
1

Structured Analysis and Design

Rajib Mall
CSE Department
IIT KHARAGPUR

Introduction
• Structured analysis is a top-down decomposition technique:

– DFD (Data Flow Diagram) is the modelling technique used

– Functional requirements are modelled and decomposed.

• Why model functionalities?

– Functional requirements exploration and validation

– Serves as the starting point for design.

Function-oriented vs. Object-oriented Design
• Two distinct style of design:

– Function-oriented or Procedural
• Top-down approach
• Carried out using Structured analysis and structured design
• Coded using languages such as C

– Object-oriented
• Bottom-up approach
• Carried out using UML
• Coded using languages such as Java, C++, C#

Structured analysis and Structured Design
• During Structured analysis:

– High-level functions are successively decomposed:

• Into more detailed functions.

• During Structured design:

– The detailed functions are mapped to a module structure.

Structured Analysis
• Successive decomposition of

high-level functions:

– Into more detailed functions.

– Technically known as top-down decomposition.

SA/SD (Structured Analysis/Structured Design)
• SA/SD technique draws heavily from the following methodologies:

– Constantine and Yourdon's methodology

– Hatley and Pirbhai's methodology

– Gane and Sarson's methodology

– DeMarco and Yourdon's methodology

• SA/SD technique results in:

– high-level design.

We largely use

Functional Decomposition

• Each function is analyzed:

– Hierarchically decomposed into more detailed
functions.

– Simultaneous decomposition of high-level data

• Into more detailed data.

Structured Analysis
• Textual problem description converted into a graphic

model.

– Done using data flow diagrams (DFDs).

– DFD graphically represents the results of structured analysis.

Structured
Analysis

• The results of structured analysis can be easily
understood even by ordinary customers:
– Does not require computer knowledge.
– Directly represents customer’s perception of the problem.
– Uses customer’s terminology for naming different functions

and data.

• Results of structured analysis:
– Can be reviewed by customers to check whether it captures all

their requirements.

Structured Design
• The functions represented in the DFD:

– Mapped to a module structure.

• Module structure:

– Also called software architecture

Structured Analysis vs. Structured Design

• Purpose of structured analysis:

– Capture the detailed structure of the system as the user
views it.

• Purpose of structured design:
– Arrive at a form that is suitable for implementation in some

programming language.

Structured Analysis: Recap
• Based on principles of:

– Top-down decomposition approach.

– Divide and conquer principle:

• Each function is considered individually (i.e. isolated from other functions).

• Decompose functions totally disregarding what happens in other functions.

– Graphical representation of results using

• Data flow diagrams (or bubble charts).

Data Flow Diagram

• DFD is a hierarchical
graphical model:

– Shows the different functions
(or processes) of the system

– Data interchange among
the processes.

board

Display-
board
0.1

Check-
winner
0.4

Validate-move
0.2

Play-move
0.3

move
result

game

DFD Concepts

• It is useful to consider each function as a processing
station:

– Each function consumes some input data.

– Produces some output data.

Updated
board

Validate-move

move

Data Flow Model of a Car Assembly Unit

Chassis Store

CarFit
Engine

Paint
and
Test

Fit
Wheels

Fit
Doors

Door Store

Wheel Store

Engine Store

Partly
Assembled
Car

Assembled
Car

Chassis
with Engine

Pros of Data Flow Diagrams (DFDs)

• A DFD model:

– Uses limited types of symbols.

– Simple set of rules

– Easy to understand --- a hierarchical model.

Hierarchical Model
• As pointed out earlier:

– Human cognitive restrictions are overcome through use of
a hierarchical model:

– In a hierarchical model:

• We start with a very simple and abstract model of a system,

• Details are slowly introduced through the hierarchies.

A Hierarchical Model

Data Flow Diagrams (DFDs)
• Basic Symbols Used for Constructing DFDs:

External Entity Symbol
• Represented by a rectangle

• External entities are either users or external systems:

– input data to the system or

– consume data produced by the system.

– Sometimes external entities are called terminator, source, or sink.

Librarian

Function Symbol
• A function such as “search-book” is represented using a circle:

– This symbol is called a
process or bubble or transform.

