
1103/08/10 11

Combinatorial
Testing
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Combinatorial Testing: Motivation
• The behavior of a program may be affected by many factors:

– Input parameters, 
– Environment configurations (global variables), 
– State variables. ..

• Equivalence partitioning of an input variable:
– Identify the  possible types of input values requiring different 

processing. 
• If the factors are many:

– It is impractical to test all possible combinations  of values of all  factors. 
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Combinatorial: Relating to, 
or involving combinations



• Many times, the specific action to be performed depends  
on the value of a set of Boolean variable:

– Controller applications

– User interfaces
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Combinatorial Testing: Motivation



Combinatorial Testing

• Several combinatorial testing strategies exist:

– Decision table-based testing

– Cause-effect graphing

– Pair-wise testing  (reduced number of test cases)
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Decision table-
based Testing 

(DTT)

• Applicable to  requirements involving conditional actions.
• This is represented as a decision table:
–Conditions = inputs
–Actions = outputs
–Rules =test cases

• Assume independence of inputs
• Example
–If c1 AND c2 OR c3 then A1

Rule1 Rule2 Rule3 Rule4

Condition1 Yes Yes No No

Condition2 Yes X No X

Condition3 No Yes No X

Condition4 No Yes No Yes

Action1 Yes Yes No No

Action2 No No Yes No

Action3 No No No Yes
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Rule1 Rule2 Rule3 Rule4

Condition1 Yes Yes No No

Condition2 Yes X No X

Condition3 No Yes No X

Condition4 No Yes No Yes

Action1 Yes Yes No No

Action2 No No Yes No

Action3 No No No Yes

Conditions

Actions

Combinations

6



Sample 
Decision 

table

• A decision table consists of a number of columns 
(rules) that comprise all test situations

• Example: the triangle problem
–C1: a, b,c form a triangle
–C2: a=b
–C3: a= c
–C4: b= c
–A1: Not a triangle
–A2:scalene
–A3: Isosceles
–A4:equilateral
–A5: Right angled

r1 r2 … rn

C1 0 1 0

c2 - 1 0

C3 - 1 1

C4 - 1 0

a1 1 0 0

a2 0 0 1

a3 0 0 0

a4 0 1 0
a5 0 0
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Test cases from Decision Tables
Test Case 

ID a b c Expected 
output

TC1 4 1 2 Not a 
Triangle

TC2 2888 2888 2888 Equilateral
TC3 ? | ) Impossible
TC4
…

TC11
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C1: a, b,c form 
a triangle

C2: a=b
C3: a= c
C4: b= c
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More Complete 
Decision Table 
for the Triangle 

Problem

Conditions
C1:  a < b+c? F T T T T T T T T T T
C2: b < a+c? - F T T T T T T T T T
C3: c < a+b? - - F T T T T T T T T
C4: a=b? - - - T T T T F F F F
C5: a=c? - - - T T F F T T F F
C6: b-c? - - - T F T F T F T F
Actions
A1: Not a Triangle X X X
A2: Scalene X
A3: Isosceles X X X
A4: Equilateral X
A5: Impossible X X X
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Test Cases for 
the Triangle 

Problem

Case ID a b c Expected 
Output

DT1 4 1 2 Not a 
Triangle

DT2 1 4 2 Not a 
Triangle

DT3 1 2 4 Not a 
Triangle

DT4 5 5 5 Equilateral

DT5 ? ? ? Impossible

DT6 ? ? ? Impossible

DT7 2 2 3 Isosceles

DT8 ? ? ? Impossible

DT9 2 3 2 Isosceles

DT10 3 2 2 Isosceles

DT11 3 4 5 Scalene



Decision Table 
– Example 2 Conditions

Printer does not print Y Y Y Y N N N N

A red light is flashing Y Y N N Y Y N N

Printer is unrecognized Y N Y N Y N Y N

Actions

Check the power cable X

Check the printer-computer cable
X X

Ensure printer software is installed
X X X X

Check/replace ink X X X X

Check for paper jam X X

Printer 
Troubleshooting
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Quiz: Develop BB Test Cases
• Policy for charging customers for certain in-flight services:

If the flight is more than half-full and ticket cost is more than 
Rs. 3000, free meals are served unless it is a domestic flight. 
Otherwise, no meals are served.  Meals are charged on all 
domestic flights.
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Fill all 
combinations 
in the table.

