep:

– Harder to manage feature creep and customer expectations

– Difficult to quantify cost, time, quality.

153

Agile Model Shortcomings

• Derives agility through developing tacit knowledge

within the team, rather than any formal document:

– Can be misinterpreted…

– External review difficult to get…

– When project is complete, and team disperses,

maintenance becomes difficult…

154

Agile Model versus Iterative Waterfall Model

• The waterfall model steps through in a planned sequence:

– Requirements-capture, analysis, design, coding, and testing .

• Progress is measured in terms of delivered artefacts:

– Requirement specifications, design documents, test plans, code

reviews, etc.

• In contrast agile model sequences:

– Delivery of working versions of a product in several increments.

155

Agile Model versus Iterative Waterfall Model

• As regards to similarity:

–We can say that Agile teams use the waterfall

model on a small scale.

156

Agile versus RAD Model

• Agile model does not recommend developing

prototypes:

– Systematic development of each incremental feature

is emphasized.

• In contrast:

– RAD is based on designing quick-and-dirty prototypes, which

are then refined into production quality code.

157

Agile versus exploratory programming
• Similarity:

– Frequent re-evaluation of plans,

– Emphasis on face-to-face communication,

– Relatively sparse use of documents.

• Agile teams, however, do follow defined and disciplined

processes and carry out rigorous designs:

– This is in contrast to chaotic coding in exploratory programming.

158

7/18/2020

Extreme Programming
(XP)

159

Extreme Programming Model

• Extreme programming (XP) was proposed by Kent

Beck in 1999.

• The methodology got its name from the fact that:

– Recommends taking the best practices to extreme

levels.

– If something is good, why not do it all the time.

160

Taking Good
Practices to Extreme

• If code review is good:
– Always review --- pair programming

• If testing is good:
– Continually write and execute test cases --- test-driven

development

• If incremental development is good:
– Come up with new increments every few days

• If simplicity is good:
– Create the simplest design that will support only the

currently required functionality.

161

Taking to Extreme
• If design is good,

– everybody will design daily (refactoring)

• If architecture is important,

– everybody will work at defining and refining the architecture

(metaphor)

• If integration testing is important,

– build and integrate test several times a day (continuous integration)

162

4 Values• Communication:
– Enhance communication among team members and with the

customers.

• Simplicity:
– Build something simple that will work today rather than something that

takes time and yet never used

– May not pay attention for tomorrow

• Feedback:
– System staying out of users is trouble waiting to happen

• Courage:
– Don’t hesitate to discard code

163

Best Practices
• Coding:

– without code it is not possible to have a working system.

– Utmost attention needs to be placed on coding.

• Testing:

– Testing is the primary means for developing a fault-free product.

• Listening:

– Careful listening to the customers is essential to develop a good quality

product.

164

Best Practices
• Designing:

– Without proper design, a system implementation becomes too

complex

– The dependencies within the system become too numerous to

comprehend.

• Feedback:

– Feedback is important in learning customer requirements.

165

166

Extreme
Programming

Activities

• XP Planning
• Begins with the creation of “user stories”

• Agile team assesses each story and assigns a cost

• Stories are grouped to for a deliverable increment

• A commitment is made on delivery date

• XP Design
• Follows the KIS principle

• Encourage the use of CRC cards

• For difficult design problems, suggests the creation of “spike solutions”—a

design prototype

• Encourages “refactoring”—an iterative refinement of the internal program

design

167

• XP Coding

• Recommends the construction of unit test cases before coding

commences (test-driven development)

• Encourages “pair programming”

• XP Testing

• All unit tests are executed daily

• “Acceptance tests” are defined by the customer and executed to assess
customer visible functionalities