– Bubbles are annotated with corresponding function names.

– A function represents some activity:

• Function names should be verbs.

search
-book

Data Flow Symbol
• A directed arc or line.

– Represents data flow in the direction of the
arrow.

– Data flow symbols are annotated with names of
data they carry.

book-name

Data Store Symbol
• Represents a logical file:

– A logical file can be:

• a data structure

• a physical file on disk.

– Each data store is connected to a process:

• By means of a data flow symbol.

book-details

Data Store Symbol
• Direction of data flow arrow:

– Shows whether data is being read from
or written into it.

• An arrow into or out of a data store:

– Implicitly represents the entire data of the data store

– Arrows connecting to a data store need not be annotated
with any data name.

find-book

Books

Output Symbol: Parallelogram

• Output produced by the system

Synchronous Operation
• If two bubbles are directly connected by a data flow

arrow:
– They are synchronous

Data-
items

Read-
numbers

0.1
Validate-
numbers

0.2 Valid
number

number

Asynchronous Operation

• If two bubbles are connected via a data store:
– They are not synchronous.

Data-items

Read-
numbers

0.1

Validate-
numbers

0.2
Valid
numbernumbers

Yourdon's vs. Gane Sarson Notations

• The notations that we are following:

– Are closer to the Yourdon's notations

• You may sometimes find notations in books and used in some
tools that are slightly different:

– For example, the data store may look like a box with one end
closed

DFD
Shapes

from Visio

From Flow Chart /
Data Flow Diagram

Process

Data Store

External Entity

From Software Diagram /
Gane-Sarson DFD

Process

ID #

ID
#

External
Entity

Data Store1

External
 Entity

Data Store

Process

Data Flow Diagram

Visio 5.x Visio 2000

How is Structured Analysis Performed?

• Initially represent the software at the most abstract level:

– Called the context diagram.

– The entire system is represented as a single bubble,

– This bubble is labelled according to the main function of the

system.

Tic-tac-toe: Context Diagram

Human Player

Tic-tac-toe
softwaredisplay

move

Context Diagram
• A context diagram shows:

– External entities.

– Data input to the system by the external entities,

– Output data generated by the system.

• The context diagram is also called the level 0 DFD.

Context Diagram
• Establishes the context of the system, i.e.
–Represents the system level

•Data sources

•Data sinks.

Level 1 DFD Construction
• Examine the SRS document:

– Represent each high-level function
as a bubble.

– Represent data input to every high-
level function.

– Represent data output from every
high-level function.

board

Display-
board
0.1

Check-
winner
0.4

Validate-
move
0.2

Play-
move
0.3

move result

game

Higher Level DFDs
• Each high-level function is separately decomposed into

subfunctions:

– Identify the subfunctions of the function

– Identify the data input to each subfunction

– Identify the data output from each subfunction

• These are represented as DFDs.

Decomposition
• Decomposition of a bubble:

– Also called factoring or exploding.

• Each bubble is decomposed into

– Between 3 to 7 bubbles.

Decomposition
• Too few bubbles make decomposition

superfluous:

– If a bubble is decomposed to just one or two
bubbles:

•Then this decomposition is redundant.

Decomposition Pitfall

• Too many bubbles at a level, a sign of poor
modelling:

– More than 7 bubbles at any level of a DFD.

– Make the DFD model hard to understand.

Decompose How Long?

• Decomposition of a bubble should be carried
on until:

– A level at which the function of the bubble can be
described using a simple algorithm.

Example 1: RMS Calculating Software

• Consider a software called RMS calculating software:

– Reads three integers in the range of -1000 and +1000

– Finds out the root mean square (rms) of the three input
numbers

– Displays the result.

Example 1: RMS Calculating Software

• The context diagram is simple to develop:

– The system accepts 3 integers from the user

– Returns the result to him.

Example 1: RMS Calculating Software

Compute-
RMS
0

User

Data-
items

result

Context Diagram (Level 0 DFD)

Example 1: RMS Calculating Software

• From a cursory analysis of the problem
description:

– We can see that the system needs to perform
several things.

Example 1: RMS Calculating Software

–Accept input numbers from the user:

– Validate the numbers,

– Calculate the root mean square of the input
numbers

– Display the result.