POSSIBLE COMBINATIONS

CO
N

DI
TO

N
S

more than half-
full N N N N Y Y Y Y

more than 
Rs.3000 per 

seat
N N Y Y N N Y Y

domestic flight N Y N Y N Y N Y

AC
TI

O
N

S
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Analyze 
column by 
column to 
determine 
which actions 
are appropriate 
for each 
combination

POSSIBLE COMBINATIONS

CO
N

DI
TO

N
S

more than half-full N N N N Y Y Y Y

more than Rs. 3000
per seat N N Y Y N N Y Y

domestic flight N Y N Y N Y N Y
AC

TI
O

N
S

serve meals Y Y Y Y
free Y
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Reduce the 
table by 
eliminating 
redundant 
columns.

POSSIBLE COMBINATIONS

CO
N

DI
TO

N
S

more than half-full N N N N Y Y Y Y

more than Rs. 3000
per seat N N Y Y N N Y Y

domestic flight N Y N Y N Y N Y

AC
TI

O
N

S

serve meals X X X X

free X
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Final 
solution

Combinations

CO
N

DI
TO

N
S

more than half-full N Y Y Y

more than 3000 per seat - N Y Y

domestic flight - - N Y
AC

TI
O

N
S serve meals X X X

free X
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Assumptions 
regarding 

rules

–Rules need to be complete:

•That is, every combination of decision table 
values including default combinations are 
present.

–Rules need to be consistent:

•That is,  there is no two different actions for the 
same combinations of conditions
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Guidelines and Observations
• Decision table testing is appropriate for programs: 

– There is a lot of decision making

– Output is a logical relationship among input variables

– Results depend on calculations involving subsets of inputs

– There are cause and effect relationships between input and 
output

• Decision tables do not scale up very well



Quiz: Design test Cases
• Customers on a e-commerce site get following 

discount:
– A member gets 10% discount for purchases lower than 

Rs. 2000, else 15% discount
– Purchase using SBI card fetches 5% discount

– If the purchase amount after all discounts exceeds Rs. 
2000/- then shipping is free.
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Cause-effect Graphs 
• Overview:

–Explores combinations of possible inputs

–Specific combination of inputs (causes) results in outputs 
(effects)

–Represented as nodes of a cause effect graph

–The graph also includes constraints and a number of 
intermediate nodes linking causes and effects
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Cause-Effect 
Graph 

Example

• If depositing less than Rs. 1 Lakh, rate of interest: 

– 6% for deposit upto 1 year

– 7% for deposit over 1 year but less than 3 yrs

– 8% for deposit 3 years and above

• If depositing more than Rs. 1 Lakh, rate of interest: 

– 7% for deposit upto 1 year

– 8% for deposit over 1 year but less than 3 yrs

– 9% for deposit 3 years and above
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Cause-Effect Graph Example

Causes Effects

C1: Deposit<1yr e1: Rate 6%

C2: 1yr<Deposit<3yrs e2: Rate 7%

C3: Deposit>3yrs e3: Rate 8%

C4:Deposit  <1 Lakh e4: Rate 9% 

C5: Deposit >=1Lakh 
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Cause-Effect 
Graphing

c4 e10

c5

e1

e2

c1

e20

c2

e3

e40
e4

e50

e30

c3

e60
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Develop a Decision Table

C1   C2  C3     C4    C5  e1   e2    e3    e4

1      0    0       1      0    1      0     0      0       

1     0     0       0      1    0     1      0      0        

0    1      0        1     0    0     1      0      0      

0    1      0       0      1    1     0      1      0      

• Convert each row to a test case
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Pair-wise Testing
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Combinatorial Testing of User 
Interface

0 = effect off
1 = effect on

210 = 1,024 tests for all combinations

* 10 3 = 1024 * 1000   ….   Just too many to tests
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Combinatorial Testing Problem

X1 X2      X3 .  .  .    Xn

System S

•Combinatorial testing problems generally follow a simple input-process-
output model; 

•The “state” of the system is not the focus of combinatorial testing.
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t-way Testing
• Instead of testing all possible combinations:

– A subset of combinations is generated.

