
1

Software Design

Rajib Mall

CSE Department

IIT KHARAGPUR

What is Achieved during design phase?
• Transformation of SRS document to Design document:

– A form easily implementable in some programming

language.

SRS
Document Design

Activities

Design
Documents

Items Designed During Design Phase
• Module structure,

• Control relationship among the modules

– call relationship or invocation relationship

• Interface among different modules,

– data items exchanged among different modules,

• Data structures of individual modules,

• algorithms for individual modules.

Module
• A module consists of:

– several functions

– associated data structures. Data

Functions

D1 ..
D2 ..
D3 ..

F1 ..
F2 ..
F3 ..
F4 ..
F5 ..

Module Structure

Iterative Nature of Design

• Good software designs:

– Seldom arrived through a single step procedure:

–But through a series of steps and iterations.

Stages in Design
• Design activities are usually classified into two stages:

– Preliminary (or high-level) design

– Detailed design.

• Meaning and scope of the two stages:

– vary considerably from one methodology to another.

High-level design

• Identify:

–modules

– control relationships among modules

– interfaces among modules.

d1 d2

d3 d1 d4

High-level design

• The outcome of high-level design:

–program structure, also called software

architecture.

High-level Design
• Several notations are available to represent high-level

design:

– Usually a tree-like diagram called structure chart is used.

– Other notations:

• Jackson diagram or Warnier-Orr

diagram can also be used.

d1 d2

d3 d1 d4

Detailed design
• For each module, design for it:

–data structure

– algorithms

• Outcome of detailed design:

–module specification.

A fundamental question

• How to distinguish between good and bad designs?

–Unless we know what a good software design is:

• we can not possibly design one.

Good and bad designs

• There is no unique way to design a software.

• Even while using the same design methodology:

– different engineers can arrive at very different designs.

• Need to determine which is a better design.

What Is a Good Software Design?

• Should implement all functionalities of the system

correctly.

• Should be easily understandable.

• Should be efficient.

• Should be easily amenable to change,

– i.e. easily maintainable.

What Is Good Software Design?

• Understandability of a design is a major issue:

– Largely determines goodness of a design:

– a design that is easy to understand:

• also easy to maintain and change.

What Is a Good Software Design?

• Unless a design is easy to understand,

– Tremendous effort needed to maintain it

– We already know that about 60% effort is spent in

maintenance.

• If the software is not easy to understand:

– maintenance effort would increase many times.

How to Improve Understandability?
• Use consistent and meaningful names

– for various design components,

• Design solution should consist of:

– A set of well decomposed modules (modularity),

• Different modules should be neatly arranged in a hierarchy:

– A tree-like diagram.

– Called Layering

Modularity

• Modularity is a fundamental attributes of any good design.

– Decomposition of a problem into a clean set of

modules:

– Modules are almost independent of each other

– Based on divide and conquer principle.

Modularity

• If modules are independent:

– Each module can be understood separately,

• reduces complexity greatly.

– To understand why this is so,

• remember that it is very difficult to break a bunch of

sticks but very easy to break the sticks individually.

Layering

Inferior
Superior

:Source

Bad design
may look
like this…

Modularity
• In technical terms, modules should display:

– high cohesion

– low coupling.

• We next discuss:

– cohesion and coupling.

Modularity

• Arrangement of modules in a hierarchy

ensures:

– Low fan-out

–Abstraction

Coupling: Degree of dependence among components

No dependencies Loosely coupled-some dependencies

Highly coupled-many dependencies

High coupling makes
modifying parts of the
system difficult, e.g.,
modifying a component
affects all the components
to which the component is
connected.

Source:

Pfleeger, S., Software Engineering
Theory and Practice. Prentice Hall, 2001.

Cohesion and Coupling

• Cohesion is a measure of:

– functional strength of a module.

– A cohesive module performs a single task or function.

• Coupling between two modules:

– A measure of the degree of interdependence or

interaction between the two modules.

Cohesion and Coupling

• A module having high cohesion and low coupling:

– Called functionally independent of other modules:

• A functionally independent module needs very little help

from other modules and therefore has minimal interaction

with other modules.