Extreme
Programming

Activities

Full List of XP Practices
1. Planning – determine scope of the next release by combining business priorities and

technical estimates

2. Small releases – put a simple system into production, then release new versions in very
short cycles

3. Metaphor – all development is guided by a simple shared story of how the whole
system works

4. Simple design – system is to be designed as simple as possible

5. Testing – programmers continuously write and execute unit tests

168

Full List of XP Practices
7. Refactoring – programmers continuously restructure the system

without changing its behavior to remove duplication and simplify

8. Pair-programming -- all production code is written with two
programmers at one machine

9. Collective ownership – anyone can change any code anywhere in
the system at any time.

10. Continuous integration – integrate and build the system many
times a day – every time a task is completed.

169

Full List of XP Practices

11. 40-hour week – work no more than 40 hours a week as a rule

12. On-site customer – a user is a part of the team and available full-

time to answer questions

13. Coding standards – programmers write all code in accordance with

rules emphasizing communication through the code

170

Emphasizes Test-Driven Development (TDD)

• Based on user story develop test cases

• Implement a quick and dirty feature every couple of days:

– Get customer feedback

– Alter if necessary

– Refactor

• Take up next feature

171

Project Characteristics that Suggest Suitability
of Extreme Programming

• Projects involving new technology or research projects.

– In this case, the requirements change rapidly and unforeseen

technical problems need to be resolved.

• Small projects:

– These are easily developed using extreme programming.

172

Practice Questions

• What are the stages of iterative waterfall model?

• What are the disadvantages of the iterative waterfall model?

• Why has agile model become so popular?

• What difficulties might be faced if no life cycle model is

followed for a certain large project?

173

Suggest Suitable Life Cycle Model
• A software for an academic institution to automate its:

– Course registration and grading

– Fee collection

– Staff salary

– Purchase and store inventory

• The software would be developed by tailoring a similar software
that was developed for another educational institution:

– 70% reuse

– 10% new code and 20% modification

174

Practice Questions
• Which types of risks can be better handled using the spiral

model compared to the prototyping model?

• Which type of process model is suitable for the following

projects:

– A customization software

– A payroll software for contract employees that would be add on

to an existing payroll software

175

Practice Questions
• Which lifecycle model would you select for the following project

which has been awarded to us by a mobile phone vendor:

– A new mobile operating system by upgrading the existing operating

system

– Needs to work well efficiently with 4G systems

– Power usage minimization

– Directly upload backup data on a cloud infrastructure maintained by the

mobile phone vendor

176

Scrum

177

Scrum: Characteristics
• Self-organizing teams

• Product progresses in a series of month-long sprints

• Requirements are captured as items in a list of product

backlog

• One of the agile processes

178

179

Product backlog
Sprint
backlog Product

increment

Scrum

Daily
Scrum

Sprint
planning

Sprint
review

Sprint
• Scrum projects progress in a series of “sprints”

– Analogous to XP iterations or time boxes

– Target duration is one month

• Software increment is designed, coded, and

tested during the sprint

• No changes entertained during a sprint

180

Scrum Framework
• Roles : Product Owner, ScrumMaster, Team

• Ceremonies : Sprint Planning, Sprint Review, Sprint

Retrospective, and Daily Scrum Meeting

• Artifacts : Product Backlog, Sprint Backlog, and Burndown

Chart

181

Key Roles and Responsibilities in Scrum Process
• Product Owner

– Acts on behalf of customers to represent their interests.

• Development Team

– Team of five-nine people with cross-functional skill sets.

• Scrum Master (aka Project Manager)

– Facilitates scrum process and resolves impediments at the team and

organization level by acting as a buffer between the team and outside

interference.

182

Product Owner

• Defines the features of the product

• Decide on release date and content

• Prioritize features according to market value

• Adjust features and priority every iteration, as needed

• Accept or reject work results.

183

The Scrum Master
• Represents management to the project

• Removes impediments

• Ensure that the team is fully functional and productive

• Enable close cooperation across all roles and functions

• Shield the team from external interferences

184

Scrum Team
• Typically 5-10 people

• Cross-functional

– QA, Programmers, UI Designers, etc.

