
7/18/2020

Agile Models

1

What is Agile Software Development?

• Agile: Easily moved, light, nimble, active software

processes

• How agility achieved?

– Fitting the process to the project

– Avoidance of things that waste time

2

Agile Model
• To overcome the shortcomings of the waterfall model of

development.

– Proposed in mid-1990s

• The agile model was primarily designed:

– To help projects to adapt to change requests

• In the agile model:

– The requirements are decomposed into many small incremental parts

that can be developed over one to four weeks each.

3

Ideology: Agile Manifesto
• Individuals and interactions over

– process and tools

• Working Software over

– comprehensive documentation

• Customer collaboration over

– contract negotiation

• Responding to change over

– following a plan

http://www.agilemanifesto.org

4

Agile Methodologies• XP

• Scrum

• Unified process

• Crystal

• DSDM

• Lean

5

Agile Model: Principal Techniques
• User stories:

– Simpler than use cases.

• Metaphors:

– Based on user stories, developers propose a common vision of what is

required.

• Spike:

– Simple program to explore potential solutions.

• Refactor:

– Restructure code without affecting behavior, improve efficiency, structure, etc.

6

Agile Model: Nitty Gritty

• At a time, only one increment is planned, developed,

deployed at the customer site.

– No long-term plans are made.

• An iteration may not add significant functionality,

– But still a new release is invariably made at the end of each

iteration

– Delivered to the customer for regular use.

7

Methodology
• Face-to-face communication favoured over written

documents.

• To facilitate face-to-face communication,

– Development team to share a single office space.

– Team size is deliberately kept small (5-9 people)

– This makes the agile model most suited to the development of

small projects.

8

Co
m

m
un

ica
tio

n
Ef

fe
ct

ive
ne

ss

Richness of Communication Channel
Cold Hot

Paper

Audiotape

Videotape

Email

conversation

Phone

conversation

Video

conversation

Face-to-face

conversation

Face-to-face

at whiteboard

Documentation

Options

Modeling

Options

Copyright 2002-2005 Scott W. Ambler

Original Diagram Copyright 2002 Alistair Cockburn

Effectiveness of
Communication Modes

9

Agile Model: Principles
• The primary measure of progress:

– Incremental release of working software

• Important principles behind agile model:

– Frequent delivery of versions --- once every few weeks.

– Requirements change requests are easily accommodated.

– Close cooperation between customers and developers.

– Face-to-face communication among team members.

10

Agile Documentation• Travel light:
– You need far less documentation than you think.

• Agile documents:
– Are concise

– Describe information that is less likely to change

– Describe “good things to know”

– Are sufficiently accurate, consistent, and detailed

• Valid reasons to document:
– Project stakeholders require it

– To define a contract model

– To support communication with an external group

– To think something through

11

Agile Software Requirements Management

{Each iteration implement the highest-

priority requirements

Each new requirement is

prioritized and added to

the stack

Requirements may be

reprioritized at any time

Requirements may be

removed at any time

Requirements

High

Priority

Low

Priority

Copyright 2004 Scott W. Ambler

12

Adoption Detractors
• Sketchy definitions, make it possible to have

– Inconsistent and diverse definitions

• High quality people skills required

• Short iterations inhibit long-term perspective

• Higher risks due to feature creep:

– Harder to manage feature creep and customer expectations

– Difficult to quantify cost, time, quality.

13

Agile Model Shortcomings

• Derives agility through developing tacit knowledge

within the team, rather than any formal document:

– Can be misinterpreted…

– External review difficult to get…

– When project is complete, and team disperses,

maintenance becomes difficult…

14

Agile Model versus Iterative Waterfall Model

• The waterfall model steps through in a planned sequence:

– Requirements-capture, analysis, design, coding, and testing .

• Progress is measured in terms of delivered artefacts:

– Requirement specifications, design documents, test plans, code

reviews, etc.

• In contrast agile model sequences:

– Delivery of working versions of a product in several increments.

15

Agile Model versus Iterative Waterfall Model

• As regards to similarity:

–We can say that Agile teams use the waterfall

model on a small scale.

16

Agile versus RAD Model

• Agile model does not recommend developing

prototypes:

– Systematic development of each incremental feature

is emphasized.

