
Domain Analysis
• Three types of classes are to be identified:

– Boundary class (Actor-use case pair)

– Controller class (One per use case)

– Entity class (Noun analysis)

1

Identification of Boundary Objects
• Need one boundary object :

– For every actor-use case pair

Tic-tac-toe game

Play Move

Player Supermarket
Prize scheme

register
customerCustomer

register
sales

select
winners

Sales Clerk

Manager

Clerk

Identification of Controller Objects
• Examine the use case diagram:

– Add one controller class for each use case.

– Some controllers may need to be split into two or more controller classes
if they get assigned too much responsibility.

Tic-tac-toe game

Play Move

Player Supermarket
Prize scheme

register
customerCustomer

register
sales

select
winners

Sales Clerk

Manager

Clerk

Identification of Entity Objects by Noun Analysis
• Entity objects usually appear as nouns in the problem description.
• From the list of nouns, need to exclude:

– Users (e.g. accountant, librarian, etc)
– Passive verbs (e.g. Acknowledgment)
– Those with which you can not associate any data to store
– Those with which you can not associate any methods

• Surrogate users may need to exist as classes:

– Library member

Identifying
Classes

• Remember that a class represents a group (classification)
of objects with the same behavior.

– We should therefore look for existence of similar objects during
noun analysis

• Even then, class names should be singular nouns:

–Examples: Book, Student, Member

Noun Analysis: Example

A trading house maintains names and addresses of
its regular customers. Each customer is assigned a
unique customer identification number (CIN). As
per current practice, when a customer places order,
the accounts department first checks the credit-
worthiness of the customer.

Identifying Classes by Noun Analysis
• A partial requirements document:

• Not all nouns correspond to a class in the domain model

A trading house maintains names and addresses of its
regular customers. Each customer is assigned a unique
customer identification number (CIN). As per current
practice, when a customer places order, The accounts
department first checks the credit-worthiness of the
customer.

Identification of Entity Objects

• Usually:

– Appear as data stores in DFD

– Occur as group of objects that are aggregated

– The aggregator corresponds to registers in physical
world

SalesHistory

SalesRecords CustomerRecord

CustomerRegister

1 1

* *

Example 2: Initial Domain Model

SalesHistory

SalesRecords CustomerRecord

CustomerRegister

Initial domain model

1 1

* *

Example 1: Tic-Tac-Toe Computer Game

• A human player and the computer make alternate moves on a 3X3
square.

• A move consists of marking a previously unmarked square.

• The user inputs a number between 1 and 9 to mark a square

• Whoever is first to place three consecutive marks along a straight line
(i.e., along a row, column, or diagonal) on the square wins.

Example 1: Tic-Tac-Toe Computer Game cont…
• As soon as either of the human player or the computer wins,

–A message announcing the winner should be displayed.

• If neither player manages to get three consecutive marks
along a straight line,
–And all the squares on the board are filled up,

–Then the game is drawn.

• The computer always tries to win a game.

Example 1: Tic-Tac-Tie
Use Case Model

Tic-tac-toe game

Play Move

Player

Example 1: Initial and Refined Domain
Model

Board

PlayMoveBoundary PlayMoveController Board

Initial domain model

Refined domain model

Example 1:
Sequence
Diagram:

play move
use case

:playMove
Boundary

:playMove
Controller :board

acceptMove
move

checkMoveValidity
[invalidMove]

announceInvalidMove
[invalidMove]

announceInvalidMove

[game over]
announceResult[game over]

announceResult

checkWinner

playMove
checkWinner
[game over]

announceResult
[game over]

announceResult
getBoardPositionsdisplayBoardPositions

[game not over]
promptNextMove

CRC Card
• Used to assign responsibilities (methods) to classes.

• Complex use cases:

– Realized through collaborative actions of dozens of
classes.

– Without CRC cards, it becomes difficult to determine
which class should have what responsibility.

Class-Responsibility-Collaborator(CRC) Cards

• Pioneered by Ward Cunningham and Kent Beck.

• Index cards prepared one each per class.

• Contains columns for:

–Class responsibility

–Collaborating objects

Responsibility Collaborator

Class name

CRC Cards Cont…

• Systematize development of interaction diagram for
complex use cases.

