
1

Rajib Mall

CSE Department

IIT KHARAGPUR

Software Testing

2222

MC/DC Testing

Modified Condition/Decision Coverage (MC/DC)

• Motivation: Effectively test important combinations of conditions,

without exponential blowup to test suite size:

– “Important” combinations means: Each basic condition should

independently affect the outcome of each decision

• Requires:

– For each basic condition c, Compound condition as a whole

evaluates to true or false as ac becomes T or F

If((A==0)  (B>5)  (C<100)) ….

Condition/Decision Coverage

– Condition: true, false.

– Decision: true, false.

Multiple Condition coverage (MCC)

– all possible combinations of condition outcomes in a decision

– for a decision with n conditions

2n test cases are required

Modified Condition/Decision coverage (MC/DC)

▪ Bug-detection effectiveness almost similar to MCC

▪ Number of test cases linear in the number of basic conditions.

MCC

MC/DC

Condition/Decision

Decision

Statement

Subsumption
hierarchy

BCC

What is MC/DC?

• MC/DC stands for Modified Condition / Decision Coverage

• It is a condition coverage technique

– Condition: Atomic conditions in expression.

– Decision: Controls the program flow.

• Main idea: Each condition must be shown to independently

affect the outcome of a decision.

– The outcome of a decision changes as a result of changing a single

condition.

Three Requirements for MC/DC
Requirement 1:

• Every decision in a program must take T/F values.

Requirement 2:

• Every condition in each decision must take T/F values.

Requirement 3:

• Each condition in a decision should independently affect the

decision's outcome.

MC/DC Requirement 1
• The decision is made to take both T/F values.

◼ This is as in Branch coverage.

((a>10) && ((b<50) && (c==0)))If then

true false

7

MC/DC Requirement 2

• Test cases make every condition in the decision to

evaluate to both T and F at least once.

8

true false
true false

true false

If ((a>10) && ((b<50) && (c==0))) then…

MC/DC Requirement 3
• Every condition in the decision independently affects the decision’s

outcome.
If (&&) then…(a>10) ((b<50) || (c==0))

true false true false

If (&& (||)) then…(a>50) (b<50) (c==0)

true falsetrue false

true

If (||)) then…(c==0)

false

(a>50) && ((b<50)

true false

9

MC/DC: An Example
• N+1 test cases required for N basic conditions
• Example:

((((a>10 || b<50) && c==0) || d<5) && e==10)

Test a>10 b<50 c==0 d<5 e==10 outcome
Case
(1) true false true false true true
(2) false true true false true true
(3) true false false true true true
(6) true false true false false false
(11) true false false false true false
(13) false false true false true false

• Underlined values independently affect the output of the decision

Creating MC/DC test cases
• Create truth table for conditions.

◼ Extend the truth table to represent test case pair that lead to show the

independence influence of each condition.

Example : If (A and B) then . . .

◼ Show independence of A :
- Take 1 + 3

◼ Show independence of B :
- Take 1 + 2

◼ Resulting test cases are
- 1 + 2 + 3

Test
Case

Numbe
r

A B Decisio
n

Test
case
pair
for A

Test
case
pair
for B

1 T T T 3 2
2 T F F 1
3 F T F 1
4 F F F

11

Another
Example

A B C Result A B C MC/DC

1 1 1 1 1

2 1 1 0 0

3 1 0 1 1

4 0 1 1 1

5 1 0 0 0

6 0 1 0 0

7 0 0 1 0

8 0 0 0 0

If((A  B)  C) ….

*

*

*
*

*

*

*
*
*

*

*

Minimal Set ExampleIf (A and (B or C)) then…

We want to determine the MINIMAL
set of test cases

Here:

• {2,3,4,6}

•{2,3,4,7}

Non-minimal set is:

•{1,2,3,4,5}

TC# ABC Result A B C

1 TTT T 5

2 TTF T 6 4

3 TFT T 7 4

4 TFF F 2 3

5 FTT F 1

6 FTF F 2

7 FFT F 3

8 FFF F

Observation

• MC/DC criterion is stronger than

condition/decision coverage criterion,

– but the number of test cases to achieve the

MC/DC still linear in the number of conditions n

in the decisions.

MCC

MC/DC

Condition/Decision

Decision

Statement

MC/DC: Summary• MC/DC essentially is :

– basic condition coverage (C)

– branch coverage (DC)

– plus one additional condition (M):

every condition must independently affect the decision’s output

• It is subsumed by MCC and subsumes all other criteria discussed so far

– stronger than statement and branch coverage

• A good balance of thoroughness and test size and therefore widely

used…

161603/08/10 1616

Path Testing

Path Coverage

• Design test cases such that:

–All linearly independent paths in the program are

executed at least once.

• Defined in terms of

–Control flow graph (CFG) of a program.

Path Coverage-Based Testing

• To understand the path coverage-based testing:

–We need to learn how to draw control flow graph of a program.

