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What is Software Engineering?

• Engineering approach to develop software.

–Building Construction Analogy.

• Systematic collection of past experience:

–Techniques, 

–Methodologies,

–Guidelines.

3



IEEE Definition

• “Software engineering is the application of 

a systematic, disciplined, quantifiable 

approach to the development, operation, 

and maintenance of software; that is, the 

application of engineering to software.”
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Software Crisis
• It is often the case that software products:

–Fail to meet user requirements.

–Expensive.

–Difficult to alter, debug, and enhance.

–Often delivered late.

–Use resources non-optimally.
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Software Crisis (cont.)

Year

Hw cost
Sw cost

Relative Cost of Hardware and Software

1960 2018

Laptop or Desktop = 
Rs.45,000/-

Rational suite node locked = 
Rs.3,14,600/-

Rational suite  floating license=  
Rs.6,03,200/-
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Then why not have entirely hardware systems?...
• A virtue of software: 

– Relatively easy and faster to develop and to change…

– Consumes no space, weight, or power…

– Otherwise all might as well be hardware.

• The more is the complexity of  software, the harder 
it is to change--why?

– Further, the more the changes made to a program, 
the greater becomes  its complexity. 
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49% Delayed or 
cost overrun

28% Successful

23% Cancelled

Standish Group Report
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Which Factors are Contributing to the Software 
Crisis?

• Larger problems, 

• Poor project management

• Lack of adequate training in software engineering,

• Increasing skill shortage, 

• Low productivity improvements.
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Programming 
an Art or 

Engineering?

• Heavy use of past experience:

–Past experience is systematically arranged.

• Theoretical basis and quantitative techniques 

provided.

• Many are just thumb rules.

• Tradeoff between alternatives. 

• Pragmatic approach to cost-effectiveness.
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What is 
Exploratory 

Software
Development?

• Early programmers used exploratory

(also called build and fix) style. 

– A `dirty' program is quickly developed.

– The bugs are fixed as and when they are 

noticed. 

– Similar to how a junior                            

student develops programs…
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Exploratory Style

Initial
Coding Do Until 

Done

Test

Fix

Does not work for nontrivial projects…   Why?...
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What is Wrong with the Exploratory Style?

• Can successfully be used for developing only very small (toy) 
programs.
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What is Wrong with the Exploratory Style? 
Cont…

• Besides the exponential growth of effort, cost, and 

time with problem size:

– Exploratory style usually results in unmaintainable code. 

– It becomes very difficult to use the exploratory style in 

team development environments… 
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What is Wrong with the Exploratory Style? Cont…

• Why does the effort required to develop 

a software grow exponentially with size?

• Why does the approach                           

completely breaks down                                

when the size of software                                     

becomes large? 
Program Size
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An Interpretation Based on Human 
Cognition Mechanism 

• Human memory can be thought to be made 

up of two distinct parts [Miller 56]: 

– Short term memory and

– Long term memory.
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Human Cognition 
Mechanism

• Suppose I ask: “It is 10:10AM now, 

how many hours are remaining today?" 

– 10AM would be stored in the short-term memory.

– “A day is 24 hours long.” would  be  fetched from the 

long term memory into short term memory.

– The mental manipulation unit would compute the 

difference (24-10). 
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Schematic Representation of 
Brain

Long Term Memory

Short Term Memory

Processing Center

Brain
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Short Term 
Memory

• An item stored in the short term memory can get lost:

– Either due to decay with time or 

– Displacement by newer information.

• This restricts the time for which an item is stored in short 

term memory:

– Typically few tens of seconds.

– However, an item can be retained longer in the short term 

memory by recycling. 
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What is an 
Item?

• An item is any set of related information.

– A character such as `a' or a digit such as `5'. 

– A word, a sentence, a story, or even a picture. 

• Each item normally occupies one place in memory. 

• When you are able to  relate several different items together 

(chunking): 

– The information that should normally occupy several places, 

takes only one place in memory. 
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Chunking
• If I ask you to remember the number 110010101001

– It may prove very hard for you to understand and 

remember. 

– But, the octal form of 6251 (110)(010)(101)(001) would 

be easier.

– You have managed to create chunks of three items each.
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Evidence of Short 
Term Memory

• In many of our day-to-day experiences: 

– Short term memory is evident.

• Suppose, you look up a number from 

the telephone directory and start dialling it. 

– If you find the number is busy, you can dial the number again after a 

few seconds without having to look up the number from directory.