Example 1:
Level 1 DFD

RMS Calculating
SoftwareData-items

result

Read-
numbers

0.1

Validate-
numbers

0.2

Compute-
rms
0.3

Display
0.4

RMS

numbers

Valid -
numbers

error

Example: RMS Calculating Software

• Decomposition is never carried on up to
basic instruction level:

– A bubble is not decomposed any further:

• If it can be represented by a simple set of
instructions.

Data Dictionary

• A DFD is always accompanied by a data dictionary.
• A data dictionary lists all data items appearing in a

DFD:
– Definition of all composite data items in terms of their

component data items.
– All data names along with the purpose of the data items.

• For example, a data dictionary entry may be:
– grossPay = regularPay+overtimePay

Importance of Data Dictionary
• Provides the team of developers with standard terminology

for all data:

– A consistent vocabulary for data is very important

• In the absence of a data dictionary, different developers
tend to use different terms to refer to the same data,

–Causes unnecessary confusion.

Importance of Data Dictionary
• Data dictionary provides the definition of different data:

– In terms of their component elements.

• For large systems,

– The data dictionary grows rapidly in size and complexity.

– Typical projects can have thousands of data dictionary entries.

– It is extremely difficult to maintain such a dictionary manually.

Data Dictionary
• CASE (Computer Aided Software Engineering)

tools come handy:

– CASE tools capture the data items appearing in a
DFD automatically to generate the data
dictionary.

Data
Dictionary

• CASE tools support queries:
– About definition and usage of data items.

• For example, queries may be made to find:
– Which data item affects which processes,
– A process affects which data items,
– The definition and usage of specific data items, etc.

• Query handling is facilitated:
– If data dictionary is stored in a relational database

management system (RDBMS).

Data
Definition

• Composite data are defined in terms of primitive data items using
simple operators:

• +: denotes composition of data items, e.g

– a+b represents data a together with b.

• [,,,]: represents selection,

– Any one of the data items listed inside the square bracket can occur.

– For example, [a,b] represents either a occurs or b

Data
Definition

• (): contents inside the bracket represent optional data

– which may or may not appear.

– a+(b) represents either a or a+b

• {}: represents iterative data definition,

– {name}5 represents five name data.

Data Definition
• {name}* represents

– zero or more instances of name data.

• = represents equivalence,

– e.g. a=b+c means that a represents b and c.

• * *: Anything appearing within * * is considered as
comment.

Data Dictionary for
RMS Software

• numbers=valid-numbers=a+b+c
• a:integer * input number *
• b:integer * input number *
• c:integer * input number *
• asq:integer
• bsq:integer
• csq:integer
• squared-sum: integer
• Result=[RMS,error]
• RMS: integer * root mean square value*
• error:string * error message*

Balancing a DFD
• Data flowing into or out of a bubble:

– Must match the data flows at the next level of DFD.

• In the level 1 of the DFD,

– Data item c flows into the bubble P3 and the data item d and e flow out.

• In the next level, bubble P3 is decomposed.

– The decomposition is balanced as data item c flows into the level 2 diagram
and d and e flow out.

Balancing a DFD

a

b

ed

c
c

d
e

c1d1

e1Level 1

Level 2

Numbering
of Bubbles

• Number the bubbles in a DFD:
– Numbers help in uniquely identifying any bubble from its bubble

number.
• The bubble at context level:

– Assigned number 0.
• Bubbles at level 1:

– Numbered 0.1, 0.2, 0.3, etc

• When a bubble numbered x is decomposed,
– Its children bubble are numbered x.1, x.2, x.3, etc.

Example 2: Tic-Tac-Toe Computer Game

• A human player and the computer make
alternate moves on a 3 X 3 square.

• A move consists of marking a previously unmarked square.

• The user inputs a number between 1 and 9 to mark a square

• Whoever is first to place three consecutive marks along a
straight line (i.e., along a row, column, or diagonal) on the
square wins.

Example: Tic-Tac-Toe Computer Game
• As soon as either of the human player or the computer wins,

– A message announcing the winner should be displayed.