Advantages of Functional Independence

• Better understandability

• Complexity of design is reduced,

• Different modules easily understood in isolation:

– Modules are independent

No dependencies

Highly coupled-many dependencies

Why Functional Independence is Advantageous?

• Functional independence reduces error propagation.

– degree of interaction between modules is low.

– an error existing in one module does not directly affect

other modules.

• Also: Reuse of modules is

possible.
No dependencies

Reuse: An Advantage of Functional Independence

• A functionally independent module:

– can be easily taken out and reused in a different

program.

• each module does some well-defined and precise function

• the interfaces of a module with other modules is simple and

minimal.

Measuring Functional Independence

• Unfortunately, there are no ways:

– to quantitatively measure the degree of cohesion and

coupling:

– At least classification of different kinds of cohesion and coupling:

• will give us some idea regarding the degree of cohesiveness

of a module.

Classification of Cohesiveness

• Classification can have scope for ambiguity:

– yet gives us some idea about cohesiveness of a

module.

• By examining the type of cohesion exhibited by a module:

– we can roughly tell whether it displays high cohesion or

low cohesion.

Classification of
Cohesiveness

coincidental

logical

temporal

procedural

sequential

communicational

functional

Degree of
cohesion

Coincidental cohesion
• The module performs a set of tasks:

–which relate to each other very loosely, if at all.

• That is, the module contains a random collection of

functions.

• functions have been put in the module out of pure

coincidence without any thought or design.

Module AAA{

Print-inventory();

Register-Student();

Issue-Book();

};

Coincidental Cohesion - example

Logical cohesion
• All elements of the module perform similar

operations:

– e.g. error handling, data input, data output, etc.

• An example of logical cohesion:

– a set of print functions to generate an output report

arranged into a single module.

module print{

void print-grades(student-file){ …}

void print-certificates(student-file){…}

void print-salary(teacher-file){…}

}

Logical Cohesion

Temporal cohesion

• The module contains functions so that:

– all the functions must be executed in the same time span.

• Example:

– The set of functions responsible for

• initialization,

• start-up, shut-down of some process, etc.

init() {

Check-memory();

Check-Hard-disk();

Initialize-Ports();

Display-Login-Screen();

}

Temporal
Cohesion –
Example

Procedural cohesion

• The set of functions of the module:

– all part of a procedure (algorithm)

– certain sequence of steps have to be carried out

in a certain order for achieving an objective,

• e.g. the algorithm for decoding a message.

Communicational cohesion

• All functions of the module:

– Reference or update the same data structure,

• Example:

– The set of functions defined on an array or a stack.

handle-Student- Data() {

Static Struct Student-data[10000];

Store-student-data();

Search-Student-data();

Print-all-students();

};

Communicational Cohesion

Function A

Function B

Function C

Communicational
Access same data

Sequential cohesion
• Elements of a module form different parts of a

sequence,

– output from one element of the

sequence is input to the next.

– Example:

sort

search

display

Functional cohesion

• Different elements of a module cooperate:

– to achieve a single function,

– e.g. managing an employee's pay-roll.

• When a module displays functional cohesion,

– we can describe the function using a single sentence.

Determining
Cohesiveness

• Write down a sentence to describe the function of the
module

– If the sentence is compound,

• it has a sequential or communicational cohesion.

– If it has words like “first”, “next”, “after”, “then”, etc.

• it has sequential or temporal cohesion.

– If it has words like initialize,

• it probably has temporal cohesion.

Coupling
• Coupling indicates:

– how closely two modules interact or how

interdependent they are.

– The degree of coupling between two modules

depends on their interface complexity.

Coupling
• There are no ways to precisely measure coupling between

two modules:

– classification of different types of coupling will help us to

approximately estimate the degree of coupling between two

modules.

• Five types of coupling can exist between any two modules.

Classes of coupling

content

common

stamp

control

data

Degree of
coupling

Data coupling
• Two modules are data coupled,

– if they communicate via a parameter:

• an elementary data item,

• e.g an integer, a float, a character, etc.

– The data item should be problem related:

• not used for control purpose.

Stamp coupling

• Two modules are stamp coupled,

– if they communicate via a composite data item

• or an array or structure in C.

Control coupling

• Data from one module is used to direct

– order of instruction execution in another.