• But, after several days: 

– You may not remember the number at all

– Would need to consult the directory again.
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The Magical Number 7

• If a person deals with seven or less number of items:

– These would  be accommodated in the short term 

memory. 

– So, he can easily understand it.

• As the number of new information increases  beyond  

seven: 

– It becomes exceedingly  difficult to understand it. 
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What is the Implication in Program Development?

• A small program having just a few variables: 

– Is within easy grasp of an individual.

• As the number of independent variables in the program 

increases:

– It quickly exceeds the grasping power of an individual… 

– Requires an unduly large effort to master the problem.
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Implication in Program Development

• Instead of a human, if a machine could be writing (generating) a 

program, 

– The slope of the curve would be linear.

• But, how does use of software engineering principles helps hold 

down the effort-size curve to be almost linear? 

– Software engineering principles extensively use techniques 

specifically targeted to overcome the human cognitive limitations.
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Which Principles are Deployed by Software Engineering 

Techniques to Overcome Human Cognitive Limitations?

• Two important principles are profusely 

used:

– Abstraction

– Decomposition
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Two Fundamental 
Techniques to Handle 

Complexity
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What is Abstraction?

• Simplify a problem by omitting unnecessary 

details.

– Focus attention on only one aspect of the problem 

and ignore other aspects and irrelevant details.

– Also called model building.
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Abstraction 
Example

• Suppose you are asked to develop an overall 

understanding of some country. 

– Would you:

• Meet all the citizens of the country, visit every house, and 

examine every tree of the country? 

– You would possibly refer to various types of maps for that 

country only. 
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You would study an Abstraction…

• A map is:
– An abstract 

representation of 

a country.
– Various types of 

maps 

(abstractions) 

possible.
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Does every Problem have a single Abstraction?

• Several abstractions of the same 

problem can be created:

– Focus on some specific aspect and ignore the rest.

– Different types of models help understand 

different aspects of the problem.
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Abstractions of 
Complex Problems

• For complex problems:

– A single level of abstraction is inadequate.

– A hierarchy of abstractions may have to be constructed.

• Hierarchy of models:

– A model in one layer is an abstraction 

of the lower layer model.

– An implementation of the model at the higher layer.
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Abstraction of Complex Problems -- An Example

• Suppose you are asked to understand all life forms that 

inhabit the earth.

• Would you start examining each living organism?

– You will almost never complete it.

– Also, get thoroughly confused.

• Solution: Try to build an abstraction hierarchy.
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Living 
Organisms

35

KingdomAnimalia FungaePlantae

Mollusca Chordata Ascomycota Zygomycota

Homo 
Sapien

Solanum 
Tuberosum

Coprinus
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Phyllum

Species



Quiz

• What is a model?

• Why develop a model? That is, how does 

constructing a model help?

• Give some examples of models.
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Decomposition

• Decompose a problem into many small independent parts. 

– The small parts are then taken up one by one and solved  

separately. 

– The idea is that each  small part would be easy to grasp and 

therefore can be easily solved. 

– The full problem is solved when all the parts are solved. 

37



Decomposition
• A popular example of decomposition principle:

– Try to break a bunch of sticks tied 

together versus breaking them individually.

• Any arbitrary decomposition of a problem may not help.

– The decomposed parts must be more 

or less independent of each other.
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Decomposition: Another Example 

• Example use of decomposition principle:

– You understand a book better when the contents are 

organized into independent chapters. 

– Compared to when everything is mixed up. 
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Why Study Software Engineering? (1)

• To acquire skills to develop large programs.

–Handling exponential growth in complexity with size.

–Systematic techniques based on abstraction (modelling) 

and decomposition.
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Why Study Software Engineering? (2)

• Learn  systematic techniques of: 

–Specification, design, user interface development,

testing, project management, maintenance, etc.

–Appreciate issues that arise in team development.
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Why Study Software Engineering? (3)

• To  acquire skills to be a better programmer: 

•Higher Productivity 

•Better Quality Programs
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Jobs versus 
Projects

Jobs – repetition of very well-defined and well understood tasks with very 
little uncertainty

Exploration – The outcome is very uncertain, e.g. finding a cure for cancer.