• If neither player manages to get three consecutive marks along a
straight line,

– And all the squares on the board are filled up,

– Then the game is drawn.

• The computer always tries to win a game.

Context
Diagram for

ExampleHuman Player

Tic-tac-toe
software

0display

move

Level 1 DFD

board

Display-
board
0.1

Check-
winner
0.4

Validate-
move
0.2

Play-
move
0.3

move result

game

Data Dictionary
Display=game + result

move = integer

board = {integer}9

game = {integer}9

result=string

Example 3: Trading-House Automation System (TAS)

• A large trading house wants us to develop a software:

– To automate book keeping activities associated with its
business.

• It has many regular customers:

– They place orders for various kinds of commodities.

Example 3: Trading-House Automation System (TAS)
• The trading house maintains names and addresses of its

regular customers.

• Each customer is assigned a unique customer identification
number (CIN).

• As per current practice when a customer places order:
– The accounts department first checks the credit-worthiness of the

customer.

Example: Trading-House Automation System (TAS)

• The credit worthiness of a customer is determined:
– By analyzing the history of his payments to the bills sent to him in

the past.

• If a customer is not credit-worthy:
– His orders are not processed any further

– An appropriate order rejection message is generated for the
customer.

Example: Trading-House Automation System (TAS)

• If a customer is credit-worthy:
– Items he/she has ordered are checked against the list of items the

trading house deals with.

• The items that the trading house does not deal with:
– Are not processed any further

– An appropriate message for the customer for these items is
generated.

Example: Trading-House Automation System (TAS)

• The items in a customer's order that the trading house deals
with:
– Are checked for availability in inventory.

• If the items are available in the inventory in desired
quantities:
– A bill with the forwarding address of the customer is printed.

– A material issue slip is printed.

Example: Trading-House Automation System (TAS)

• The customer can produce the material issue slip at the
store house:

– Take delivery of the items.

– Inventory data adjusted to reflect the sale to the customer.

Example: Trading-House Automation System (TAS)

• If an ordered item is not available in the inventory in
sufficient quantity:

– To be able to fulfil pending orders store details in a
"pending-order" file :

•out-of-stock items along with quantity ordered.

•customer identification number

Example: Trading-House Automation System (TAS)

• The purchase department:
– would periodically issue commands to generate

indents.
• When generate indents command is issued:

– The system should examine the "pending-order" file
– Determine the orders that are pending
– Total quantity required for each of the items.

Example: Trading-House Automation System (TAS)

• TAS should find out the addresses of the vendors
who supply the required items:

– Examine the file containing vendor details (their address,
items they supply etc.)

– Print out indents to those vendors.

Example: Trading-House Automation System (TAS)

• TAS should also answers managerial queries:

– Statistics of different items sold over any given period of
time

– Corresponding quantity sold and the price realized.

Context
Diagram

Trading-
House-

Automation-
System

0
Manager

Customer Purchase-
Department

query

statistics

order
response

Generate-
indent

indent

Level 1
DFD

Accept
-order
0.1

Process
-order
0.2

Handle-
indent-
request

0.4

Handle-
query
0.3

pending-order

Sales-statistics

inventory

Vendor-list

Customer-file

Item-fileCustomer-history

Indent-
request

Indents

Accepted-
orders

query

statistics

order

Material-issue-
slip + bill

Example: Data
Dictionary

• response: [bill + material-issue-slip, reject-message]
• query: period /* query from manager regarding sales statistics*/

• period: [date+date,month,year,day]
• date: year + month + day
• year: integer
• month: integer
• day: integer
• order: customer-id + {items + quantity}*
• accepted-order: order /* ordered items available in inventory */

• reject-message: order + message /* rejection message */

• pending-orders: customer-id + {items+quantity}*
• customer-address: name+house#+street#+city+pin

Example: Data
Dictionary

• item-name: string
• house#: string
• street#: string
• city: string
• pin: integer
• customer-id: integer
• bill: {item + quantity + price}* + total-amount + customer-address
• material-issue-slip: message + item + quantity + customer-address
• message: string
• statistics: {item + quantity + price }*
• sales-statistics: {statistics}*
• quantity: integer

Observation

• From the discussed examples,

– Observe that DFDs help create:

•Data model

•Function model

Observation

• As a DFD is refined into greater levels of detail:

– The analyst performs an implicit functional
decomposition.

