
1103/08/10 11

Combinatorial
Testing

1

Combinatorial Testing: Motivation
• The behavior of a program may be affected by many factors:

– Input parameters,
– Environment configurations (global variables),
– State variables. ..

• Equivalence partitioning of an input variable:
– Identify the possible types of input values requiring different

processing.
• If the factors are many:

– It is impractical to test all possible combinations of values of all factors.

2

Combinatorial: Relating to,
or involving combinations

• Many times, the specific action to be performed depends
on the value of a set of Boolean variable:

– Controller applications

– User interfaces

3

Combinatorial Testing: Motivation

Combinatorial Testing

• Several combinatorial testing strategies exist:

– Decision table-based testing

– Cause-effect graphing

– Pair-wise testing (reduced number of test cases)

4

Decision table-
based Testing

(DTT)

• Applicable to requirements involving conditional actions.
• This is represented as a decision table:
–Conditions = inputs
–Actions = outputs
–Rules =test cases

• Assume independence of inputs
• Example
–If c1 AND c2 OR c3 then A1

Rule1 Rule2 Rule3 Rule4

Condition1 Yes Yes No No

Condition2 Yes X No X

Condition3 No Yes No X

Condition4 No Yes No Yes

Action1 Yes Yes No No

Action2 No No Yes No

Action3 No No No Yes

5

Rule1 Rule2 Rule3 Rule4

Condition1 Yes Yes No No

Condition2 Yes X No X

Condition3 No Yes No X

Condition4 No Yes No Yes

Action1 Yes Yes No No

Action2 No No Yes No

Action3 No No No Yes

Conditions

Actions

Combinations

6

Sample
Decision

table

• A decision table consists of a number of columns
(rules) that comprise all test situations

• Example: the triangle problem
–C1: a, b,c form a triangle
–C2: a=b
–C3: a= c
–C4: b= c
–A1: Not a triangle
–A2:scalene
–A3: Isosceles
–A4:equilateral
–A5: Right angled

r1 r2 … rn

C1 0 1 0

c2 - 1 0

C3 - 1 1

C4 - 1 0

a1 1 0 0

a2 0 0 1

a3 0 0 0

a4 0 1 0
a5 0 0

7

Test cases from Decision Tables
Test Case

ID a b c Expected
output

TC1 4 1 2 Not a
Triangle

TC2 2888 2888 2888 Equilateral
TC3 ? |) Impossible
TC4
…

TC11

8

C1: a, b,c form
a triangle

C2: a=b
C3: a= c
C4: b= c

9

More Complete
Decision Table
for the Triangle

Problem

Conditions
C1: a < b+c? F T T T T T T T T T T
C2: b < a+c? - F T T T T T T T T T
C3: c < a+b? - - F T T T T T T T T
C4: a=b? - - - T T T T F F F F
C5: a=c? - - - T T F F T T F F
C6: b-c? - - - T F T F T F T F
Actions
A1: Not a Triangle X X X
A2: Scalene X
A3: Isosceles X X X
A4: Equilateral X
A5: Impossible X X X

10

Test Cases for
the Triangle

Problem

Case ID a b c Expected
Output

DT1 4 1 2 Not a
Triangle

DT2 1 4 2 Not a
Triangle

DT3 1 2 4 Not a
Triangle

DT4 5 5 5 Equilateral

DT5 ? ? ? Impossible

DT6 ? ? ? Impossible

DT7 2 2 3 Isosceles

DT8 ? ? ? Impossible

DT9 2 3 2 Isosceles

DT10 3 2 2 Isosceles

DT11 3 4 5 Scalene

Decision Table
– Example 2 Conditions

Printer does not print Y Y Y Y N N N N

A red light is flashing Y Y N N Y Y N N

Printer is unrecognized Y N Y N Y N Y N

Actions

Check the power cable X

Check the printer-computer cable
X X

Ensure printer software is installed
X X X X

Check/replace ink X X X X

Check for paper jam X X

Printer
Troubleshooting

11

Quiz: Develop BB Test Cases
• Policy for charging customers for certain in-flight services:

If the flight is more than half-full and ticket cost is more than
Rs. 3000, free meals are served unless it is a domestic flight.
Otherwise, no meals are served. Meals are charged on all
domestic flights.

12

Fill all
combinations
in the table.