• In contrast:

– RAD is based on designing quick-and-dirty prototypes, which

are then refined into production quality code.

17

Agile versus exploratory programming
• Similarity:

– Frequent re-evaluation of plans,

– Emphasis on face-to-face communication,

– Relatively sparse use of documents.

• Agile teams, however, do follow defined and disciplined

processes and carry out rigorous designs:

– This is in contrast to chaotic coding in exploratory programming.

18

7/18/2020

Extreme Programming
(XP)

19

Extreme Programming Model

• Extreme programming (XP) was proposed by Kent

Beck in 1999.

• The methodology got its name from the fact that:

– Recommends taking the best practices to extreme

levels.

– If something is good, why not do it all the time.

20

Taking Good
Practices to Extreme

• If code review is good:
– Always review --- pair programming

• If testing is good:
– Continually write and execute test cases --- test-driven

development

• If incremental development is good:
– Come up with new increments every few days

• If simplicity is good:
– Create the simplest design that will support only the

currently required functionality.

21

Taking to Extreme
• If design is good,

– everybody will design daily (refactoring)

• If architecture is important,

– everybody will work at defining and refining the architecture

(metaphor)

• If integration testing is important,

– build and integrate test several times a day (continuous integration)

22

4 Values• Communication:
– Enhance communication among team members and with the

customers.

• Simplicity:
– Build something simple that will work today rather than something that

takes time and yet never used

– May not pay attention for tomorrow

• Feedback:
– System staying out of users is trouble waiting to happen

• Courage:
– Don’t hesitate to discard code

23

Best Practices
• Coding:

– without code it is not possible to have a working system.

– Utmost attention needs to be placed on coding.

• Testing:

– Testing is the primary means for developing a fault-free product.

• Listening:

– Careful listening to the customers is essential to develop a good quality

product.

24

25

Extreme
Development

Activities

• XP Planning an increment
• Begins by creating “user stories”

• Agile team assesses each story and assigns a cost

• Few stories are grouped into a deliverable increment

• Delivery date planned

• XP Design
• Follows the KIS principle

• Encourage the use of CRC cards

• For difficult design problems, suggests the creation of “spike solutions”—a

design prototype

• Encourages “refactoring”—refinement of the internal program design

26

• XP Coding

• Recommends the construction of unit test cases before coding

commences (test-driven development)

• Encourages “pair programming”

• XP Testing

• All unit tests are executed daily

• “Acceptance tests” are defined by the customer and executed to assess
customer visible functionalities

Extreme
Program

Development
Activities

Full List of XP Practices
1. Planning – determine scope of the next release by combining business priorities and

technical estimates

2. Small releases – put a simple system into production, then release new versions in very
short cycles

3. Metaphor – all development is guided by a simple shared story of how the whole
system works

4. Simple design – system is to be designed as simple as possible

5. Testing – programmers continuously write and execute unit tests

27

Full List of XP Practices
7. Refactoring – programmers continuously restructure the system

without changing its behavior to remove duplication and simplify

8. Pair-programming -- all production code is written with two
programmers at one machine

9. Collective ownership – anyone can change any code anywhere in
the system at any time.

10. Continuous integration – integrate and build the system many
times a day – every time a task is completed.

28

Full List of XP Practices

11. 40-hour week – work no more than 40 hours a week as a rule

12. On-site customer – a user is a part of the team and available full-

time to answer questions

13. Coding standards – programmers write all code in accordance with

rules emphasizing communication through the code

29

Emphasizes Test-Driven Development (TDD)

• Based on user story develop test cases

• Implement a quick and dirty feature every couple of days:

– Get customer feedback

– Alter if necessary

– Refactor

• Take up next feature

30

Project Characteristics that Suggest Suitability
of Extreme Programming

• Projects involving new technology or research projects.

– In this case, the requirements change rapidly and unforeseen

technical problems need to be resolved.

• Small projects:

– These are easily developed using extreme programming.

31

Practice Questions

• What are the stages of iterative waterfall model?

• What are the disadvantages of the iterative waterfall model?

• Why has agile model become so popular?

• What difficulties might be faced if no life cycle model is

followed for a certain large project?