– At the same time, refinements of data takes place.

Guidelines For Constructing DFDs

• Context diagram should represent the system as a

single bubble:

– Many beginners commit the mistake of drawing more

than one bubble in the context diagram.

Guidelines For Constructing DFDs
• All external entities should be represented in the

context diagram:

– External entities should not appear at any other level DFD.

• Only 3 to 7 bubbles per diagram should be allowed:

– Each bubble should be decomposed to between 3 and 7
bubbles.

Guidelines For Constructing DFDs
• A common mistake committed by many beginners:

– Attempting to represent control information in a DFD.

– e.g. trying to represent the order in which different
functions are executed.

Guidelines For Constructing DFDs
• A DFD model does not represent control information:

– When or in what order different functions (processes) are invoked

– The conditions under which different functions are invoked are not
represented.

– For example, a function might invoke one function or another depending on
some condition.

– Many beginners try to represent this aspect by drawing an arrow between
the corresponding bubbles.

Find Error Example-1

• Functionality: Check the input value:
– If the input value is less than -1000 or greater than +1000

generate an error message
– otherwise search for the number

Check
number

Generate
Error

Search

number

message

number
[found,not-found]

Find 4
Errors

Process-
order
0.2

Handle-
query
0.3

pending-order

Sales-statistics

inventory
Item-file

query
statistics

Material-issue-slip +
bill

Handle-
indent-
request

0.4

item

statistics

Common Mistakes in Constructing DFDs
• If a bubble A invokes either bubble B or bubble C

depending on some conditions:

– Represent the data that flows from bubble A to bubble B
and bubbles A to C

– Not the conditions depending on which a process is
invoked.

Find Error Example-2
• A function accepts the book name to be searched from

the user
• If the entered book name is not a valid book name

– Generates an error message,

• If the book name is valid,
– Searches the book name

in database.

Get-
book-
name

Print-
err-

message

Search-
book

Error-
message

Book-name

Good-book-
name

Book-
details

Guidelines For Constructing DFDs
• All functions of the system must be captured in the DFD

model:

– No function specified in the SRS document should be overlooked.

• Only those functions specified in the SRS document should
be represented:

– Do not assume extra functionality of the system not specified by
the SRS document.

Commonly
Made Errors

• Unbalanced DFDs
• Forgetting to name the data flows
• Unrepresented functions or data
• External entities appearing at higher level DFDs
• Trying to represent control aspects
• Context diagram having more than one bubble
• A bubble decomposed into too many bubbles at next level
• Terminating decomposition too early
• Nouns used in naming bubbles

Shortcomings of the DFD Model
• DFD models suffer from several shortcomings:

• DFDs leave ample scope to be imprecise.

– In a DFD model, we infer about the function
performed by a bubble from its label.

– A label may not capture all the functionality of a
bubble.

Shortcomings of the DFD Model
• For example, a bubble named find-book-position has only

intuitive meaning:
– Does not specify several things:

• What happens when some input information is missing or is incorrect.
• Does not convey anything regarding what happens when book is not

found
• What happens if there are books by different authors with the same book

title.

Shortcomings of the DFD Model• Control
information is not
represented:
– For instance, order

in which inputs are
consumed and
outputs are
produced is not
specified.

Accept-
order

Process-
order

Customer-file

Item-fileCustomer-history

Accepted-ordersorder

inventory

Shortcomings of the DFD Model
• Decomposition is carried out to arrive at the successive levels of a

DFD is subjective.
• The ultimate level to which decomposition is carried out is

subjective:
– Depends on the judgement of the analyst.

• Even for the same problem,
– Several alternative DFD representations are possible:
– Many times it is not possible to say which DFD representation is superior

or preferable.

Shortcomings of the DFD Model
• DFD technique does not provide:

– Any clear guidance as to how exactly one should go about
decomposing a function:

– One has to use subjective judgement to carry out decomposition.

• Structured analysis techniques do not specify when to stop a
decomposition process:

– To what length decomposition needs to be carried out.