• Team members participate to determine:

–The responsibility of classes involved during a use case
execution

CRC Cards Cont…

• Responsibility:

– Method to be supported by the class.

• Collaborator:

– Class whose service (method)
would have to be invoked

Responsibility Collaborator

Class name

An Example: CRC Card for the BookRegister class

BookRegister

FindBook Book

CreateBook Book

Reserve Book

Responsibility Collaborator

Class name

Using CRC Cards
• After developing a set of CRC cards:

– Run structured walkthrough scenarios

• Walkthrough of a scenario :

– A class is responsible to perform some responsibilities

– It may then pass control to a collaborator -- another class

– You may discover missing responsibilities and classes

Example 1: Class
Diagram

Board

int position[9]

checkMove Validity
checkResult
playMove

Controller

announceInvalidMove
announceResult

PlayMoveBoundary

announceInvalidMove
announceResult
displayBoard

Example 2: Supermarket Prize Scheme
• Supermarket needs to develop software to encourage regular

customers.

• Customer needs to supply his:

–Residence address, telephone number, and the driving licence
number.

• Each customer who registers is:

–Assigned a unique customer number (CN) by the computer.

Example 2: Supermarket Prize Scheme

• A customer can present his CN to the staff when he makes any

purchase.

• The value of his purchase is credited against his CN.

• At the end of each year:

–The supermarket awards surprise gifts to ten customers who make

highest purchase.

Example 2: Supermarket Prize Scheme

• It also, awards a 22 carat gold coin to every customer:

–Whose purchases exceed Rs. 10,000.

• The entries against the CN are reset:

–On the last day of every year after the prize winner’s lists are
generated.

Example 2: Use
Case Model

Supermarket
Prize scheme

register
customerCustomer

register
sales

select
winners

Sales Clerk

Manager

Clerk

Example 2: Initial Domain Model

SalesHistory

SalesRecords CustomerRecord

CustomerRegister

Initial domain model

1 1

* *

Example 2:
Refined
Domain
Model

SalesHistory

SalesRecords CustomerRecord

CustomerRegister

1 1

* *

RegisterCustomerBoundary

RegisterSalesBoundary

SelectWinnersBoundary

RegisterCustomerController

RegisterSalesController

SelectWinnersControllers

Example 2:
Sequence

Diagram for the
Select Winners

Use Case

:SelectWinner
Boundary

:SelectWinner
Controller

:Sales
History

:Sales
Record

:Customer
Register

Select
Winners

Sequence Diagram for the select winners use case

:Customer
Record

SelectWinners

announces

SelectWinners
*computeSales

*browse

[for each winner]
find WinnerDetails [for each winner]

browse

Example 2:
Sequence

Diagram for the
Register

Customer Use

Case

:RegisterCustomer
Boundary

:RegisterCustomer
Controller

:Customer
Register

register

Sequence Diagram for the register customer use case

:Customer
Record

[duplicate]

displayCIN

*match

create

register

:Customer
Record

checkDuplicate

showError
generateCIN

register

Example 2: Sequence
Diagram for the

Register Sales Use
Case

Sequence Diagram for the register sales use case

:Register
Sales

Boundary

:Sales
History

:Sales
Record

registerSalesRegisterSales

create

confirm

:Register
Sales

Controller

registerSales

confirm

:Register
Sales

Boundary

:Sales
History

:Sales
Record

registerSales
RegisterSales

create

confirm

Example 2: Sequence
Diagram for the

Register Sales Use
Case

Refined Sequence Diagram for the register sales use case

Example 2:
Class Diagram

SalesHistory

selectWinners
registerSales

SalesRecords

computerSales
browse
create

CustomerRegister

findWinnerDetails
register

salesDetails

CustomerRecord

browse
checkDuplicate
create

name
address

1

*

1

*

33

Rajib Mall
CSE Department
IIT KHARAGPUR

Software Testing

Faults and Failures

• A program may fail during testing:

–A manifestation of a fault (also called defect or

bug).

–Mere presence of a fault may not lead to a failure.