32

Suggest Suitable Life Cycle Model
• A software for an academic institution to automate its:

– Course registration and grading

– Fee collection

– Staff salary

– Purchase and store inventory

• The software would be developed by tailoring a similar software
that was developed for another educational institution:

– 70% reuse

– 10% new code and 20% modification

33

Practice Questions
• Which types of risks can be better handled using the spiral

model compared to the prototyping model?

• Which type of process model is suitable for the following

projects:

– A customization software

– A payroll software for contract employees that would be add on

to an existing payroll software

34

Practice Questions
• Which lifecycle model would you select for the following project

which has been awarded to us by a mobile phone vendor:

– A new mobile operating system by upgrading the existing operating

system

– Needs to work well efficiently with 4G systems

– Power usage minimization

– Directly upload backup data on a cloud infrastructure maintained by the

mobile phone vendor

35

Scrum

36

Scrum: Characteristics
• One of the agile processes

• Self-organizing teams

• Product development progresses in a series of month-long

sprints

• Requirements are listed in a product backlog

37

38

Product backlog
Sprint
backlog Product

increment

Scrum

Daily
Scrum

Sprint
planning

Sprint
review

Sprint
• Scrum projects progress in a series of “sprints”

– Analogous to XP iterations or time boxes

– Target duration is one month

• Software increment is designed, coded, and

tested during a sprint

• No changes entertained during a sprint

39

Sprint
• Fundamental process flow of Scrum

• A month-long iteration, during which an incremental product

functionality completed

• NO outside influence can interfere with the Scrum team during

the Sprint

• Each day begins with the Daily Scrum Meeting

40

Scrum Framework
• Roles : Product Owner, ScrumMaster, Team

• Ceremonies : Sprint Planning, Sprint Review, Sprint

Retrospective, and Daily Scrum Meeting

• Artifacts : Product Backlog, Sprint Backlog, and Burndown

Chart

41

Key Roles and Responsibilities in Scrum Process
• Product Owner

– Acts on behalf of customers to represent their interests.

• Development Team

– Team of five to nine people with cross-functional skill sets.

• Scrum Master (aka Project Manager)

– Facilitates scrum process and resolves impediments and acts as a

buffer between the team and outside interference.

42

Product Owner

• Defines the features of the product

• Decides on release date and content

• Prioritizes new features

• Adjusts features and priority every iteration, as needed

• Accepts or rejects work results.

43

The Scrum Master

• Represents management

• Removes impediments

• Ensures that the team is fully functional and

productive

• Shield the team from external interferences

44

Scrum Team
• Typically 5-10 people

• Cross-functional

– QA, Programmers, UI Designers, etc.

• Teams are self-organizing

• Membership can change only between sprints

45

Ceremonies

• Sprint Planning Meeting

• Daily Scrum

• Sprint Review Meeting

46

Sprint Planning

•Goal is to produce Sprint Backlog

•Product owner works with the Team to negotiate what

Backlog Items the Team will work on in order to meet

Release Goals

•Scrum Master ensures Team agrees to realistic goals

47

Daily Scrum

• Daily

• 15-minutes

• Stand-up meeting

• Not for problem solving

• Three questions:

1. What did you do yesterday

2. What will you do today?

3. What obstacles are in your way?

48

Daily Scrum• Is NOT a problem solving session

• Is NOT a way to collect information about WHO is behind the

schedule

• Is a meeting in which team members make informal

commitments to each other and to the Scrum Master

• Is a good way for a Scrum Master to track the progress of the

Team

49

Sprint Review
Meeting

• Team presents what it accomplished during the sprint

• Typically takes the form of a demo of new features

• Informal
– 2-hour prep time rule

• Participants
– Customers

– Management

– Product Owner

– Other teammates

50

Product Backlog
• A list of all desired work on the project

– Usually a combination of

• story-based work (“allow user to search and replace”)

• task-based work (“improve exception handling”)

• List is prioritized by the Product Owner.

