
1

Rajib Mall
CSE Department
IIT KHARAGPUR

Software Testing

Design of Test Cases

• Systematic approaches are required to design an

effective test suite:

–Each test case in the suite should target different

faults.

2

Testing Strategy
• Test Strategy primarily addresses:

– Which types of tests to deploy?

– How much effort to devote to which type of testing?

• Black-box: Usage–based testing (based on customers’ actual
usage pattern)

• White-box testing can be guided by black box testing results

3

Considering
Past Bug

Detection
Data…

10%

40%

25%

15%
10%

Reviews Unit
test

System
test

Integration
test

customer
reported

Quiz: How would you use this information
for planning test effort?

of Bugs
Detected

4

Consider Past
Bug Detection

Data…

50%

30%

10% 10%

test
Technique 1

test
Technique 2

test
Technique 3

customer
reported

Quiz: How would you use
this for planning unit test
effort?

Problems
Detected

5

Distribution of
Error Prone

Modules
customer

reported bugs
for Release 1

Quiz: How would you use
this for planning Release 2 testing?

Number of
bugs
Detected

M1 M3M2 M6M5M4

6Defect clustering: A few modules usually contain most defects…

7777

Unit Testing

When and Why of Unit Testing?
•Unit testing carried out:

• After coding of a unit is complete and it compiles
successfully.

• Unit testing reduces debugging effort
substantially.

8

Why unit test?• Without unit test:

– Errors become
difficult to track
down.

– Debugging cost
increases
substantially… Failure

Unit Testing
• Testing of individual methods, modules, classes, or

components in isolation:
– Carried out before integrating with other parts of the

software being developed.
• Following support required for Unit testing:

– Driver
• Simulates the behavior of a function that calls and supplies necessary data

to the function being tested.

– Stub
• Simulates the behavior of a function that has not yet been written.

Unit
Driver

Stub

10

Unit Testing

STUB
CALL

PROCEDURE
UNDER TEST

Access To Nonlocal Variables

DRIVER

11

Quiz
• Unit testing can be considered as which one of the

following types of activities?

– Verification

– Validation

12

Design of Unit Test Cases
• There are essentially three main approaches to

design test cases:

–Black-box approach

–White-box (or glass-box) approach

–Grey-box approach

13

Black-Box Testing
• Test cases are designed using only functional

specification of the software:

–Without any knowledge of the
internal structure of the software.

• Black-box testing is also known as functional testing.

SoftwareInput Output

14

What is Hard about BB Testing

• Data domain is large

• A function may take multiple parameters:

– We need to consider the combinations of the values of
the different parameters.

15

What’s So Hard About Testing?
• Consider int check-equal(int x, int y)

• Assuming a 64 bit computer
–Input space = 2128

• Assuming it takes 10secs to key-in an integer pair:

-It would take about a billion years to enter all possible values!

-Automatic testing has its own problems!

16

Solution
• Construct model of the data domain:

– Called Domain based testing

– Select data based on the domain model

17

White-box Testing

• To design test cases:

–Knowledge of internal structure of software
necessary.

–White-box testing is also called structural testing.

18

Black Box
Testing

• Software considered as a black box:
–Test data derived from the specification

• No knowledge of code necessary

• Also known as:
– Data-driven or
– Input/output driven testing

• The goal is to achieve the thoroughness of exhaustive
input testing:
–With much less effort!!!!