Projects – in the middle!  Has challenge as well as routine…

Routine
Uncertainty 
of outcome

Jobs Projects Exploration
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Types of Software 
Projects

• Two types of software projects:

–Products (Generic software)

–Services (custom software)

• Total business – Several Trillions of US $ 

–Half in products and half services

–Services segment is growing fast!
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Types of Software

Packaged software —
prewritten software available for 

purchase

Custom software —
software developed at some 

user’s requests-Usually developer 
tailors some generic solution

Vertical market 
software—designed 

for particular 
industry

Horizontal market 
software—meets 

needs of many 
companies
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Types of Software Projects

• Software product development projects

• Software services projects
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Software Services
• Software service is an umbrella term, includes:

– Software customization

– Software maintenance

– Software testing

– Also contract programmers (CP) carrying out coding or 

any other assigned activities.

CP
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Factors responsible for accelerated growth of  services…

• Now lots of code is available in a company:

– New software can be developed by modifying the closest.

• Speed of Conducting Business has increased  tremendously:

– Requires shortening of project duration
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Contribution of the 
IT sector to India’s 
GDP rose to 
approximately 9.5% 
in 2015 from 1.2% 
in 98 
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Scenario of Indian Software Companies

• Indian companies have largely 

focused on the services segment --

- Why?
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A Few Changes in Software Project Characteristics over Last 40 Years

• 40 years back, very few software existed

– Every project started from scratch

– Projects were multi year long

• The programming languages that were used earlier hardly provided 
any scope for reuse:

– FORTRAN, PASCAL, COBOL, BASIC

• No application was GUI-based:

– Mostly command selection from displayed text menu items.
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Traditional versus Modern Projects
• Projects are increasingly becoming services:

– Either tailor some existing software or reuse pre-built libraries. 

• Facilitate and accommodate client feedbacks

• Facilitate customer participation in project development work 

• Incremental software delivery with evolving functionalities. 

• No software is being developed from scratch --- Significant 

reuse is being made…
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Computer Systems Engineering
• Many products require development of software as well as 

specific hardware to run it:

– a coffee vending machine, 

–a robotic toy, 

–A new health band product, etc. 

• Computer systems engineering:

–encompasses software engineering.
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Computer Systems Engineering

• The high-level problem:

–Deciding which tasks are to be solved by software.

–Which ones by hardware.
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Computer Systems Engineering (CONT.)

• Typically, hardware and software are developed together:

–Hardware simulator is used during software development.

• Integration of  hardware and software.

• Final system testing
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Feasibility 

Study

Requirements 
Analysis and 
Specification

Hardware 
Software 

Partitioning

Hardware 
Development

Software 
Development

Integration 
and Testing

Project   Management

Computer Systems Engineering (CONT.)
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Emergence of Software 
Engineering Techniques



Emergence of Software Engineering  Techniques

• Early Computer Programming (1950s):

–Programs were being written in assembly 

language…

–Sizes limited to  about a few hundreds of lines of 

assembly code…
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Early Computer Programming (50s)

• Every programmer developed his/her own 

style of writing programs:

–According to his intuition  (called exploratory 

or build-and-fix programming) .
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• High-level languages such as FORTRAN, ALGOL, and 

COBOL were introduced:

This reduced software development efforts greatly.

Why reduces?

High-Level Language Programming (Early 60s)
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• Software development style was still exploratory. 

 Typical program sizes were limited to a few thousands of 

lines of source code.

High-Level Language Programming (Early 60s)
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Control Flow-Based Design (late 60s)

• Size and complexity of programs increased further:

–Exploratory programming style proved to be insufficient.  

• Programmers found:

–Very difficult to write cost-effective and correct 

programs. 
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Control Flow-Based Design (late 60s)

• Programmers found it very difficult:

–To understand and maintain programs written by 

others. 

• To cope up with this problem, experienced 

programmers advised---”Pay particular attention to the   

design of the program's  control structure.'’
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Control Flow-Based Design (late 60s)

• What is a program's control structure?

– The sequence in which the program's 

instructions are executed.

• To help design programs having good 

control structure:

–Flow charting technique was developed. 
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Control Flow-Based Design (late 60s)

• Using  flow charting technique: 

–One can represent and design a 

program's control structure.

–When asked to understand a program:

•One would  mentally trace the program's 

execution sequence.
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Control Flow-Based Design 

• A program having a messy flow chart 

representation: 

–Difficult to understand and debug.

66



Spaghetti Code Structure
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Control Flow-Based Design (Late 60s)

• What causes program complexity?

–GO TO statements  makes control 

structure of a program messy.

–GO TO statements alter the flow of control arbitrarily. 

–The need to restrict use of GO TO statements was 

recognized.
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Control Flow-Based Design (Late 60s)

• Many programmers  had extensively 

used assembly languages. 

–JUMP instructions are frequently used for                                             

program branching in assembly languages. 