• Key observation: 
– It is often the case that a fault is caused by interactions among a 

few factors.

• t-way testing can dramatically reduce the number of test 
cases:
– but remains  effective in terms of fault detection.
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t-way Interaction Testing

Interest Rate | Amount | Months | Down Pmt | Pmt Frequency  

All combinations: 
every value of 
every parameters

All pairs: every 
value of each 
pair of 
parameters

t-way interactions: 
every value of every t-
way combination of 
parameters

etc. . . 
.
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Pairwise Testing

10/3/2018 30

Pressure | Temperature | Velocity | Acceleration | Air Density  

Α
Β

Τ1
Τ2
Τ3

1
2
3
4
5
6

10    
0

20
0

1.1
2.1
3.1

Pressure Temperature
A T1
A T2
A T3
B T1
B T2
B T3
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Pairwise  Reductions
Number of 
inputs

Number of 
selected test 
data values

Number of 
combinations

Size of pair 
wise test 
set

7 2 128 8

13 3 1.6 x 106 15

40 3 1.2 x 1019 21
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Fault-Model• A t-way interaction fault:

–Triggered by a certain combination of t input values.

– A simple fault is a 1-way fault

– Pairwise fault is a t-way fault where t = 2.

• In practice, a majority of software faults consist of simple 
and pairwise faults.
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Single-mode Bugs
• The simplest bugs are single-mode faults:

–Occur when one option causes a problem regardless of 
the other settings

–Example: A printout is always gets smeared when you 
choose the duplex option in the print dialog box

• Regardless of the printer or the other selected options
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Double-mode Faults

• Double-mode faults

–Occurs when two options are combined

–Example: The printout is smeared only when duplex is 
selected and the printer selected is model 394

34
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Multi-mode Faults
• Multi-mode faults

–Occur when three or more settings produce the bug

–This is the type of problems that make complete coverage 
necessary
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Example of Pairwise Fault• begin
– int x, y, z;
– input (x, y, z);
– if (x == x1 and y == y2)

• output (f(x, y, z));

– else if (x == x2 and y == y1)
• output (g(x, y));

– Else           // Missing (x == x2 and y == y1) f(x, y, z) – g(x, y); 

• output (f(x, y, z) + g(x, y))

• end
• Expected: x = x1 and y = y1 => f(x, y, z) – g(x, y); 

x = x2, y = y2 => f(x, y, z) + g(x, y)
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Example:  
Android smart 
phone testing 
• Apps should work on all 
combinations of platform options, 
but there are 3 x 3 x 4 x 3 x 5 x 4 x 

4 x 5 x 4 = 172,800 configurations 

HARDKEYBOARDHIDDEN_NO 
HARDKEYBOARDHIDDEN_UNDEFINED 
HARDKEYBOARDHIDDEN_YES 

KEYBOARDHIDDEN_NO 
KEYBOARDHIDDEN_UNDEFINED 
KEYBOARDHIDDEN_YES

KEYBOARD_12KEY 
KEYBOARD_NOKEYS 
KEYBOARD_QWERTY 
KEYBOARD_UNDEFINED 

NAVIGATIONHIDDEN_NO 
NAVIGATIONHIDDEN_UNDEFINED 

NAVIGATIONHIDDEN_YES 

NAVIGATION_DPAD 
NAVIGATION_NONAV 
NAVIGATION_TRACKBALL 
NAVIGATION_UNDEFINED 
NAVIGATION_WHEEL 

ORIENTATION_LANDSCAPE 
ORIENTATION_PORTRAIT 
ORIENTATION_SQUARE 
ORIENTATION_UNDEFINED 

SCREENLAYOUT_LONG_MASK 
SCREENLAYOUT_LONG_NO 
SCREENLAYOUT_LONG_UNDEFINED 

SCREENLAYOUT_LONG_YES 

SCREENLAYOUT_SIZE_LARGE 
SCREENLAYOUT_SIZE_MASK 
SCREENLAYOUT_SIZE_NORMAL 

SCREENLAYOUT_SIZE_SMALL 
SCREENLAYOUT_SIZE_UNDEFINED 

TOUCHSCREEN_FINGER 
TOUCHSCREEN_NOTOUCH 
TOUCHSCREEN_STYLUS 
TOUCHSCREEN_UNDEFINED
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White-Box Testing



What is White-box Testing?