• A control flow graph (CFG) describes:

–The sequence in which different instructions of a program get

executed.

–The way control flows through the program.

How to Draw Control Flow Graph?

• Number all statements of a program.

• Numbered statements:

–Represent nodes of control flow graph.

• Draw an edge from one node to another node:

–If execution of the statement representing the first node can

result in transfer of control to the other node.

Exampleint f1(int x,int y){

1 while (x != y){

2 if (x>y) then

3 x=x-y;

4 else y=y-x;

5 }

6 return x; }

1

2

3 4

5

6

How to Draw Control flow Graph?

• Every program is composed of:

–Sequence

–Selection

– Iteration

• If we know how to draw CFG corresponding

these basic statements:

–We can draw CFG for any program.

How to Draw Control flow Graph?

• Sequence:

–1 a=5;

–2 b=a*b-1;

1

2

How to Draw Control Flow Graph?

• Selection:

–1 if(a>b) then

–2 c=3;

–3 else c=5;

–4 c=c*c;

1

2 3

4

How to Draw Control Flow Graph?

• Iteration:

–1 while(a>b){

–2 b=b*a;

–3 b=b-1;}

–4 c=b+d;

1

2

3

4

Path

• A path through a program:

–A node and edge sequence from the starting node

to a terminal node of the control flow graph.

– There may be several terminal nodes for program.

All Path Criterion

• In the presence of loops, the number paths can become

extremely large:

– This makes all path testing impractical

1

2

3

4

Linearly Independent Path

•Any path through the program that:

–Introduces at least one new edge:

•Not included in any other

independent paths.

1

2

3

4

Independent path• It is straight forward:

–To identify linearly independent paths of simple

programs.

• For complicated programs:

–It is not easy to determine the number of independent

paths.

McCabe's Cyclomatic Metric

• An upper bound:

–For the number of linearly independent paths of a program

• Provides a practical way of determining:

–The maximum number of test cases required for basis path

testing.

McCabe's Cyclomatic Metric

• Given a control flow graph G,

cyclomatic complexity V(G):

– V(G)= E-N+2

• N is the number of nodes in G

• E is the number of edges in G

1

2

3

4

Example Control Flow Graph

1

2

3 4

5

6

Cyclomatic
complexity =
7-6+2 = 3.

Cyclomatic Complexity

• Another way of computing cyclomatic complexity:

–inspect control flow graph

–determine number of bounded areas in the graph

• V(G) = Total number of bounded areas + 1

–Any region enclosed by a nodes and edge sequence.

Example
Control

Flow Graph

1

2

3 4

5

6

Example

• From a visual examination of the CFG:

–Number of bounded areas is 2.

–Cyclomatic complexity = 2+1=3.

Cyclomatic Complexity

• McCabe's metric provides:

•A quantitative measure of testing difficulty and the reliability

• Intuitively,

–Number of bounded areas increases with the number of

decision nodes and loops.

Cyclomatic Complexity

• The first method of computing V(G) is amenable

to automation:

–You can write a program which determines the

number of nodes and edges of a graph

–Applies the formula to find V(G).

Cyclomatic Complexity
• The cyclomatic complexity of a program provides:

–A lower bound on the number of test cases to be

designed

–To guarantee coverage of all linearly independent paths.

Cyclomatic Complexity

• Knowing the number of test cases required:

–Does not make it any easier to derive the test cases,

–Only gives an indication of the minimum number of

test cases required.

Practical Path Testing

• The tester proposes initial set of test data :

–Using his experience and judgment.

• A dynamic program analyzer used:

–Measures which parts of the program have been tested

–Result used to determine when to stop testing.

Derivation of Test Cases
• Draw control flow graph.

• Determine V(G).

• Determine the set of linearly independent paths.

• Prepare test cases:

–Force execution along each path.

–Not practical for larger programs.

Exampleint f1(int x,int y){

1 while (x != y){

2 if (x>y) then

3 x=x-y;

4 else y=y-x;

5 }

6 return x; }

1

2

3 4

5

6

Derivation of Test Cases

• Number of independent paths: 3

–1,6 test case (x=1, y=1)

–1,2,3,5,1,6 test case(x=1, y=2)

–1,2,4,5,1,6 test case(x=2, y=1)

An Interesting Application of Cyclomatic Complexity

• Relationship exists between:

–McCabe's metric

–The number of errors existing in the code,

–Time required to correct the errors.

–Time required to understand the program

Cyclomatic Complexity

• Cyclomatic complexity of a program:

–Indicates the psychological complexity of a program.

–Difficulty level of understanding the program.

Cyclomatic Complexity

• From maintenance perspective,

–Limit cyclomatic complexity of modules

• To some reasonable value.

–Good software development organizations:

• Restrict cyclomatic complexity of functions to a maximum of ten

or so.

464603/08/10 4646

Dataflow and

Mutation Testing

White Box Testing: Quiz
1. What do you mean by coverage-based testing?