19

SystemInput Output

Black-Box Testing• Scenario coverage
•Equivalence class partitioning

•Boundary value testing
•Cause-effect (Decision Table) testing
•Combinatorial testing
•Orthogonal array testing

20

Use Case
Scenarios

Alternative flow 3 Alternative flow 1

Alternative flow 2

Alternative flow 4

Start use case

end use case

end use case
end use case

Deriving test cases from use cases

1. Identify the use case scenarios

2. For each scenario, identify one or more test cases

3. For each test case, identify the conditions that will
cause it to execute.

4. Complete the test case by adding data values

22

Identify
use case

scenarios:
Example

Scenario
number

Originating
flow

Alternative
flow

Next
alternative

Next
alternative

1 Basic flow

2 Basic flow Alt. flow 1

3 Basic flow Alt. flow 1 Alt. flow 2

4 Basic flow Alt. flow 3

5 Basic flow Alt. flow 3 Alt. flow 1

6 Basic flow Alt. flow 3 Alt. flow 1 Alt. flow 2

7 Basic flow Alt. flow 4

8 Basic flow Alt. flow 3 Alt. flow 4

23

Identify the
test cases

• Parameters of any test case:
– Conditions

– Input (data values)

– Expected result

– Actual result
Test
case ID

Scenario/
conditon

Data
value 1

Data
value 2

Data
value N

Exp.
results

Actual
results

1 Scenario 1

2 Scenario 2

3 Scenario 3

24

252503/08/10 2525

Equivalence Class
Testing

Equivalence Class Partitioning
• The input values to a program:

–Partitioned into equivalence classes.

• Partitioning is done such that:
–Program behaves in similar ways to every input value

belonging to an equivalence class.

–At the least, there should be as many equivalence classes
as scenarios.

26

Start use case

end use case

Why Define Equivalence Classes?

• Premise:

–Testing code with any one representative value from
a equivalence class:

–As good as testing using any other values from the
equivalence class.

27

E1 E2 E3

Equivalence Class Partitioning
• How do you identify equivalence classes?

–Identify scenarios

–Examine the input data.

–Examine output

• Few guidelines for determining the equivalence classes
can be given…

28

•If an input is a range, one valid and two invalid equivalence classes are defined.
Example: 1 to 100

•If an input is a set, one valid and one invalid equivalence classes are defined. Example:
{a,b,c}

•If an input is a Boolean value, one valid and one invalid class are defined.

Example:

•Area code: input value defined between 10000 and 90000---

•Password: string of six characters ---

Guidelines
to Identify
Equivalence

Classes

29

1 100

range

set

Equivalent class partition: Example
• Given three sides, determine the type of the triangle:

– Isosceles

– Scalene

– Equilateral, etc.

• Hint: scenarios correspond to output in this case.

30

Equivalence Partitioning

• First-level partitioning:

– Valid vs. Invalid test cases
Valid Invalid

31

Equivalence Partitioning

• Further partition valid and invalid test
cases into equivalence classes

32

Valid
Invalid

Equivalence Partitioning

• Create a test case using at least
one value from each
equivalence class

33

Valid
Invalid

Equivalence Class Partitioning
• If the input data to the program is specified by a range

of values:

–e.g. numbers between 1 to 5000.

–One valid and two invalid equivalence classes are defined.
1 5000

34

Equivalence Class Partitioning
• If input is an enumerated set of values, e.g. :

–{a,b,c}

• Define:

–One equivalence class for valid input values.

–Another equivalence class for invalid input values..

35

Example

• A program reads an input value in the range of 1

and 5000:

–Computes the square root of the input number

SQRT

36

Example (cont.)

• Three equivalence classes:

–The set of negative integers,

–Set of integers in the range of 1 and 5000,

–Integers larger than 5000.

1 5000

37

Example (cont.)

• The test suite must include:

–Representatives from each of the three equivalence
classes:

–A possible test suite can be:
{-5,500,6000}.

1 5000

38

Equivalence Partitioning
• A set of input values constitute an equivalence class if the tester

believes that these are processed identically:

– Example : issue book(book id);

– Different set or sequence of instructions
may be executed based on book type.

Issue book Reference book

Book

Single volume Multiple volume

39

Equivalence Partitioning: Example 1

• Example: Image Fetch-image(URL)

– Equivalence Definition 1: Partition based on URL
protocol (“http”, “https”, “ftp”, “file”, etc.)