–Programmers considered use of GO TO 

statements inevitable. 

69

addi $a0, $0, 1
j next
next:
j skip1
add $a0, $a0, $a0
skip1:
j skip2
add $a0, $a0, $a0
add $a0, $a0, $a0
skip2:
j skip3
loop:
add $a0, $a0, $a0
add $a0, $a0, $a0
add $a0, $a0, $a0
skip3:
j loop



Control-flow Based Design (Late 60s)

• At that time, Dijkstra published his article:

–“Goto Statement Considered Harmful” Comm. of ACM, 

1969. 

• Many programmers were unhappy to read his 

article.
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Control Flow-Based Design (Late 60s)

• Some programmers published several counter 

articles: 

–Highlighted the advantages and inevitability of GO TO 

statements.
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Control Flow-Based Design (Late 60s)

• It soon was conclusively proved:

–Only three programming constructs are sufficient to 

express any programming logic:

•sequence  (a=0;b=5;)

•selection (if(c==true) k=5 else m=5;)

• iteration (while(k>0) k=j-k;)
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Control-flow Based Design (Late 60s)

• Everyone accepted:

–It is possible to solve any programming problem without 

using GO TO statements.

–This formed the basis of Structured Programming  

methodology.
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Structured Programming
• A program is called structured:

–When it uses only the following types of constructs:

•sequence, 

•selection,  

• iteration 

–Consists of modules.
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• Sometimes, violations to structured 

programming are permitted:

o Due to practical considerations such as:

o Premature loop exit (break) or for exception handling.

Structured   Programs
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Advantages of Structured programming

• Structured programs are:

–Easier to read and understand, 

–Easier to maintain, 

–Require less effort and time for development.

–Less buggy
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Structured Programming

• Research experience shows: 

–Programmers commit less number of errors: 

•While using structured if-then-else and  do-while

statements.

•Compared to  test-and-branch (GOTO) constructs. 
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Data Structure-Oriented Design (Early 70s)

• As program sizes increased further, soon it was 

discovered:

–It is important to pay more attention to the design of data 

structures of a program 

• Than to the design of its control structure.
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Data Structure-Oriented Design (Early 70s)

• Techniques which emphasize designing the data 

structure: 

–Derive program structure from it:

•Are called data structure-oriented design techniques.
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Data Structure Oriented Design (Early 70s)

• An example of data structure-oriented design 

technique: 

–Jackson's Structured Programming(JSP) methodology

•Developed by Michael Jackson in 1970s. 
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• JSP technique:

 Program code structure should correspond to the 

data structure. 

Data Structure Oriented Design (Early 70s)
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JSP methodology:  

 A program's data structures are first designed using notations for  

sequence, selection, and iteration.  

 The data structure design is then used :

To derive the program structure. 

A Data Structure Oriented Design 
(Early 70s)
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• Several other data structure-oriented Methodologies 

also exist:

 e.g., Warnier-Orr Methodology.  

Data Structure Oriented Design (Early 70s)
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Data Flow-Oriented Design  (Late 70s)

• Data flow-oriented techniques advocate: 

–The data items input to a system must first be identified, 

–Processing  required on the data items to produce the 

required outputs should be determined.
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Data Flow-Oriented Design (Late 70s)

• Data flow technique identifies:

–Different processing stations (functions) in a system. 

–The items (data) that flow between processing 

stations. 
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Data Flow-Oriented Design (Late 70s)

• Data flow technique is a generic technique:

–Can be used to model the working of any system.

• not just software systems.

• A major advantage of the data flow technique is its 

simplicity. 
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Assembled 
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Data Flow Model of a Car Assembly Unit
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Object-Oriented Design (80s)

• Object-oriented technique:

–An intuitively appealing design approach: 

–Natural objects (such as employees, pay-roll-register, 

etc.) occurring in a problem are first identified. 
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Object-Oriented Design (80s)

• Relationships among objects:

–Such as composition, reference, and inheritance are 

determined. 

• Each object essentially acts as: 

–A data hiding (or data abstraction) entity.  
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Object-Oriented 
Design (80s)

• Object-Oriented Techniques have gained wide acceptance:

– Simplicity

– Increased Reuse possibilities

– Lower development time and cost

–More robust code

– Easy maintenance
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Evolution of 
Design Techniques

Object-Oriented

Ad hoc

Data flow-based

Data structure-
based

Control flow-
based

Object-Oriented

Aspect-
oriented

Component-
based

Service-
oriented
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Evolution of Other Software Engineering Techniques

• The improvements to the software design methodologies

–are indeed very conspicuous.  