34

Errors, Faults, Failures
• Programming is human effort-intensive:

– Therefore, inherently error prone.

• IEEE std 1044, 1993 defined errors and faults as synonyms :

• IEEE Revision of std 1044 in 2010 introduced finer
distinctions:

– To support more expressive communications, it distinguished
between Errors and Faults

35

Design

36

Specification Code

Fault, defect, or bug

Failure

Error or mistake

Bug Source

Spec and
Design

Code

A Few Error Facts
• Even experienced programmers make many errors:

– Avg. 50 bugs per 1000 lines of source code

• Extensively tested software contains:

– About 1 bug per 1000 lines of source code.

• Bug distribution:

– 60% spec/design, 40% implementation.

38

How to Reduce Bugs?

• Review

• Testing

• Formal specification and verification

• Use of development process

39

How to Test?
• Input test data to the program.

• Observe the output:

–Check if the program behaved
as expected.

40

Examine Test Result…

• If the program does not behave as expected:

–Note the conditions under which it failed (Test
report).

–Later debug and correct.

41

Testing Facts
• Consumes the largest effort among all development

activities:
– Largest manpower among all roles

– Implies more job opportunities

• About 50% development effort
– But 10% of development time?

– How?

42

Testing Facts
• Testing is getting more complex and sophisticated

every year.

– Larger and more complex programs

– Newer programming paradigms

– Newer testing techniques

– Test automation

43

Testing Perception
• Testing is often viewed as not very challenging --- less preferred

by novices, but:

– Over the years testing has taken a center stage in all types of software
development.

– “Monkey testing is passe” --- Large number of innovations have taken
place in testing area --- requiring tester to have good knowledge of test
techniques.

– Challenges of test automation

44

Monkey Testing is Passe…

• Testing through random inputs.
• Problems:

– Many program parts may not get tested.
– Risky areas of a program may not get tested.
– The tester may not be able to reproduce the failure.

45

•Two types of monkeys:

•Dumb monkey

•Smart monkey

Testing
Activities

Now Spread
Over Entire
Life Cycle

46

Test How Long?

• Another way:

– Seed bugs… run test cases

– See if all (or most) are getting detected

Bugs

Time

One way:

47

Verification versus Validation

• Verification is the process of determining:

–Whether output of one phase of development conforms
to its previous phase.

• Validation is the process of determining:

–Whether a fully developed system conforms to its SRS document..

48

Verification versus Validation

• Verification is concerned with phase containment

of errors:

–Whereas, the aim of validation is that the final product

is error free.

49

Verification and Validation Techniques

• Review

• Simulation

• Unit testing

• Integration testing

50

• System testing

Verification Validation
Are you building it right? Have you built the right thing?

Checks whether an artifact
conforms to its previous
artifact.

Checks the final product against
the specification.

Done by developers. Done by Testers.

Static and dynamic activities:
reviews, unit testing.

Dynamic activities: Execute
software and check against
requirements.

51

9/18/2018

Testing Levels

52

4 Testing Levels
• Software tested at 4 levels:

–Unit testing

–Integration testing

–System testing

–Regression testing

53

54

Test Levels• Unit testing
– Test each module (unit, or component) independently

– Mostly done by developers of the modules

• Integration and system testing
– Test the system as a whole

– Often done by separate testing or QA team

• Acceptance testing
– Validation of system functions by the customer

Levels of Testing
What users
really need

Requirements

Design

Code

Acceptance
testing

System testing

Integration testing

Unit testing

Maintenance Regression Testing

Overview of Activities During System and Integration Testing
• Test Suite Design

• Run test cases

• Check results to detect failures.

• Prepare failure list

• Debug to locate errors

• Correct errors.

Tester

Developer

56

Quiz 1
• As testing proceeds more and more bugs are

discovered.
– How to know when to stop testing?

• Give examples of the types of bugs detected during:
– Unit testing?

– Integration testing?

– System testing?

57

Unit testing
• During unit testing, functions (or modules) are

tested in isolation:

–What if all modules were to be tested together (i.e. system
testing)?

• It would become difficult to determine which module has
the error.