– Equivalence Definition 2: Partition based on type of
file being retrieved (HTML, GIF, JPEG, Plain Text, etc.)

40

URL File Type

Equivalence Partitioning: Single Parameter Function

• issue-book(int book-id)

• Create a test case for at least
one value from each equivalence
class

41

Invalid

Valid
Issue book Reference book

Book

Single volume Multiple volume

Multiparameter Functions

• postGrade(Roll,CourseNo, Grade)

42

Valid
Invalid

Valid
Invalid Valid

Invalid

Multiparameter
Function Accessing

Global Variables

int Normalization Factor;
postGrade(Roll,CourseNo, Grade)
{ Grade=Grade*NormalizationFactor
-------}

43

Valid
Invalid

Valid
Invalid Valid

Invalid
Valid

Invalid

Multi Parameter Equivalence Partitioning: Example
Input Parameter Valid Equivalence Classes Invalid Equivalence

Classes

An integer N such that:
-99 <= N <= 99 ? ?
Phone Number
Area code: [11,…, 999]
Suffix: Any 6 digits

? ?

44

Equivalence Partitioning: Example
Input Valid Equivalence Classes Invalid Equivalence Classes

A integer N such that:
-99 <= N <= 99

[-99, 99] < -99
> 99
Malformed numbers
{12-, 1-2-3, …}
Non-numeric strings
{junk, 1E2, $13}
Empty value

Phone Number
Prefix: [11, 999]
Suffix: Any 6 digits

[11,999][000000,
999999]

Invalid format 5555555,
Area code < 11 or > 999
Area code with non-numeric
characters

45

Weak
Equivalence
Class Testing

age

yrs of educationSchool UG PG

20-30

>30

46

predict-employability(age, education)

Strong
Equivalence

Class Testing

age

Yrs of ed.School UG

20-30

>30

PG

47

predict-employability(age, education)

Strong
Robust

Equivalence
Class Testing

age

yrs of educationSchool UG

20-30

>30

PG

48

predict-employability(age, education)

Quiz 1

• Design Equivalence class test cases:

• A bank pays different rates of interest on a deposit depending on
the deposit period.

– 3% for deposit up to 15 days

– 4% for deposit over 15days and up to 180 days

– 6% for deposit over 180 days upto 1 year

– 7% for deposit over 1 year but less than 3 years

– 8% for deposit 3 years and above

49

compute-interest(days)

Quiz 2

• Design Equivalence class test cases:

• For deposits of less than or equal to Rs. 1 Lakh, rate of interest:

– 6% for deposit upto 1 year

– 7% for deposit over 1 year but less than 3 years

– 8% for deposit 3 years and above

• For deposits of more than Rs. 1 Lakh, rate of interest:

– 7% for deposit upto 1 year

– 8% for deposit over 1 year but less than 3 years

– 9% for deposit 3 years and above

50

compute-interest(principal, days)

Quiz 3• Design equivalence class test cases.

– Consider a program that takes 2 strings of maximum
length 20 and 5 characters respectively

– Checks if the second is a substring of the first

– substr(s1,s2);

51

525203/08/10 5252

Special Value
Testing

52

Special Value Testing
• What are special values?

– The tester has reasons to believe that execution with certain
values may expose bugs:

–General risk: Example-- Boundary value testing

–Special risk: Example-- Leap year not considered

53

Boundary
Value Analysis

• Some typical programming errors occur:

–At boundaries of equivalence classes

–Might be purely due to psychological factors.

• Programmers often commit mistakes in the:

–Special processing at the boundaries of equivalence

classes.

54

1 100

Boundary Value Analysis

• Programmers may improperly use < instead of

<=
• Boundary value analysis:

–Select test cases at the boundaries of different
equivalence classes.

55

1 100

Boundary Value Analysis: Guidelines

• If an input is a range, bounded by values a and b:
– Test cases should be designed with value a and b, just above

and below a and b.