DFD
Tools

• Several commercial and free tools available.
• Commercial:

– Visio
– Smartdraw (30 day free trial)
– Edraw
– Creately
– Visual analyst

• Free:
– Dia (GNU open source)

Word of Caution
• Tools can be learnt and used with some effort.

• But, too much focus on SA/SD case tools does
not make you any more a good designer:

– Than an expert knowledge of the Word Package
making you a famous writer of thriller stories.

Structured Design• The aim of structured design

– Transform the results of structured analysis
(DFD representation) into a structure chart.

• A structure chart represents the software architecture:

– Various modules making up the system,

– Module dependency (i.e. which module calls which other modules),

– Parameters passed among different modules.

Process-
order

Handle-indent

root

Handle-
query

Structure Chart
• Structure chart representation

– Easily implementable using programming languages.
• Main focus of a structure chart:

– Define the module structure of a software,

– Interaction among different modules,

– Procedural aspects (e.g, how a particular functionality
is achieved) are not represented.

Process-
order

Handle-indent

root

Handle-
query

Basic Building Blocks of Structure Chart

• Rectangular box:

– A rectangular box represents a module.

– Annotated with the name of the module it represents.

Process-order

Arrows
• An arrow between two modules implies:

– During execution control is passed from one module to the
other in the direction of the arrow.

Process-order Handle-indent

root

Handle-query

Data Flow Arrows
• Data flow arrows represent:

– Data passing from one module to another
in the direction of the arrow.

Process-order

root

order

Quick-sort

Library Modules
• Library modules represent frequently called modules:

– A rectangle with double side edges.

– Simplifies drawing when a module is called by several
modules.

Selection
• The diamond symbol represents:

– Each one of several modules
connected to the diamond symbol is
invoked depending on some
condition.

Process-order Handle-indent

root

Handle-query

Repetition
• A loop around control flow arrows

denotes that the concerned modules
are invoked repeatedly.

Process-order Handle-indent

root

Handle-query

Structure Chart• There is only one module at the top:
– the root module.

• There is at most one control relationship between any two
modules:
– if module A invokes module B,
– Module B cannot invoke module A.

• The main reason behind this restriction:
– Modules in a structure chart should be arranged in layers or

levels.

Structure Chart
• Makes use of principle of abstraction:

– does not allow lower-level modules to invoke higher-
level modules:

– But, two higher-level modules can invoke the same
lower-level module.

Example:
Good

Design

Validate-
data

root

Get-good-data Compute-solution Display-solution

Get-data

Valid-numbers
Valid-numbers

rms
rms

Example:
Bad Design

Shortcomings of Structure Chart
• By examining a structure chart:

– we can not say whether a module calls another
module just once or many times.

• Also, by looking at a structure chart:

– we can not tell the order in which the different
modules are invoked.

Flow Chart (Aside)
• We are all familiar with the flow chart representations:

– Flow chart is a convenient technique to represent the flow of
control in a system.

• A=B

• if(c == 100)

• P=20

• else p= 80

• while(p>20)

• print(student mark)

A=B

P=20 P=80

Print

yes no

dummy

yes no

Flow Chart versus Structure Chart
1. It is difficult to identify modules of a software

from its flow chart representation.

2. Data interchange among the modules is not
represented in a flow chart.

3. Sequential ordering of tasks inherent in a flow
chart is suppressed in a structure chart.

Transformation of a DFD Model into Structure Chart

• Two strategies exist to guide transformation of
a DFD into a structure chart:

– Transform Analysis

– Transaction Analysis

Transform Analysis
•The first step in transform analysis:
–Divide the DFD into 3 parts:

•input,

•logical processing,

•output.

Transform Analysis• Input portion in the DFD:
– processes which convert input data from physical to logical form.

– e.g. read characters from the terminal
and store in internal tables or lists.

• Each input portion:
– called an afferent branch.

– Possible to have more than one afferent
branch in a DFD.

board

Display-
board

Check-
winner

Validate-
move

Play-
move

move result

game

Transform Analysis• Output portion of a DFD:

– transforms output data from logical form to physical form.

• e.g., from list or array into output characters.