51

Product Backlog

• Requirements for a system, expressed as a prioritized list

of Backlog Items

– Managed and owned by Product Owner

– Spreadsheet (typically)

52

Sample
Product
Backlog

53

Sprint Backlog

• A subset of Product Backlog Items, which define the work

for a Sprint

– Created by Team members

– Each Item has it’s own status

– Updated daily

54

Sprint Backlog during the Sprint

• Changes occur:

– Team adds new tasks whenever they need to in order to meet

the Sprint Goal

– Team can remove unnecessary tasks

– But: Sprint Backlog is only updated by the team

• Estimates are updated whenever there’s new information

55

Burn down Charts
• Are used to represent “work done”.

• Are remarkably simple but effective Information

disseminators

• Three Types:

– Sprint Burn down Chart (progress of the Sprint)

– Release Burn down Chart (progress of release)

– Product Burn down chart (progress of the Product)

56

Sprint Burn down Chart

• Depicts the total Sprint Backlog hours remaining per day

• Shows the estimated amount of time to complete

• Ideally should burn down to zero to the end of the Sprint

• Usually is not a straight line

57

Sprint Burndown Chart

58

Release Burndown Chart
• Will the next release be done on right time?

• How many more sprints?

• X-axis: sprints

• Y-axis: amount of story

points remaining

59

Product Burndown Chart

• Is a “big picture” view of project’s progress (all the releases)

60

Scalability of Scrum

• A typical Scrum team is 6-10 people

• Jeff Sutherland proposed and experimented with

up to over 800 people

• "Scrum of Scrums" also called "Meta-Scrum“

61

62

RAJIB MALL
Computer Science and Engineering Department

IIT KHARAGPUR

Requirements Analysis and Specification

What are Requirements?
• A Requirement is:

– A capability or condition required from the system.

• What is involved in requirements analysis and specification?

– Determine what is expected by the client from the system. (Gather

and Analyze)

– Document those in a form that is clear to the client as well as to the

development team members. (Document)

Understanding and specifying requirements
For toy problems: understanding and specifying requirements is

rather easy…

For industry-standard problems: Probably the hardest, most

problematic and error prone among development tasks…

The task of requirements specification :

 Input: User needs that are hopefully fully understood by the users.

Output: Precise statement of what the software will do.

Requirements for Products

• When a company plans to develop a generic product:

– Who gives the requirements?

• The sales personnel!

SRS Document

Activities in Requirements Analysis and Specification

Requirements Gathering

Requirements Analysis

Requirements Specification

Requirements Engineering Process

Feasibility
Study Requirements

gathering
Requirements
analysis

Requirements
specification

Feasibility
report

SRS Document

Requirements Analysis and Specification
• Requirements Gathering:

– Fully understand the user requirements.

• Requirements Analysis:

– Remove inconsistencies, anomalies, etc. from requirements.

• Requirements Specification:

– Document requirements properly in an SRS document.

Need for SRS…
• Good SRS reduces development cost:

– Req. errors are expensive to fix later

– Req. changes cost a lot (typically 40% of requirements change later)

– Good SRS can minimize changes and errors

– Substantial savings --- effort spent during req. saves multiple times that effort

• An Example:

– Cost of fixing errors in req. , design , coding , acceptance

testing and operation increases exponentially

C
os

t

What are the Uses of
an SRS Document?

• Establishes the basis for agreement between the

customers and the suppliers

• Forms the starting point for development.

• Provide a basis for estimating costs and schedules.

• Provide a basis for validation and verification.

• Provide a basis for user manual preparation.

• Serves as a basis for later enhancements.

Forms A Basis for User Manual

• The SRS serves as the basis for writing User Manual for the

software:

– User Manual: Describes the functionality from the perspective

of a user --- An important document for users.

– Typically also describes how to carry out the required tasks with

examples.

SRS Document: Stakeholders
• SRS intended for a diverse audience:

– Customers and users use it for validation, contract, ...

– Systems (requirements) analysts

– Developers, programmers to implement the system

– Testers use it to check whether requirements have been met

– Project Managers to measure and control the project

• Different levels of detail and formality is needed for each audience

• Different templates for requirements specifications used by companies:

– Often variations of IEEE 830

Requirement process..

• Specification and

review may lead to

further gathering

and analysis.

User needs

Analysis

Specification

Review

Gathering

SRS Document

74

Faculty Name
Department Name