• Example 1: Integer D with input range [-3, 10],
– test values: -3, 10, 11, -2, 0

• Example 2: Input in the range: [3,102]
– test values: 3, 102, -1, 200, 5

56

Boundary Value Testing Example
• Process employment applications based on a person's age.

• Notice the problem at the boundaries.

– Age "16" is included in two different equivalence classes (as are
18 and 55).

0-16 Do not hire

16-18 May hire on part time basis

18-55 May hire full time

55-99 Do not hire

57

Boundary Value Testing: Code Example

• If (applicantAge >= 0 && applicantAge <=16) hireStatus="NO";

• If (applicantAge >= 16 && applicantAge <=18) hireStatus="PART";

• If (applicantAge >= 18 && applicantAge <=55) hireStatus="FULL";

• If (applicantAge >= 55 && applicantAge <=99) hireStatus="NO";

58

Boundary Value Testing Example (cont)• Corrected boundaries:
0–15 Don't hire
16–17 Can hire on a part-time basis only
18–54 Can hire as full-time employees
55–99 Don't hire

• What about ages -3 and 101?

• The requirements do not specify how these values should be
treated.

59

Boundary Value Testing Example (cont)

• The code to implement the corrected rules is:

If (applicantAge >= 0 && applicantAge <=15) hireStatus="NO";

If (applicantAge >= 16 && applicantAge <=17) hireStatus="PART";

If (applicantAge >= 18 && applicantAge <=54) hireStatus="FULL";

If (applicantAge >= 55 && applicantAge <=99) hireStatus="NO";

• Special values on or near the boundaries in this example are {-1, 0, 1}, {14, 15,
16}, {17, 18, 19}, {54, 55, 56}, and {98, 99, 100}.

60

Boundary Value Analysis
• Create test cases to test boundaries of equivalence classes

61

Example 1
• For a function that computes the square root of an

integer in the range of 1 and 5000:

–Test cases must include the values:
{0,1,2,4999,5000,5001}.

1 5000

62

Example 2

• Consider a program that reads the “age” of employees and
computes the average age.

input (ages) → Program → output: average age

Assume valid age is 1 to 150

• How would you test this?

– How many test cases would you generate?

– What type of test data would you input to test this program?

63

1 150

Boundaries of the inputs

age1 150

The “basic” boundary value testing
would include 5 test cases:

1. - at minimum boundary

2. - immediately above minimum

3. - between minimum and
maximum (nominal)

4. - immediately below maximum

5. - at maximum boundary

1 <= age <= 150

64

predict-longevity(age)

Test Cases for the
Example

• How many test cases for the example ?

– answer : 5
• Test input values? :

1 at the minimum

2 at one above minimum

45 at middle

149 at one below maximum

150 at maximum

65

predict-longevity(age)

Multiple Parameters: Independent distinct Data
• Suppose there are 2 “distinct” inputs that are assumed to be independent

of each other.
– Input field 1: years of education (say 1 to 23)
– Input field 2: age (1 to 150)

• If they are independent of each other, then we can start with 5 + 5 = 10
sets. coverage of input data: yrs of ed

1. n= 1 ; age = whatever(37)
2. n =2; age = whatever
3. n = 12; age = whatever
4. n = 22; age = whatever
5. n = 23; age = whatever

coverage of input data: age

1. n= 12; age = 1
2. n =12; age = 2
3. n = 12; age = 37
4. n = 12; age = 149
5. n = 12; age = 150

66

- Note that there needs to be only 9 test cases for 2 independent inputs.
- In general, need (4z + 1) test cases for z independent inputs.

2 –
Independent

inputs

age

yrs of ed.

67

Given f(x,y) with constraints

Boundary Value analysis focuses on the
boundary of the input space to identify
test cases.

Defined as input variable value at min, just
above min, a nominal value, just above
max, and at max.

dyc
bxa

≤≤
≤≤

d

xa

c

y

b

Boundary Value Test

68

Weak Testing: Single Fault Assumption
• Premise: “Failures rarely occur as the result of the

simultaneous occurrence of two (or more) faults”

• Under this:

– Hold the values of all but one variable at their nominal
values, and let that one variable assume its extreme
values.