• In additions to the software design techniques: 

–Several other techniques evolved.
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Evolution of Other 
Software Engineering 

Techniques

• Life cycle models, 

• Specification techniques, 

• Project management techniques, 

• Testing techniques, 

• Debugging techniques, 

• Quality assurance techniques, 

• Metrics,  

• CASE tools, etc. 
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Differences between the exploratory style and 
modern software development practices

• Use of Life Cycle Models 

• Software is developed through several well-defined stages: 

–Requirements analysis and specification,

–Design, 

–Coding, 

–Testing, etc.
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Differences between the exploratory style and 
modern software development practices

• Emphasis has shifted

– from error correction to error prevention. 

• Modern practices emphasize:

–detection of errors as close to their point of 

introduction as possible.
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Differences between the exploratory style and 
modern software development practices  (CONT.)

• In exploratory style, 

–errors are detected only during testing,

• Now:

– Focus is on detecting as many errors as possible in each 

phase of development.
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Differences between the exploratory style and 
modern software development practices  (CONT.)

• In exploratory style: 

–coding is synonymous with program development. 

• Now: 

–coding is considered only a small part of program 

development effort.
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Differences between the exploratory style and 
modern software development practices  (CONT.)

• A lot of effort and attention is now being paid to: 

–Requirements specification. 

• Also, now there is a distinct design phase:

–Standard design techniques are being used.
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Differences between the exploratory style and 
modern software development practices (CONT.)

• During all stages of  development process:

–Periodic reviews are being carried out 

• Software testing has become systematic:

–Standard testing techniques are available. 
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Differences between the exploratory style and modern software 
development practices (CONT.)

• There is better visibility of design and code: 

–Visibility means production of good quality, consistent and standard 

documents.

– In the past, very little attention was being given to producing good quality 

and consistent documents. 

–We will see later  that increased visibility makes software project 

management easier. 
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Differences between the exploratory style and 
modern software development practices (CONT.)

• Because of good documentation:

–fault diagnosis and maintenance are smoother now.

• Several metrics are being used: 

–help in software project management, quality assurance, 

etc. 
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Differences between the exploratory style and 
modern software development practices (CONT.)

• Projects are being properly planned: 

–estimation, 

–scheduling, 

–monitoring mechanisms. 

• Use of CASE tools.
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Review Questions

• What is structured programming?

• What problems may appear if a large program is 

developed without using structured 

programming techniques?
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Life Cycle Models

104
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Life Cycle Model

• A software life cycle model (also  process model or SDLC):

–A descriptive and diagrammatic model of software life 

cycle:

–Identifies all the activities undertaken during product development, 

–Establishes a precedence ordering among the different activities,

–Divides life cycle into phases.
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Life Cycle Model (CONT.)

• Each life cycle phase  consists of several activities. 

–For example, the design stage might consist of:

•structured analysis

•structured design

•Design review
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Why Model  Life Cycle?
• A graphical and written description:

–Helps common understanding of activities among the software 

developers.

–Helps to identify inconsistencies, redundancies, and omissions 

in the development process. 

–Helps in tailoring a process model for specific projects.
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Life Cycle Model (CONT.)

• The development team must identify a suitable life cycle 

model:

–and then adhere to it.

–Primary advantage of adhering to a life cycle model:

•Helps development of software in a systematic and  disciplined 

manner.
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Life Cycle Model (CONT.)

• When a program is developed by a single programmer ---

–The problem is within the grasp of an individual.

–He has the freedom to decide his exact steps and still succeed  --- called 

Exploratory model--- One can use it in many ways

–CodeTestDesign

–CodeDesignTest  Change Code 

– Specify code Design Test etc.

110

Initial
Coding Do Until 

Done

Test

Fix



Life Cycle Model (CONT.)

• When software is being developed by a team:  

–There must be a precise understanding among team 

members as to when to do what, 

–Otherwise, it would lead to chaos and project  failure. 
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Life Cycle Model (CONT.)

• A software project will never succeed if: 

–one engineer starts writing code,

–another concentrates on writing the test document first, 

–yet another engineer first defines the file structure

–another defines the I/O for his portion first.
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Phase Entry and Exit Criteria

• A life cycle model:

–defines  entry and exit criteria for every phase. 

–A phase is considered to be complete:

•only when all its exit criteria are satisfied. 
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Life Cycle Model (CONT.)

• What is the phase exit criteria for the software requirements 

specification phase?