2. What are the different types of coverage based
testing?

3. How is a specific coverage-based testing carried
out?

4. What do you understand by fault-based testing?

5. Give an example of fault-based testing?

White-Box
Testing

statement
coverage

condition
coverage

branch
(or decision)
coverage

branch and condition
(or condition /decision)
coverage

All path
coverage

modified condition /
decision coverage

strongest

weakest

independent path
(or basis path)
coverage

multiple- condition
coverage

Practically important
coverage techniques

49494949

Data flow Testing

Data Flow-Based Testing

• Selects test paths of a program:

–According to the locations of

•Definitions and uses of different variables in a

program.

1 X(){

2 int a=5; /* Defines variable a */

….

3 While(c>5) {

4 if (d<50)

5 b=a*a; /*Uses variable a */

6 a=a-1; /* Defines as well uses variable a */

…

7 }

8 print(a); } /*Uses variable a */

Data Flow-Based Testing

• For a statement numbered S,

–DEF(S) = {X/statement S contains a definition of X}

–USES(S)= {X/statement S contains a use of X}

–Example: 1: a=b; DEF(1)={a}, USES(1)={b}.

–Example: 2: a=a+b; DEF(1)={a}, USES(1)={a,b}.

Data Flow-Based Testing

• A variable X is said to be live at statement S1, if

–X is defined at a statement S:

–There exists a path from S to S1 not containing

any definition of X.

DU Chain Example1 X(){

2 int a=5; /* Defines variable a */

3 While(c>5) {

4 if (d<50)

5 b=a*a; /*Uses variable a */

6 a=a-1; /* Defines variable a */

7 }

8 print(a); } /*Uses variable a */

Definition-use chain (DU chain)

• [X,S,S1],

–S and S1 are statement numbers,

–X in DEF(S)

–X in USES(S1), and

–the definition of X in the statement S is live at statement S1.

Data Flow-Based Testing

• One simple data flow testing strategy:

–Every DU chain in a program be covered at least once.

• Data flow testing strategies:

–Useful for selecting test paths of a program containing

nested if and loop statements.

• 1 X(){

• 2 B1; /* Defines variable a */

• 3 While(C1) {

• 4 if (C2)

• 5 if(C4) B4; /*Uses variable a */

• 6 else B5;

• 7 else if (C3) B2;

• 8 else B3; }

• 9 B6 }

Data Flow-
Based Testing

Data Flow-Based
Testing

• [a,1,5]: a DU chain.

• Assume:

–DEF(X) = {B1, B2, B3, B4, B5}

–USES(X) = {B2, B3, B4, B5, B6}

–There are 25 DU chains.

• However only 5 paths are needed to cover

these chains.

59595959

Mutation Testing

Mutation Testing• In this, software is first tested:

–Using an initial test suite designed using white-box strategies we

already discussed.

• After the initial testing is complete,

–Mutation testing is taken up.

• The idea behind mutation testing:

–Make a few arbitrary small changes to a program at a time.

Main Idea

• Insert faults into a program:

– Check whether the test suite is able to detect

these.

– This either validates or invalidates the test suite.

Mutation Testing Terminology

• Each time the program is changed:

–It is called a mutated program

–The change is called a mutant.

Mutation Testing
• A mutated program:

–Tested against the full test suite of the program.

• If there exists at least one test case in the test suite for

which:

–A mutant gives an incorrect result,

–Then the mutant is said to be dead.

Mutation Testing

• If a mutant remains alive ---even after all test cases have

been exhausted,

–The test suite is enhanced to kill the mutant.

• The process of generation and killing of mutants:

–Can be automated by predefining a set of primitive

changes that can be applied to the program.

Mutation Testing
• Example primitive changes to a program:

–Deleting a statement

–Altering an arithmetic operator,

–Changing the value of a constant,

–Changing a data type, etc.

Traditional Mutation
Operators

• Deletion of a statement

• Boolean:

• Replacement of a statement with another

eg. == and >=, < and <=

• Replacement of boolean expressions with true or false eg. a || b with
true

• Replacement of arithmetic operator

eg. * and +, / and -

• Replacement of a variable (ensuring same scope/type)

Underlying Hypotheses

• Mutation testing is based on the following two

hypotheses:

– The Competent Programmer Hypothesis

– The Coupling Effect

Both of these were proposed by DeMillo et al.,1978

The Competent Programmer Hypothesis

• Programmers create programs that are close to

being correct:

•Differ from the correct program by some simple

errors.

The Coupling Effect

• Complex errors are caused due to several simple

errors.

• It therefore suffices to check for the presence of the

simple errors

If program is
not error-free,

fix it

Test
Mutants

The Mutation Process
Program

MutationMutationMutant Tests

Test
Process

Create
Mutants

Yes

Test
CompleteNo

Any Live
Mutants?

Problem with
Tests?

New Test
Cases

Mutants that are
caught by tests are

killedDead
Mutants