– Each output portion:

• called an efferent branch.

• The remaining portions of a DFD

– called central transform

board

Display-
board

Check-
winner

Validate-
move

Play-
move

move result

game

Transform Analysis
• Derive structure chart by drawing one functional

component for:

– afferent branch,

– central transform,

– efferent branch.

board

Display-
board

Check-
winner

Validate-
move

Play-
move

move result

game

Transform Analysis
• Identifying input and output transforms:

– requires experience and skill.

• Some guidelines for identifying central transforms:

– Trace inputs until a bubble is found whose output cannot be
deduced from the inputs alone.

– Processes which validate input are not central transforms.

– Processes which sort input or filter data from it are.

Transform Analysis
• First level of structure chart:

– Draw a box for each input and output units

– A box for the central transform.

• Next, refine the structure chart:

– Add subfunctions required by each high-level module.

– Many levels of modules may required to be added.

Process-
order

Handle-
indent

root

Handle-
query

Factoring

• The process of breaking functional components into
subcomponents.

• Factoring includes adding:

– Read and write modules,

– Error-handling modules,

– Initialization and termination modules,etc.

• Finally check:

– Whether all bubbles have been mapped to modules.

Example 1: RMS Calculating Software

Compute-
RMS
0

User

Data-items

result

Context Diagram

Example 1: RMS Calculating Software
• From a cursory analysis of the problem description,
– easy to see that the system needs to perform:

•accept the input numbers from the user,

•validate the numbers,

•calculate the root mean square of the input numbers,

•display the result.

Example 1: RMS
Calculating
Software

Data-
items

result

Read-
numbers

0.1

Validate-
numbers

0.2

Compute-
rms
0.3

Display
0.4

RMS

numbers

Valid -
numbers

error

Example 1: RMS Calculating Software

• By observing the level 1 DFD:

– Identify read-number and validate-number
bubbles as the afferent branch

– Display as the efferent branch.

Example 1:
RMS

Calculating
Software

Validate-

data

root

Get-good-data Compute-solution Display-solution

Get-data

Valid-numbers
Valid-numbers

rms
rms

Example 2: Tic-Tac-Toe Computer Game

• As soon as either of the human player or the computer
wins,
– A message congratulating the winner should be displayed.

• If neither player manages to get three consecutive marks
along a straight line,
– And all the squares on the board are filled up,
– Then the game is drawn.

• The computer always tries to win a game.

Context Diagram for Example 2

Human Player

Tic-tac-toe
software

0
display

move

Level 1
DFD

board

Display-
board

Check-
winner

Validate-
move

Play-
move

move result

game

Structure
Chart

root

Get-good-move Compute-game Display

Get-move Validate-
move

play-move Check-
winner

Transaction Analysis
• Useful for designing transaction processing programs.

– Transform-centered systems:

• Characterized by similar processing steps for every data item
processed by input, process, and output bubbles.

– Transaction-driven systems,

• One of several possible paths through the DFD is traversed
depending upon the input data value.

Transaction Analysis
• Transaction: Any input data value that triggers an action:

– For example, different selected menu options might
trigger different functions.

– Represented by a tag identifying its type.
• Transaction analysis uses this tag to divide the system into:

– Several transaction modules
– One transaction-center module.

Transaction
analysis

Transaction-
center

trans 1 trans 2
trans 3

type 1 type 2 type 3

Level 1 DFD
for TAS

Accept-
order

Process
-order

Handle-
indent-
request

Handle-
query

pending-order

Sales-statistics

inventory

Vendor-list

Customer-file

Item-fileCustomer-history

Indent-
request

Indents

Accepted-orders

query

order

statistics

Structure
Chart

root

Handle-order Handle-indent Handle-query

Get-order
Accept-
order Process-

order

order query

indent

Summary
• We discussed a sample function-oriented software design

methodology:
– Structured Analysis/Structured Design(SA/SD)
– Incorporates features from some important design

methodologies.

• SA/SD consists of two parts:
– Structured analysis
– Structured design.