POSSIBLE COMBINATIONS

CO
N

DI
TO

N
S

more than half-
full N N N N Y Y Y Y

more than
Rs.3000 per

seat
N N Y Y N N Y Y

domestic flight N Y N Y N Y N Y

AC
TI

O
N

S

13

Analyze
column by
column to
determine
which actions
are appropriate
for each
combination

POSSIBLE COMBINATIONS

CO
N

DI
TO

N
S

more than half-full N N N N Y Y Y Y

more than Rs. 3000
per seat N N Y Y N N Y Y

domestic flight N Y N Y N Y N Y
AC

TI
O

N
S

serve meals Y Y Y Y
free Y

14

Reduce the
table by
eliminating
redundant
columns.

POSSIBLE COMBINATIONS

CO
N

DI
TO

N
S

more than half-full N N N N Y Y Y Y

more than Rs. 3000
per seat N N Y Y N N Y Y

domestic flight N Y N Y N Y N Y

AC
TI

O
N

S

serve meals X X X X

free X

15

Final
solution

Combinations

CO
N

DI
TO

N
S

more than half-full N Y Y Y

more than 3000 per seat - N Y Y

domestic flight - - N Y
AC

TI
O

N
S serve meals X X X

free X

16

Assumptions
regarding

rules

–Rules need to be complete:

•That is, every combination of decision table
values including default combinations are
present.

–Rules need to be consistent:

•That is, there is no two different actions for the
same combinations of conditions

17

18

Guidelines and Observations
• Decision table testing is appropriate for programs:

– There is a lot of decision making

– Output is a logical relationship among input variables

– Results depend on calculations involving subsets of inputs

– There are cause and effect relationships between input and
output

• Decision tables do not scale up very well

Quiz: Design test Cases
• Customers on a e-commerce site get following

discount:
– A member gets 10% discount for purchases lower than

Rs. 2000, else 15% discount
– Purchase using SBI card fetches 5% discount

– If the purchase amount after all discounts exceeds Rs.
2000/- then shipping is free.

19

Cause-effect Graphs
• Overview:

–Explores combinations of possible inputs

–Specific combination of inputs (causes) results in outputs
(effects)

–Represented as nodes of a cause effect graph

–The graph also includes constraints and a number of
intermediate nodes linking causes and effects

20

Cause-Effect
Graph

Example

• If depositing less than Rs. 1 Lakh, rate of interest:

– 6% for deposit upto 1 year

– 7% for deposit over 1 year but less than 3 yrs

– 8% for deposit 3 years and above

• If depositing more than Rs. 1 Lakh, rate of interest:

– 7% for deposit upto 1 year

– 8% for deposit over 1 year but less than 3 yrs

– 9% for deposit 3 years and above

21

Cause-Effect Graph Example

Causes Effects

C1: Deposit<1yr e1: Rate 6%

C2: 1yr<Deposit<3yrs e2: Rate 7%

C3: Deposit>3yrs e3: Rate 8%

C4:Deposit <1 Lakh e4: Rate 9%

C5: Deposit >=1Lakh

22

Cause-Effect
Graphing

c4 e10

c5

e1

e2

c1

e20

c2

e3

e40
e4

e50

e30

c3

e60
23

Develop a Decision Table

C1 C2 C3 C4 C5 e1 e2 e3 e4

1 0 0 1 0 1 0 0 0

1 0 0 0 1 0 1 0 0

0 1 0 1 0 0 1 0 0

0 1 0 0 1 1 0 1 0

• Convert each row to a test case

24

252503/08/10 2525

Pair-wise Testing

25

26

Combinatorial Testing of User
Interface

0 = effect off
1 = effect on

210 = 1,024 tests for all combinations

* 10 3 = 1024 * 1000 …. Just too many to tests

26

27

Combinatorial Testing Problem

X1 X2 X3 . . . Xn

System S

•Combinatorial testing problems generally follow a simple input-process-
output model;

•The “state” of the system is not the focus of combinatorial testing.

27

t-way Testing
• Instead of testing all possible combinations:

– A subset of combinations is generated.

• Key observation:
– It is often the case that a fault is caused by interactions among a

few factors.

• t-way testing can dramatically reduce the number of test
cases:
– but remains effective in terms of fault detection.

28
28

t-way Interaction Testing

Interest Rate | Amount | Months | Down Pmt | Pmt Frequency

All combinations:
every value of
every parameters

All pairs: every
value of each
pair of
parameters

t-way interactions:
every value of every t-
way combination of
parameters

etc. . .
.