• White-box test cases designed  based on: 

–Code structure of program. 

–White-box testing is also called structural testing.



White-Box Testing Strategies
• Coverage-based:

– Design test cases to cover certain program elements.

• Fault-based:

– Design test cases to expose some category of faults



White-Box Testing

• Several white-box testing strategies have  become very popular :

– Statement coverage

– Branch coverage

– Path coverage

– Condition coverage

– MC/DC coverage

– Mutation testing

– Data flow-based testing



Why Both BB and WB Testing?
Black-box

• Impossible to write a test case 
for every possible set of inputs 
and outputs

• Some code parts may not be 
reachable 

• Does not tell if extra 
functionality has been 
implemented.

White-box

• Does not address the question 
of whether  a program matches 
the specification

• Does not tell if all functionalities 
have been implemented

• Does not uncover any missing 
program logic



Coverage-Based Testing Versus Fault-Based Testing
• Idea behind coverage-based testing:

– Design test cases so that certain program elements are executed 
(or covered).

– Example: statement coverage, path coverage, etc.

• Idea behind fault-based testing:
– Design test cases that focus on discovering certain types of 

faults.
– Example: Mutation testing.



Types of program element Coverage

• Statement:  each statement executed at least once

• Branch:  each branch traversed (and every entry point 
taken) at least once

• Condition:  each condition True at least once and False at 
least once

• Multiple Condition:  All combination of Condition covered

• Path:
• Dependency:



Stronger and 
Weaker Testing

Stronger
Weaker

Coverage



Complementary Testing

Coverage
Strategy 

1 Strategy 
2



Stronger, Weaker, and Complementary Testing

Weaker

Complementary



Statement Coverage

• Statement coverage strategy:

–Design test cases so that every statement in the 

program is executed at least once.



Statement Coverage

• The principal idea:

–Unless a statement is executed, 

–We have no way of knowing  if an error exists in 
that statement. 



Statement Coverage Criterion

• However, observing that a statement behaves properly 

for one input value:

–No guarantee that it will behave correctly for all input 

values!



Statement Coverage
• Coverage measurement:

# executed statements

# statements

• Rationale: a fault in a statement can only be 
revealed by executing the faulty statement



Example• int f1(int x, int y){                    

• 1 while (x != y){

• 2 if (x>y) then

• 3 x=x-y;

• 4 else y=y-x;

• 5 }

• 6 return x;        }



Exampleint f1(int x,int y){                    
1 while (x != y){
2    if (x>y) then 
3         x=x-y;
4    else y=y-x;
5  }
6 return x;        }



Euclid's GCD Algorithm

• By choosing the test set {(x=3,y=3),(x=4,y=3), 
(x=3,y=4)}

–All statements are executed at least once.



Branch Coverage

• Also called decision coverage.

• Test cases are designed such that:

–Each branch condition

•Assumes true as well as false value. 



Exampleint f1(int x,int y){                    

1 while (x != y){

2    if (x>y) then 

3         x=x-y;

4    else y=y-x;

5  }

6 return x;        }



Example
• Test cases for branch coverage can be:

• {(x=3,y=3),(x=3,y=2), (x=4,y=3), (x=3,y=4)}



Branch Testing
• Adequacy criterion: Each branch (edge in the CFG) 

must be executed at least once 

• Coverage:

#  executed branches

# branches



Quiz 1: Branch and Statement Coverage: 
Which is Stronger?

• Branch testing guarantees statement 
coverage:

–A stronger testing compared to the statement 
coverage-based testing.



Stronger Testing
• Stronger testing:

–Superset of weaker testing

–A stronger testing covers all the elements covered by a 
weaker testing.

–Covers some additional elements not covered by 
weaker testing



Sample
Coverage 

Report





Statements vs Branch Testing
• Traversing all edges of a graph causes all nodes to be visited

– So a test suite that satisfies  branch adequacy criterion  also satisfies 
statement adequacy criterion for the same program.