135

Faculty Name
Department Name

	Slide Number 1
	Introduction
	Function-oriented vs. Object-oriented Design
	Structured analysis and Structured Design
	Structured Analysis
	SA/SD (Structured Analysis/Structured Design)
	Functional Decomposition
	Structured Analysis
	Structured Analysis
	Structured Design
	Structured Analysis vs. Structured Design
	Structured Analysis: Recap
	Data Flow Diagram
	DFD Concepts
	Data Flow Model of a Car Assembly Unit
	Pros of Data Flow Diagrams (DFDs)
	Hierarchical Model
	A Hierarchical Model
	Data Flow Diagrams (DFDs)
	External Entity Symbol
	Function Symbol
	Data Flow Symbol
	Data Store Symbol
	Data Store Symbol
	Output Symbol: Parallelogram
	Synchronous Operation
	Asynchronous Operation
	Yourdon's vs. Gane Sarson Notations
	DFD Shapes from Visio
	How is Structured Analysis Performed?
	Tic-tac-toe: Context Diagram
	Context Diagram
	Context Diagram
	Level 1 DFD Construction
	Higher Level DFDs
	Decomposition
	Decomposition
	Decomposition Pitfall
	Decompose How Long?
	Example 1: RMS Calculating Software
	Example 1: RMS Calculating Software
	 Example 1: RMS Calculating Software
	 Example 1: RMS Calculating Software
	 Example 1: RMS Calculating Software
	 Example 1: Level 1 DFD �RMS Calculating Software
	Example: RMS Calculating Software
	Data Dictionary
	Importance of Data Dictionary
	Importance of Data Dictionary
	Data Dictionary
	Data Dictionary
	Data Definition
	Data Definition
	Data Definition
	Data Dictionary for RMS Software
	Balancing a DFD
	Balancing a DFD
	Numbering of Bubbles
	Example 2: Tic-Tac-Toe Computer Game
	Example: Tic-Tac-Toe Computer Game
	Context Diagram for Example
	Level 1 DFD
	Data Dictionary
	 Example 3: Trading-House Automation System (TAS)
	Example 3: Trading-House Automation System (TAS)
	Example: Trading-House Automation System (TAS)
	Example: Trading-House Automation System (TAS)
	Example: Trading-House Automation System (TAS)
	Example: Trading-House Automation System (TAS)
	Example: Trading-House Automation System (TAS)
	Example: Trading-House Automation System (TAS)
	Example: Trading-House Automation System (TAS)
	Example: Trading-House Automation System (TAS)
	Context Diagram
	Level 1 DFD
	Example: Data Dictionary
	Example: Data Dictionary
	Observation
	Observation
	Guidelines For Constructing DFDs
	Guidelines For Constructing DFDs
	Guidelines For Constructing DFDs
	Guidelines For Constructing DFDs
	Find Error Example-1
	Find 4 Errors
	Common Mistakes in Constructing DFDs
	Find Error Example-2
	Guidelines For Constructing DFDs
	Commonly Made Errors
	Shortcomings of the DFD Model
	Shortcomings of the DFD Model
	Shortcomings of the DFD Model
	Shortcomings of the DFD Model
	Shortcomings of the DFD Model
	DFD Tools
	Word of Caution
	Structured Design
	Structure Chart
	Basic Building Blocks of Structure Chart
	Arrows
	Data Flow Arrows
	Library Modules
	Selection
	Repetition
	Structure Chart
	Structure Chart
	Example:�Good Design
	Example:�Bad Design
	Shortcomings of Structure Chart
	Flow Chart (Aside)
	Flow Chart versus Structure Chart
	Transformation of a DFD Model into Structure Chart
	Transform Analysis
	Transform Analysis
	Transform Analysis
	Transform Analysis
	Transform Analysis
	Transform Analysis
	Factoring
	Example 1: RMS Calculating Software
	Example 1: RMS Calculating Software
	Example 1: RMS Calculating Software
	Example 1: RMS Calculating Software
	Example 1: RMS Calculating Software
	Example 2: Tic-Tac-Toe Computer Game
	Context Diagram for Example 2
	Level 1 DFD
	Structure Chart
	Transaction Analysis
	Transaction Analysis
	Transaction analysis
	Level 1 DFD for TAS
	Structure Chart
	Summary
	Slide Number 135