29

Pairwise Testing

10/3/2018 30

Pressure | Temperature | Velocity | Acceleration | Air Density

Α
Β

Τ1
Τ2
Τ3

1
2
3
4
5
6

10
0

20
0

1.1
2.1
3.1

Pressure Temperature
A T1
A T2
A T3
B T1
B T2
B T3

31

Pairwise Reductions
Number of
inputs

Number of
selected test
data values

Number of
combinations

Size of pair
wise test
set

7 2 128 8

13 3 1.6 x 106 15

40 3 1.2 x 1019 21

31

Fault-Model• A t-way interaction fault:

–Triggered by a certain combination of t input values.

– A simple fault is a 1-way fault

– Pairwise fault is a t-way fault where t = 2.

• In practice, a majority of software faults consist of simple
and pairwise faults.

32

Single-mode Bugs
• The simplest bugs are single-mode faults:

–Occur when one option causes a problem regardless of
the other settings

–Example: A printout is always gets smeared when you
choose the duplex option in the print dialog box

• Regardless of the printer or the other selected options

33

Double-mode Faults

• Double-mode faults

–Occurs when two options are combined

–Example: The printout is smeared only when duplex is
selected and the printer selected is model 394

34
34

Multi-mode Faults
• Multi-mode faults

–Occur when three or more settings produce the bug

–This is the type of problems that make complete coverage
necessary

35

Example of Pairwise Fault• begin
– int x, y, z;
– input (x, y, z);
– if (x == x1 and y == y2)

• output (f(x, y, z));

– else if (x == x2 and y == y1)
• output (g(x, y));

– Else // Missing (x == x2 and y == y1) f(x, y, z) – g(x, y);

• output (f(x, y, z) + g(x, y))

• end
• Expected: x = x1 and y = y1 => f(x, y, z) – g(x, y);

x = x2, y = y2 => f(x, y, z) + g(x, y)

36
36

Example:
Android smart
phone testing
• Apps should work on all
combinations of platform options,
but there are 3 x 3 x 4 x 3 x 5 x 4 x

4 x 5 x 4 = 172,800 configurations

HARDKEYBOARDHIDDEN_NO
HARDKEYBOARDHIDDEN_UNDEFINED
HARDKEYBOARDHIDDEN_YES

KEYBOARDHIDDEN_NO
KEYBOARDHIDDEN_UNDEFINED
KEYBOARDHIDDEN_YES

KEYBOARD_12KEY
KEYBOARD_NOKEYS
KEYBOARD_QWERTY
KEYBOARD_UNDEFINED

NAVIGATIONHIDDEN_NO
NAVIGATIONHIDDEN_UNDEFINED

NAVIGATIONHIDDEN_YES

NAVIGATION_DPAD
NAVIGATION_NONAV
NAVIGATION_TRACKBALL
NAVIGATION_UNDEFINED
NAVIGATION_WHEEL

ORIENTATION_LANDSCAPE
ORIENTATION_PORTRAIT
ORIENTATION_SQUARE
ORIENTATION_UNDEFINED

SCREENLAYOUT_LONG_MASK
SCREENLAYOUT_LONG_NO
SCREENLAYOUT_LONG_UNDEFINED

SCREENLAYOUT_LONG_YES

SCREENLAYOUT_SIZE_LARGE
SCREENLAYOUT_SIZE_MASK
SCREENLAYOUT_SIZE_NORMAL

SCREENLAYOUT_SIZE_SMALL
SCREENLAYOUT_SIZE_UNDEFINED

TOUCHSCREEN_FINGER
TOUCHSCREEN_NOTOUCH
TOUCHSCREEN_STYLUS
TOUCHSCREEN_UNDEFINED

37

383803/08/10 3838

White-Box Testing

What is White-box Testing?

• White-box test cases designed based on:

–Code structure of program.

–White-box testing is also called structural testing.

White-Box Testing Strategies
• Coverage-based:

– Design test cases to cover certain program elements.

• Fault-based:

– Design test cases to expose some category of faults

White-Box Testing

• Several white-box testing strategies have become very popular :

– Statement coverage

– Branch coverage

– Path coverage

– Condition coverage

– MC/DC coverage

– Mutation testing

– Data flow-based testing

Why Both BB and WB Testing?
Black-box

• Impossible to write a test case
for every possible set of inputs
and outputs

• Some code parts may not be
reachable

• Does not tell if extra
functionality has been
implemented.

White-box

• Does not address the question
of whether a program matches
the specification

• Does not tell if all functionalities
have been implemented

• Does not uncover any missing
program logic

Coverage-Based Testing Versus Fault-Based Testing
• Idea behind coverage-based testing:

– Design test cases so that certain program elements are executed
(or covered).

– Example: statement coverage, path coverage, etc.