69

Boundary Value Analysis: Robustness
• Numeric values are often entered as strings :

– Internally converted to numbers [int x = atoi(str); val=x-48;]

• This conversion requires the program to distinguish between digits
and non-digits

• A boundary case to consider: Will the program accept / and : as
digits? / 0 1 2 3 4 5 6 7 8 9 :

47 48 49 50 51 52 53 54 55 56 57 58

Char

ASCII

70

Robustness testing
• This is just an extension of the Boundary Values to include invalid

values:
– Less than minimum

– Greater than maximum

• There are 7 test cases for each input

• The testing of robustness is really a test of “error” handling.
1. Did we anticipate the error situations?

2. Do we issue informative error messages?

3. Do we support some kind of recovery from the error?

71

X

Y

2 – independent inputs for robustness test

•Note that there needs to be
only 13 test cases for 2
independent variables or
inputs.

•In general, there will be (6n+
1) test cases for n independent
inputs.

X

Y

72

Some Limitations of Boundary Value Testing

• How to handle a set of values?
• How about set of Boolean variables?

– True

– False

• May be radio buttons
• What about a non-numerical variable whose values are

text?

73

Quiz: BB Test Design
• Design black box test suite for a function that

solves a quadratic equation of the form
ax2+bx+c=0.

• Equivalence classes

– Invalid Equation

– Valid Equation: Roots?

Complex

Real Coincident

Unique

74

	Slide Number 1
	Design of Test Cases
	Testing Strategy
	Considering Past Bug Detection Data…
	Consider Past Bug Detection Data…
	Distribution of Error Prone Modules�customer reported bugs for Release 1
	Slide Number 7
	When and Why of Unit Testing?
	Why unit test?
	Unit Testing
	Unit Testing
	Quiz
	Design of Unit Test Cases
	Black-Box Testing
	What is Hard about BB Testing
	What’s So Hard About Testing?
	Solution
	White-box Testing
	Black Box Testing
	Black-Box Testing
	Use Case Scenarios
	Deriving test cases from use cases
	Identify use case scenarios: Example
	Identify the test cases
	Slide Number 25
	Equivalence Class Partitioning
	Why Define Equivalence Classes?
	Equivalence Class Partitioning
	Guidelines to Identify Equivalence Classes
	Equivalent class partition: Example
	Equivalence Partitioning
	Equivalence Partitioning
	Equivalence Partitioning
	Equivalence Class Partitioning
	Equivalence Class Partitioning
	Example
	 Example (cont.)
	Example (cont.)
	Equivalence Partitioning
	Equivalence Partitioning: Example 1
	Equivalence Partitioning: Single Parameter Function
	Multiparameter Functions
	Multiparameter Function Accessing Global Variables
	Multi Parameter Equivalence Partitioning: Example
	Equivalence Partitioning: Example
	Weak Equivalence Class Testing
	Strong Equivalence Class Testing
	Strong Robust Equivalence Class Testing
	Quiz 1
	Quiz 2
	Quiz 3
	Slide Number 52
	Special Value Testing
	Boundary Value Analysis
	Boundary Value Analysis
	Boundary Value Analysis: Guidelines
	Boundary Value Testing Example
	Boundary Value Testing: Code Example
	Boundary Value Testing Example (cont)
	Boundary Value Testing Example (cont)
	Boundary Value Analysis
	Example 1
	Example 2
	Boundaries of the inputs
	Test Cases for the Example
	Multiple Parameters: Independent distinct Data
	2 – Independent inputs
	Boundary Value Test
	Weak Testing: Single Fault Assumption
	Boundary Value Analysis: Robustness
	Robustness testing
	2 – independent inputs for robustness test
	Some Limitations of Boundary Value Testing
	Quiz: BB Test Design