• Example of control coupling:

– a flag set in one module and tested in another

module.

Common Coupling

• Two modules are common coupled,

– if they share some global data.

Content coupling
• Content coupling exists between two modules:

– if they share code,

– e.g, branching from one module into another module.

• The degree of coupling increases

– from data coupling to content coupling.

Hierarchical Design
• Control hierarchy represents:

– organization of modules.

– control hierarchy is also called program structure.

• Most common notation:

– a tree-like diagram called structure chart.

Good Hierachical Arrangement of modules

• Essentially means:

– low fan-out

–abstraction

Characteristics of Module Structure
• Depth:

– number of levels of control

• Width:

– overall span of control.

• Fan-out:

– a measure of the number of modules directly controlled

by given module.

Characteristics of Module Structure

• Fan-in:

– indicates how many modules directly

invoke a given module.

–High fan-in represents code reuse and is

in general encouraged.

Module Structure
Fan out=2

Fan out=1

Fan in=1

Fan in=2

Fan out=0

Goodness of Design

• A design having modules:

–with high fan-out numbers

is not a good design.

– a module having high fan-out lacks cohesion.

Large Fan Out

• A module that invokes a large

number of other modules:

– likely to implement several different functions:

– not likely to perform a single cohesive function.

Control Relationships

• A module that controls another module:

– said to be superordinate to the later module.

• Conversely, a module controlled by another module:

– said to be subordinate to the later module.

Visibility and Layering

• A module A is said to be visible by another module B,

– if A directly or indirectly calls B.

• The layering principle requires:

– modules at a layer can call only the modules immediately

below it.

Bad Design

Abstraction

• Lower-level modules:

–Perform input/output and other low-level

functions.

• Upper-level modules:

–Perform more managerial functions.

Abstraction

• The principle of abstraction requires:

– lower-level modules do not invoke functions of

higher level modules.

– Also known as layered design.

f1
f2
f3

•
•
•

fn

d1 d2

d3
d1

d4

High-level
Design

Design Approaches

• Two fundamentally different software design

approaches:

– Function-oriented design

– Object-oriented design

Design Approaches

• These two design approaches are radically different.

– However, are complementary

• rather than competing techniques.

– Each technique is applicable at

• different stages of the design process.

Function-Oriented Design

• A system is looked upon as something

– that performs a set of functions.

• Starting at this high-level view of the system:

– each function is successively refined into more detailed functions

(top-down decomposition).

– Functions are mapped to a module structure.

Example

• The function create-new-library- member:

– creates the record for a new member,

– assigns a unique membership number

– prints a bill towards the membership

Function-Oriented Design
• The system state is centralized:

– accessible to different functions,

– member-records:

• available for reference and updation to several functions:

– create-new-member

– delete-member

– update-member-record

Function-Oriented Design
• Several function-oriented design approaches have been

developed:

– Structured design (Constantine and Yourdon, 1979)

– Jackson's structured design (Jackson, 1975)

– Warnier-Orr methodology

– Wirth's step-wise refinement

– Hatley and Pirbhai's Methodology

Example
• Create-library-member function consists of the following

sub-functions:

– assign-membership-number

– create-member-record

– print-bill

• Split these into further subfunctions, etc.

Object-Oriented Design

• System is viewed as a collection of objects (i.e.

entities).

• System state is decentralized among the objects:

– each object manages its own state information.

Object-Oriented Design Example
• Library Automation Software:

– each library member is a separate object

• with its own data and functions.

– Functions defined for one object:

• cannot directly refer to or change data of other

objects.

Object-Oriented Design
• Objects have their own internal data:

– defines their state.

• Similar objects constitute a class.

– each object is a member of some class.

• Classes may inherit features

– from a super class.

• Conceptually, objects communicate by message passing.

Object-Oriented versus Function-Oriented Design

• Unlike function-oriented design,

– in OOD the basic abstraction is not functions such

as “sort”, “display”, “track”, etc.,

–but real-world entities such as “employee”,

“picture”, “machine”, “radar system”, etc.

Object-Oriented versus Function-Oriented Design

• In OOD:

– software is not developed by designing functions such as:

• update-employee-record,

• get-employee-address, etc.