58

Integration Testing
• After modules of a system have been coded and

unit tested:

–Modules are integrated in steps
according to an integration plan

–The partially integrated system is tested at each
integration step.

59

Integration and System Testing
• Integration test evaluates a group of functions or classes:

– Identifies interface compatibility, unexpected parameter values or state
interactions, and run-time exceptions

– System test tests working of the entire system

• Smoke test:

– System test performed daily or several times a week after every build.

60

Types of System Testing
• Based on types test:

– Functionality test

– Performance test

• Based on who performs testing:
– Alpha

– Beta

– Acceptance test

61

Performance test
• Determines whether a system or subsystem meets its

non-functional requirements:
• Response times

• Throughput

• Usability

• Stress

• Recovery

• Configuration, etc.

62

User Acceptance Testing
• User determines whether the system fulfills his

requirements

– Accepts or rejects delivered system based on the
test results.

63

Who Tests Software?
• Programmers:

– Unit testing
– Test their own or other’s programmer’s code

• Users:
– Usability and acceptance testing
– Volunteers are frequently used to test beta versions

• Test team:
– All types of testing except unit and acceptance
– Develop test plans and strategy

64

65

Feasibility Study

Req. Analysis

Design

Coding

Testing

Maintenance

Testing by developers

Testing by Tester
Review,
Simulation, etc.

V&V

Pesticide Effect
• Errors that escape a fault detection technique:

– Can not be detected by further applications of that
technique.

F
I
L
T
E
R

F
I
L
T
E
R

F
I
L
T
E
R

66

F
I
L
T
E
R

Capers Jones Rule of Thumb

• Each of software review, inspection, and test step
will find 30% of the bugs present.

In IEEE Computer, 1996

67

Pesticide Effect
• Assume to start with 1000 bugs

• We use 4 fault detection techniques :

– Each detects only 70% bugs existing at that time

– How many bugs would remain at end?

– 1000*(0.3)4=81 bugs

68

Quiz
Feasibility Study

Req. Analysis

Design

Coding

Testing

Maintenance

69

1. When are verification
undertaken in waterfall
model?

2. When is testing
undertaken in waterfall
model?

3. When is validation
undertaken in waterfall
model?

9/18/2018

Basic Concepts in
Testing

70

How Many Latent Errors?

• Several independent studies [Jones],[schroeder],
etc. conclude:
–85% errors get removed at the end of a typical testing

process.
–Why not more?
–All practical test techniques are basically heuristics…

they help to reduce bugs… but do not guarantee
complete bug removal…

71

Test Cases
• Each test case typically tries to establish correct

working of some functionality:

– Executes (covers) some program elements.

– For certain restricted types of faults, fault-based
testing can be used.

72

• Test data:

– Inputs used to test the system

• Test cases:

– Inputs to test the system,

– State of the software, and

– The predicted outputs from the inputs

Test data versus test cases

73

Test Cases and Test Suites

• A test case is a triplet [I,S,O]

–I is the data to be input to the system,

–S is the state of the system at which the data will be
input,

–O is the expected output of the system.

74

Test Cases and Test Suites

• Test a software using a set of carefully
designed test cases:

–The set of all test cases is called the test suite.

75

What are Negative Test Cases?• Purpose:
– Helps to ensure that the application gracefully handles

invalid and unexpected user inputs and the application
does not crash.

• Example:
– If user types letter in a numeric field, it should not crash

but politely display the message: “incorrect data

type, please enter a number…”

76

Test Execution Example: Return Book
• Test case [I,S,O]

1. Set the program in the required state: Book record
created, member record created, Book issued

2. Give the defined input: Select renew book option and
request renew for a further 2 week period.

3. Observe the output:
 Compare it to the expected output.

77

Sample: Recording of Test Case & ResultsTest Case number
Test Case author
Test purpose
Pre-condition:
Test inputs:
Expected outputs (if any):
Post-condition:
Test Execution history:

Test execution date
Person executing Test
Test execution result (s) : Pass/Fail

If failed : Failure information and fix status

78

Test Team- Human Resources
• Test Planning: Experienced people

• Test scenario and test case design: Experienced and test qualified people

• Test execution: semi-experienced to inexperienced

• Test result analysis: experienced people

• Test tool support: experienced people

• May include external people:

– Users

– Industry experts

79

Why Design of Test Cases?