–Software Requirements Specification (SRS) document is 

complete, reviewed, and approved by the customer. 

• A phase can start: 

–Only if its phase-entry criteria have been satisfied. 
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Life Cycle Model: Milestones

• Milestones help software project managers:

–Track the progress of the project.

–Phase entry and exit are 

important milestones.
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Life Cycle and Project Management

•When a life cycle model is followed:

–The project manager can at any time fairly 

accurately tell, 

•At which stage  (e.g., design, code, test, etc.) the 

project is. 
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Project Management Without Life Cycle Model

• It becomes very difficult to track the progress of the project.  

–The project manager would have to depend on the guesses 

of the team members.

• This usually leads to a problem:

–known as the  99% complete syndrome.
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Project Deliverables: Myth and Reality

Myth:

The only deliverable for a successful project is the working 

program.

Reality:

Documentation of all aspects of software development are 

needed to help in operation and maintenance.
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Life Cycle Model (CONT.)

• Many life cycle models have been proposed. 

• We confine our attention to only a few commonly used models. 

–Waterfall 

–V model, 

–Evolutionary, 

–Prototyping

–Spiral model,  

–Agile models

Traditional  models
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Software Life Cycle

• Software life cycle (or software process):

–Series of identifiable stages that a software product 

undergoes during its life time:

• Feasibility study

•Requirements analysis and specification, 

•Design, 

• Coding, 

• Testing

•Maintenance.
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Classical Waterfall Model
• Classical waterfall model divides life cycle into following phases:

–Feasibility study,  

–Requirements analysis and specification, 

–Design, 

–Coding and unit testing, 

– Integration and system testing,  

–Maintenance.

Conceptualize

Specify

Design

Code

Test

Maintain

Retire

Deliver
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Classical Waterfall ModelFeasibility Study

Req.   Analysis

Design

Coding

Testing

Maintenance

Simplest and most 
intuitive
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Relative Effort for Phases
• Phases between feasibility study and 

testing 

–Called development phases.

• Among all life cycle phases

–Maintenance phase consumes  maximum 

effort.

• Among development phases,

–Testing phase consumes the maximum effort.
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Process Model 

• Most organizations usually define: 

– Standards on the outputs (deliverables) produced at the end of every phase 

– Entry and exit criteria for every phase. 

• They also prescribe  methodologies for:

– Specification, 

– Design, 

– Testing,  

– Project management, etc.



Classical Waterfall Model (CONT.)

• The guidelines and methodologies  of an organization:

–Called the organization's software development methodology.

• Software development organizations:

– Expect fresh engineers  to master the organization's 

software development methodology. 
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Feasibility 
Dimensions

Feasibility Study

Schedule 
feasibility

Technical 
feasibility

Economic 
feasibility 
(also called 
cost/benefit 
feasibility)
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Feasibility Study

• Main aim of feasibility study: determine whether developing the 

software is:

– Financially worthwhile

– Technically feasible.

• Roughly understand what customer wants:

–Data which would be input to the system,

–Processing needed on these data,

–Output data to be produced by the system, 

–Various constraints on the behavior of the system.
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Case Study

• SPF Scheme for CFL

• CFL has a large number of employees, exceeding 50,000.

• Majority of these are casual labourers

• Mining being a risky profession:

– Casualties are high

• Though there is a PF:

– But settlement time is high

• There is a need of SPF:

– For faster disbursement of benefits
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Feasibility: Case Study

• Manager  visits main office, finds out the main 
functionalities required

• Visits mine site, finds out the data to be input

• Suggests alternate solutions

• Determines the best solution 

• Presents to the CFL Officials

• Go/No-Go  Decision 
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Activities During Feasibility Study

• Work out an overall understanding of the problem.

• Formulate different solution strategies.

• Examine alternate solution strategies in terms of:

•resources required, 

•cost of development, and 

•development time.
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Activities during Feasibility Study

• Perform a cost/benefit analysis:

–Determine which solution is the best. 

–May also find that none of the solutions is 

feasible due to: 

• high cost, 

• resource constraints,  

• technical reasons.
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Cost benefit analysis (CBA)
• Need to identify all costs --- these could be:

– Development costs

– Set-up

– Operational costs

• Identify the value of benefits

• Check benefits are greater than costs
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The business case
• Benefits of delivered project 

must outweigh costs

• Costs include:

- Development

- Operation

• Benefits:

– Quantifiable

– Non-quantifiable

Rs
Rs

Benefits

Costs
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