• Idea behind fault-based testing:
– Design test cases that focus on discovering certain types of

faults.
– Example: Mutation testing.

Types of program element Coverage

• Statement: each statement executed at least once

• Branch: each branch traversed (and every entry point
taken) at least once

• Condition: each condition True at least once and False at
least once

• Multiple Condition: All combination of Condition covered

• Path:
• Dependency:

Stronger and
Weaker Testing

Stronger
Weaker

Coverage

Complementary Testing

Coverage
Strategy

1 Strategy
2

Stronger, Weaker, and Complementary Testing

Weaker

Complementary

Statement Coverage

• Statement coverage strategy:

–Design test cases so that every statement in the

program is executed at least once.

Statement Coverage

• The principal idea:

–Unless a statement is executed,

–We have no way of knowing if an error exists in
that statement.

Statement Coverage Criterion

• However, observing that a statement behaves properly

for one input value:

–No guarantee that it will behave correctly for all input

values!

Statement Coverage
• Coverage measurement:

executed statements

statements

• Rationale: a fault in a statement can only be
revealed by executing the faulty statement

Example• int f1(int x, int y){

• 1 while (x != y){

• 2 if (x>y) then

• 3 x=x-y;

• 4 else y=y-x;

• 5 }

• 6 return x; }

Exampleint f1(int x,int y){
1 while (x != y){
2 if (x>y) then
3 x=x-y;
4 else y=y-x;
5 }
6 return x; }

Euclid's GCD Algorithm

• By choosing the test set {(x=3,y=3),(x=4,y=3),
(x=3,y=4)}

–All statements are executed at least once.

Branch Coverage

• Also called decision coverage.

• Test cases are designed such that:

–Each branch condition

•Assumes true as well as false value.

Exampleint f1(int x,int y){

1 while (x != y){

2 if (x>y) then

3 x=x-y;

4 else y=y-x;

5 }

6 return x; }

Example
• Test cases for branch coverage can be:

• {(x=3,y=3),(x=3,y=2), (x=4,y=3), (x=3,y=4)}

Branch Testing
• Adequacy criterion: Each branch (edge in the CFG)

must be executed at least once

• Coverage:

executed branches

branches

Quiz 1: Branch and Statement Coverage:
Which is Stronger?

• Branch testing guarantees statement
coverage:

–A stronger testing compared to the statement
coverage-based testing.

Stronger Testing
• Stronger testing:

–Superset of weaker testing

–A stronger testing covers all the elements covered by a
weaker testing.

–Covers some additional elements not covered by
weaker testing

Sample
Coverage

Report

Statements vs Branch Testing
• Traversing all edges of a graph causes all nodes to be visited

– So a test suite that satisfies branch adequacy criterion also satisfies
statement adequacy criterion for the same program.

• The converse is not true:

– A statement-adequate (or node-adequate) test suite may not be branch-
adequate (edge-adequate).

White-box
Testing

– Statement coverage

– Branch coverage (aka decision coverage)

– Basic condition coverage

– Condition/Decision coverage

– Multiple condition coverage

– MC/DC coverage

– Path coverage

– Data flow-based testing

– Mutation testing

64

All Branches can still miss testing specific conditions
• Assume failure occurs when c==DIGIT

if((c == ALPHABET) || (c ==DIGIT))

• Branch adequacy criterion can be satisfied by c==alphabet and
c==splchar

– The faulty sub-expression might not be tested!

– Even though we test both outcomes of the branch

Basic Condition Coverage
• Also called condition coverage or simple condition

coverage .

• Test case design:

–Each component of a composite conditional expression

• Made to assume both true and false values.

((c == ALPHABET) || (c== DIGIT))

Basic Condition Testing

• Simple or (basic) Condition Testing:
– Test cases make each atomic condition assume T and F values

– Example: if (a>10 && b<50)

• Following test inputs would achieve basic condition coverage

– a=15, b=30

– a=5, b=60

• Does basic condition coverage subsume decision coverage?

Example: BCC
• Consider the conditional expression

–((c1.and.c2).or.c3):

• Each of c1, c2, and c3 is exercised with all possible
values,

–That is, given true and false values.

Basic condition testing
• Adequacy criterion: each basic condition must be

executed at least once

• Coverage:
truth values taken by all basic conditions

2 * # basic conditions

Is BCC Stronger than Decision Coverage?