• Teams are self-organizing

• Membership can change only between sprints

185

Ceremonies

• Sprint Planning Meeting

• Sprint

• Daily Scrum

• Sprint Review Meeting

186

Sprint Planning
•Goal is to produce Sprint Backlog

•Product owner works with the Team to negotiate what

Backlog Items the Team will work on in order to meet

Release Goals

•Scrum Master ensures Team agrees to realistic goals

187

Sprint
• Fundamental process flow of Scrum

• A month-long iteration, during which an incremental product

functionality completed

• NO outside influence can interfere with the Scrum team during

the Sprint

• Each day begins with the Daily Scrum Meeting

188

Daily Scrum

• Daily

• 15-minutes

• Stand-up meeting

• Not for problem solving

• Three questions:

1. What did you do yesterday

2. What will you do today?

3. What obstacles are in your way?

189

Daily Scrum• Is NOT a problem solving session

• Is NOT a way to collect information about WHO is behind the

schedule

• Is a meeting in which team members make commitments to each

other and to the Scrum Master

• Is a good way for a Scrum Master to track the progress of the

Team

190

Sprint Review
Meeting

• Team presents what it accomplished during the sprint

• Typically takes the form of a demo of new features

• Informal
– 2-hour prep time rule

• Participants
– Customers

– Management

– Product Owner

– Other engineers

191

Product Backlog
• A list of all desired work on the project

– Usually a combination of

• story-based work (“let user search and replace”)

• task-based work (“improve exception handling”)

• List is prioritized by the Product Owner

– Typically a Product Manager, Marketing, Internal Customer, etc.

192

Product Backlog

• Requirements for a system, expressed as a prioritized list

of Backlog Items

– Managed and owned by Product Owner

– Spreadsheet (typically)

– Usually is created during the Sprint Planning Meeting

193

Sample
Product
Backlog

194

Sprint Backlog
• A subset of Product Backlog Items, which define the work

for a Sprint

– Created by Team members

– Each Item has it’s own status

– Updated daily

195

Sprint Backlog during the Sprint

• Changes occur:

– Team adds new tasks whenever they need to in order to meet

the Sprint Goal

– Team can remove unnecessary tasks

– But: Sprint Backlog can only be updated by the team

• Estimates are updated whenever there’s new information

196

Burn down Charts

• Are used to represent “work done”.

• Are remarkably simple but effective Information disseminators

• 3 Types:

– Sprint Burn down Chart (progress of the Sprint)

– Release Burn down Chart (progress of release)

– Product Burn down chart (progress of the Product)

197

Sprint Burn down Chart

• Depicts the total Sprint Backlog hours remaining per day

• Shows the estimated amount of time to release

• Ideally should burn down to zero to the end of the Sprint

• Actually is not a straight line

198

Sprint Burndown Chart

199

Release Burndown Chart
• Will the final release be done on right time?

• How many more sprints?

• X-axis: sprints

• Y-axis: amount of story

points remaining

200

Product Burndown Chart

• Is a “big picture” view of project’s progress (all the

releases)

201

Scalability of Scrum

• A typical Scrum team is 6-10 people

• Jeff Sutherland - up to over 800 people

• "Scrum of Scrums" or what called "Meta-Scrum“

• Frequency of meetings is based on the degree of coupling between

packets

202

203

Faculty Name
Department Name

Agile vs. Plan-Driven Processes
1. Small products and teams:
 Scalability limited

2. Untested on safety-critical
products

3. Good for dynamic, but
expensive for stable
environments.

4. Require experienced
personnel throughout

5. Personnel thrive on freedom
and chaos

1. Large products and teams;
hard to scale down

2. Proven for highly critical
products;

3. Good for stable:
But expensive for dynamic

environments
4. Require only few experienced

personnel
5. Personnel thrive on structure

and order

204