• Exhaustive testing of any non-trivial system is impractical:

–Input data domain is extremely large.

• Design an optimal test suite, meaning:

–Of reasonable size, and

–Uncovers as many errors as possible.

80

Design of Test
Cases

• If test cases are selected randomly:
–Many test cases would not contribute to the significance of the

test suite,
–Would only detect errors that are already detected by other

test cases in the suite.

• Therefore, the number of test cases in a randomly
selected test suite:
–Does not indicate the effectiveness of testing.

81

Design of Test Cases
• Testing a system using a large number of randomly

selected test cases:

–Does not mean that most errors in the system will be
uncovered.

• Consider following example:

–Find the maximum of two integers x and y.

82

Design of Test Cases
• The code has a simple programming error:

• If (x>y) max = x;
else max = x; // should be max=y;

• Test suite {(x=3,y=2);(x=2,y=3)} can detect the bug,

• A larger test suite {(x=3,y=2);(x=4,y=3); (x=5,y=1)} does
not detect the bug.

83

Test Plan

• Before testing activities start, a test plan is developed.
• The test plan documents the following:

– Features to be tested
– Features not to be tested
– Test strategy
– Test suspension criteria
– stopping criteria
– Test effort
– Test schedule

84

	Domain Analysis
	Identification of Boundary Objects
	Identification of Controller Objects
	Identification of Entity Objects by Noun Analysis
	Identifying Classes
	Noun Analysis: Example
	Identifying Classes by Noun Analysis
	Identification of Entity Objects
	Example 2: Initial Domain Model
	Example 1: Tic-Tac-Toe Computer Game
	Example 1: Tic-Tac-Toe Computer Game cont…
	Example 1: Tic-Tac-Tie�Use Case Model
	Example 1: Initial and Refined Domain Model
	Example 1: Sequence Diagram: play move use case
	CRC Card
	Class-Responsibility-Collaborator(CRC) Cards
	CRC Cards Cont…
	CRC Cards Cont…
	An Example: CRC Card for the BookRegister class
	Using CRC Cards
	Example 1: Class Diagram
	Example 2: Supermarket Prize Scheme
	Example 2: Supermarket Prize Scheme
	Example 2: Supermarket Prize Scheme
	Example 2: Use Case Model
	Example 2: Initial Domain Model
	Example 2: Refined Domain Model
	Example 2: Sequence Diagram for the Select Winners Use Case
	Example 2: Sequence Diagram for the Register Customer Use Case
	Example 2: Sequence Diagram for the Register Sales Use Case
	Example 2: Sequence Diagram for the Register Sales Use Case
	Example 2: Class Diagram
	Slide Number 33
	Faults and Failures
	Errors, Faults, Failures
	Design
	A Few Error Facts
	Slide Number 38
	How to Reduce Bugs?
	How to Test?
	Examine Test Result…
	Testing Facts
	Testing Facts
	Testing Perception
	Monkey Testing is Passe…
	Testing Activities Now Spread Over Entire Life Cycle
	Test How Long?
	Verification versus Validation
	Verification versus Validation
	Verification and Validation Techniques
	Slide Number 51
	Testing Levels
	4 Testing Levels
	Test Levels
	Levels of Testing
	Overview of Activities During System and Integration Testing
	Quiz 1
	Unit testing
	Integration Testing
	Integration and System Testing
	Types of System Testing
	Performance test
	User Acceptance Testing
	Who Tests Software?
	Slide Number 65
	Pesticide Effect
	Capers Jones Rule of Thumb
	Pesticide Effect
	Quiz ��
	Basic Concepts in Testing
	How Many Latent Errors?
	Test Cases
	Test data versus test cases
	Test Cases and Test Suites
	Test Cases and Test Suites
	What are Negative Test Cases?
	Test Execution Example: Return Book
	Sample: Recording of Test Case & Results
	Test Team- Human Resources
	Why Design of Test Cases?
	Design of Test Cases
	Design of Test Cases
	Design of Test Cases
	Test Plan