• Consider the conditional statement:

–If(((a>5).and.(b<3)).or.(c==0)) a=10;

• Two test cases can achieve basic condition coverage: (a=10,
b=2, c=2) and (a=1, b=10, c=0)

• BCC does not imply Decision coverage and vice versa

Condition/Decision Coverage Testing
• Condition/decision coverage:

– Each atomic condition made to assume both T and F values

– Decisions are also made to get T an F values

• Multiple condition coverage (MCC):

– Atomic conditions made to assume all possible combinations of
truth values

MCC
• Test cases make Conditions to assume all possible

combinations of truth values.

• Consider: if (a || b && c) then …
Test a b c
(1) T T T
(2) T T F
(3) T F T
(4) T F F
(5) F T T
(6) T T F
(7) F F T
(8) F F F

Exponential in the
number of basic
conditions

Multiple Condition Coverage (MCC)
• Consider a Boolean expression having n

components:

–For condition coverage we require 2n test cases.

• MCC testing technique:
–Practical only if n (the number of component conditions)

is small.

MCC for Compound conditions: Exponential complexity
(((a || b) && c) || d) && e

Test a b c d e
Case
(1) T — T — T
(2) F T T — T
(3) T — F T T
(4) F T F T T
(5) F F — T T
(6) T — T — F
(7) F T T — F
(8) T — F T F
(9) F T F T F
(10) F F — T F
(11) T — F F —
(12) F T F F —
(13) F F — F —

•Short-circuit
evaluation often
reduces number of
test cases to a more
manageable
number, but not
always…

25=32

Subsumption
• Condition testing:

–Stronger testing than branch
testing.

• Branch testing:

–Stronger than statement
coverage testing.

Multiple Condition

Condition/Decision

Decision

StatementBasic Condition

Shortcomings of Condition Testing
• Redundancy of test cases: Condition evaluation could be

compiler-dependent:

– Reason: Short circuit evaluation of conditions

• Coverage may be Unachievable: Possible dependencies
among variables:

– Example: ((chr==`A ́)||(chr==`E ́)) can not both be true at the
same time

Short-circuit Evaluation

• if(a>30 && b<50)…

– If a>30 is FALSE compiler need not evaluate (b<50)

• Similarly, if(a>30 || b<50)…

– If a>30 is TRUE compiler need not evaluate (b<50)

	Slide Number 1
	Combinatorial Testing: Motivation
	Combinatorial Testing: Motivation
	Combinatorial Testing
	Decision table-based Testing (DTT)
	Slide Number 6
	Sample Decision table
	Test cases from Decision Tables
	More Complete Decision Table for the Triangle Problem
	Test Cases for the Triangle Problem
	Decision Table – Example 2
	Quiz: Develop BB Test Cases
	Fill all combinations in the table.
	Analyze column by column to determine which actions are appropriate for each combination
	Reduce the table by eliminating redundant columns.
	�Final solution�
	Assumptions regarding rules
	Guidelines and Observations
	Quiz: Design test Cases
	Cause-effect Graphs
	Cause-Effect Graph Example
	Cause-Effect Graph Example
	Cause-Effect Graphing
	Slide Number 24
	Slide Number 25
	Combinatorial Testing of User Interface
	Combinatorial Testing Problem
	t-way Testing
	t-way Interaction Testing
	Pairwise Testing
	Pairwise Reductions
	Fault-Model
	Single-mode Bugs
	Double-mode Faults
	 Multi-mode Faults
	Example of Pairwise Fault
	Slide Number 37
	Slide Number 38
	What is White-box Testing?
	White-Box Testing Strategies
	White-Box Testing
	Why Both BB and WB Testing?
	Coverage-Based Testing Versus Fault-Based Testing
	Types of program element Coverage
	Stronger and Weaker Testing
	Complementary Testing
	Stronger, Weaker, and Complementary Testing
	Statement Coverage
	Statement Coverage
	Statement Coverage Criterion
	Statement Coverage
	Example
	Example
	Euclid's GCD Algorithm
	Branch Coverage
	Example
	Example
	Branch Testing
	Quiz 1: Branch and Statement Coverage: Which is Stronger?
	Stronger Testing
	Sample�Coverage Report
	Slide Number 62
	Statements vs Branch Testing
	White-box Testing
	All Branches can still miss testing specific conditions
	Basic Condition Coverage
	Basic Condition Testing
	Example: BCC
	Basic condition testing
	Is BCC Stronger than Decision Coverage?
	Condition/Decision Coverage Testing
	MCC
	Multiple Condition Coverage (MCC)
	MCC for Compound conditions: Exponential complexity
	Subsumption
	Shortcomings of Condition Testing
	Short-circuit Evaluation