• The converse is not true:

– A statement-adequate (or node-adequate) test suite may not be branch-
adequate (edge-adequate).



White-box 
Testing

– Statement coverage

– Branch coverage  (aka decision coverage)

– Basic condition coverage

– Condition/Decision coverage

– Multiple condition coverage

– MC/DC coverage

– Path coverage

– Data flow-based testing

– Mutation testing
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All Branches can still miss testing specific conditions
• Assume failure occurs  when c==DIGIT

if((c == ALPHABET) || (c ==DIGIT))

• Branch adequacy criterion can be satisfied by c==alphabet  and  
c==splchar

– The faulty sub-expression might not be tested!

– Even though we test both outcomes of the branch



Basic Condition Coverage
• Also called condition coverage or simple condition 

coverage .

• Test case design:

–Each component of a composite conditional expression  

• Made to assume both true and false values. 

((c == ALPHABET) || (c== DIGIT))



Basic Condition Testing

• Simple or (basic) Condition Testing:
– Test cases make each atomic condition assume   T and F values

– Example:  if (a>10 && b<50)

• Following test inputs would achieve basic condition coverage

– a=15, b=30

– a=5, b=60

• Does basic condition coverage subsume decision coverage?



Example: BCC
• Consider the conditional expression 

–((c1.and.c2).or.c3):

• Each of c1, c2,  and  c3  is exercised with all possible 
values, 

–That is, given true and false values. 



Basic condition testing
• Adequacy criterion: each basic condition must be 

executed at least once

• Coverage:
# truth values taken by all basic conditions

2 * # basic conditions



Is BCC Stronger than Decision Coverage?

• Consider the conditional statement: 

–If(((a>5).and.(b<3)).or.(c==0)) a=10;

• Two test cases can achieve basic condition coverage: (a=10, 
b=2, c=2) and (a=1, b=10, c=0)

• BCC does not imply Decision coverage and vice versa 



Condition/Decision Coverage Testing
• Condition/decision coverage:

– Each atomic condition made to assume both  T and F values

– Decisions are also made to get T an F values

• Multiple condition coverage (MCC):

– Atomic conditions made to assume all possible combinations of 
truth values



MCC
• Test cases make Conditions to assume all possible 

combinations of truth values. 

• Consider: if (a || b &&  c)  then …
Test a b c
(1) T T T
(2) T T F
(3) T F T
(4) T F F
(5) F T T
(6) T T    F
(7) F F T
(8) F F F

Exponential in the 
number of basic 
conditions



Multiple Condition Coverage (MCC)
• Consider a Boolean expression having n 

components: 

–For condition coverage we require 2n test cases.

• MCC testing technique:
–Practical only if n (the number of component conditions) 

is small.



MCC for Compound conditions: Exponential complexity
(((a || b) && c) || d) && e

Test a b c d e 
Case
(1) T — T — T
(2) F T T — T
(3) T — F T T
(4) F T F T T
(5) F F — T T
(6) T — T — F
(7) F T T — F
(8) T — F T F
(9) F T F T F
(10) F F — T F
(11) T — F F —
(12) F T F F —
(13) F F — F —

•Short-circuit 
evaluation often 
reduces number of 
test cases to a more 
manageable 
number, but not 
always…

25=32



Subsumption
• Condition testing:

–Stronger testing than branch 
testing.

• Branch testing:

–Stronger than statement 
coverage testing. 

Multiple Condition

Condition/Decision

Decision

StatementBasic Condition



Shortcomings of Condition Testing
• Redundancy of test cases: Condition evaluation could be 

compiler-dependent:

– Reason: Short circuit evaluation of conditions

• Coverage may be Unachievable: Possible dependencies 
among variables:

– Example: ((chr==`A ́)||(chr==`E ́)) can not both be true at the 
same time



Short-circuit Evaluation

• if(a>30 && b<50)…

– If a>30 is  FALSE compiler need not evaluate (b<50)

• Similarly, if(a>30 || b<50)…

– If a>30 is  TRUE compiler need not evaluate (b<50)
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