– but by designing objects such as:

• employees,

• departments, etc.

Object-Oriented versus Function-Oriented Design

• Grady Booch sums up this fundamental

difference saying:

– “Identify verbs if you are after procedural design

and nouns if you are after object-oriented design.”

Object-Oriented versus Function-Oriented Design

• In OOD:

– state information is not shared in a centralized data.

– but is distributed among the objects of the system.

Example
• In an employee pay-roll system, the following can be global

data:

– names of the employees,

– their code numbers,

– basic salaries, etc.

• In contrast, in object oriented systems:

– data is distributed among different employee objects of the

system.

Object-Oriented versus Function-Oriented Design

• Objects communicate by message passing.

– one object may discover the state information of another

object by interrogating it.

Object-Oriented versus Function-Oriented Design

• Of course, somewhere or other the functions must be

implemented:

– the functions are usually associated with specific real-

world entities (objects)

– directly access only part of the system state information.

Object-Oriented versus Function-Oriented Design

• Function-oriented techniques group functions together if:

– as a group, they constitute a higher level function.

• On the other hand, object-oriented techniques group

functions together:

– on the basis of the data they operate on.

Object-Oriented versus Function-Oriented Design

• To illustrate the differences between object-oriented

and function-oriented design approaches,

– let us consider an example ---

– An automated fire-alarm system for a large building.

Fire-Alarm System

• We need to develop a computerized fire alarm

system for a large multi-storied building:

– There are 80 floors and 2000 rooms in

the building.

Fire-Alarm System

• Different rooms of the building:

– fitted with smoke detectors and fire alarms.

• The fire alarm system would monitor:

– status of the smoke detectors.

Fire-Alarm System

• Whenever a fire condition is reported by any smoke

detector:

– the fire alarm system should:

• determine the location from which the fire condition was

reported

• sound the alarms in the neighbouring locations.

Fire-Alarm System

• The fire alarm system should:

– flash an alarm message on the computer console:

• fire fighting personnel man the console round the

clock.

Fire-Alarm System

• After a fire condition has been successfully

handled,

– the fire alarm system should let fire fighting

personnel reset the alarms.

Function-Oriented
Approach

/* Global data (system state) accessible by various functions */
BOOL detector_status[2000];
int detector_locs[2000];
BOOL alarm-status[2000]; /* alarm activated when set */

int alarm_locs[2000]; /* room number where alarm is located */

int neighbor-alarms[2000][10];/*each detector has at most*/

/* 10 neighboring alarm locations */

interrogate_detectors();
get_detector_location();
determine_neighbor();
ring_alarm();
reset_alarm();
report_fire_location();

Object-Oriented Approach:
class detector

attributes: status, location, neighbors
operations: create, sense-status, get-location, find-neighbors

class alarm
attributes: location, status
operations: create, ring-alarm, get_location, reset-alarm

– Appropriate number of instances of the class detector and alarm are created.

Object-Oriented versus Function-Oriented Design

• In a function-oriented program :

– the system state is centralized

– several functions accessing these data are defined.

• In the object oriented program,

– the state information is distributed among various sensor
and alarm objects.

Object-Oriented versus Function-Oriented Design

• Use OOD to design the classes:

– then applies top-down function oriented techniques

• to design the internal methods of classes.

Object-Oriented versus Function-Oriented Design

• Though outwardly a system may appear to have been

developed in an object oriented fashion,

– but inside each class there is a small hierarchy of

functions designed in a top-down manner.

Summary

• We started with an overview of:
– activities undertaken during the software design phase.

• We identified:
– the information need to be produced at the end of

design:
• so that the design can be easily implemented using a

programming language.

Summary

• We characterized the features of a good software
design by introducing the concepts of:

– fan-in, fan-out,

– cohesion, coupling,

– abstraction, etc.

Summary

• We classified different types of cohesion and

coupling:

– enables us to approximately determine the cohesion

and coupling existing in a design.

Summary

• Two fundamentally different approaches to

software design:

– function-oriented approach

– object-oriented approach

Summary

• We examined the essential philosophy behind these

two approaches

– these two approaches are not really competing but

complementary approaches.

100

Faculty Name
Department Name

