
Introduction

Dr. RAJIB MALL
Professor

Department Of Computer Science & Engineering

IIT Kharagpur.

1

About Myself
• RAJIB MALL

• B.E. , M.E., Ph.D from Indian Institute of Science,

Bangalore

• Worked with Motorola (India)

• Shifted to IIT, Kharagpur in 1994

– Currently Professor at CSE department

2

What is Software Engineering?

• Engineering approach to develop software.

–Building Construction Analogy.

• Systematic collection of past experience:

–Techniques,

–Methodologies,

–Guidelines.

3

IEEE Definition

• “Software engineering is the application of

a systematic, disciplined, quantifiable

approach to the development, operation,

and maintenance of software; that is, the

application of engineering to software.”

4

Software Crisis
• It is often the case that software products:

–Fail to meet user requirements.

–Expensive.

–Difficult to alter, debug, and enhance.

–Often delivered late.

–Use resources non-optimally.

5

Software Crisis (cont.)

Year

Hw cost
Sw cost

Relative Cost of Hardware and Software

1960 2018

Laptop or Desktop =
Rs.45,000/-

Rational suite node locked =
Rs.3,14,600/-

Rational suite floating license=
Rs.6,03,200/-

6

Then why not have entirely hardware systems?...
• A virtue of software:

– Relatively easy and faster to develop and to change…

– Consumes no space, weight, or power…

– Otherwise all might as well be hardware.

• The more is the complexity of software, the harder
it is to change--why?

– Further, the more the changes made to a program,
the greater becomes its complexity.

7

49% Delayed or
cost overrun

28% Successful

23% Cancelled

Standish Group Report

8

Which Factors are Contributing to the Software
Crisis?

• Larger problems,

• Poor project management

• Lack of adequate training in software engineering,

• Increasing skill shortage,

• Low productivity improvements.

9

Art

Craft

EngineeringEsoteric Past
Experience

Systematic Use of Past
Experience and Scientific Basis

T
e
ch

no
lo
gy

Time

Unorganized Use of
Past Experience

Technology
Development Pattern

Programming: an Art or
Engineering?

10

Programming
an Art or

Engineering?

• Heavy use of past experience:

–Past experience is systematically arranged.

• Theoretical basis and quantitative techniques

provided.

• Many are just thumb rules.

• Tradeoff between alternatives.

• Pragmatic approach to cost-effectiveness.

11

What is
Exploratory

Software
Development?

• Early programmers used exploratory

(also called build and fix) style.

– A `dirty' program is quickly developed.

– The bugs are fixed as and when they are

noticed.

– Similar to how a junior

student develops programs…

12

Exploratory Style

Initial
Coding Do Until

Done

Test

Fix

Does not work for nontrivial projects… Why?...

13

What is Wrong with the Exploratory Style?

• Can successfully be used for developing only very small (toy)
programs.

Program SizeE
ff

or
t,

 t
im

e
,

co
st

Exploratory
Software
Engineering

Machine

14

What is Wrong with the Exploratory Style?
Cont…

• Besides the exponential growth of effort, cost, and

time with problem size:

– Exploratory style usually results in unmaintainable code.

– It becomes very difficult to use the exploratory style in

team development environments…

15

What is Wrong with the Exploratory Style? Cont…

• Why does the effort required to develop

a software grow exponentially with size?

• Why does the approach

completely breaks down

when the size of software

becomes large?
Program Size

E
ff

or
t,

 t
im

e
,

co
st

Exploratory

Software
Engineering

Machine

16

An Interpretation Based on Human
Cognition Mechanism

• Human memory can be thought to be made

up of two distinct parts [Miller 56]:

– Short term memory and

– Long term memory.

17

Human Cognition
Mechanism

• Suppose I ask: “It is 10:10AM now,

how many hours are remaining today?"

– 10AM would be stored in the short-term memory.

– “A day is 24 hours long.” would be fetched from the

long term memory into short term memory.

– The mental manipulation unit would compute the

difference (24-10).

18

Schematic Representation of
Brain

Long Term Memory

Short Term Memory

Processing Center

Brain
19

Short Term
Memory

• An item stored in the short term memory can get lost:

– Either due to decay with time or

– Displacement by newer information.

• This restricts the time for which an item is stored in short

term memory:

– Typically few tens of seconds.

– However, an item can be retained longer in the short term

memory by recycling.

20

What is an
Item?

• An item is any set of related information.

– A character such as `a' or a digit such as `5'.

– A word, a sentence, a story, or even a picture.

• Each item normally occupies one place in memory.

• When you are able to relate several different items together

(chunking):

– The information that should normally occupy several places,

takes only one place in memory.

21

Chunking
• If I ask you to remember the number 110010101001

– It may prove very hard for you to understand and

remember.

– But, the octal form of 6251 (110)(010)(101)(001) would

be easier.

– You have managed to create chunks of three items each.

22

Evidence of Short
Term Memory

• In many of our day-to-day experiences:

– Short term memory is evident.

• Suppose, you look up a number from

the telephone directory and start dialling it.

– If you find the number is busy, you can dial the number again after a

few seconds without having to look up the number from directory.

• But, after several days:

– You may not remember the number at all

– Would need to consult the directory again.

23

The Magical Number 7

• If a person deals with seven or less number of items:

– These would be accommodated in the short term

memory.

– So, he can easily understand it.

• As the number of new information increases beyond

seven:

– It becomes exceedingly difficult to understand it.

24

What is the Implication in Program Development?

• A small program having just a few variables:

– Is within easy grasp of an individual.

• As the number of independent variables in the program

increases:

– It quickly exceeds the grasping power of an individual…

– Requires an unduly large effort to master the problem.

25

Implication in Program Development

• Instead of a human, if a machine could be writing (generating) a

program,

– The slope of the curve would be linear.

• But, how does use of software engineering principles helps hold

down the effort-size curve to be almost linear?

– Software engineering principles extensively use techniques

specifically targeted to overcome the human cognitive limitations.

26

Which Principles are Deployed by Software Engineering

Techniques to Overcome Human Cognitive Limitations?

• Two important principles are profusely

used:

– Abstraction

– Decomposition

27

Two Fundamental
Techniques to Handle

Complexity

28

What is Abstraction?

• Simplify a problem by omitting unnecessary

details.

– Focus attention on only one aspect of the problem

and ignore other aspects and irrelevant details.

– Also called model building.

29

Abstraction
Example

• Suppose you are asked to develop an overall

understanding of some country.

– Would you:

• Meet all the citizens of the country, visit every house, and

examine every tree of the country?

– You would possibly refer to various types of maps for that

country only.

30

You would study an Abstraction…

• A map is:
– An abstract

representation of

a country.
– Various types of

maps

(abstractions)

possible.

31

Does every Problem have a single Abstraction?

• Several abstractions of the same

problem can be created:

– Focus on some specific aspect and ignore the rest.

– Different types of models help understand

different aspects of the problem.

32

Abstractions of
Complex Problems

• For complex problems:

– A single level of abstraction is inadequate.

– A hierarchy of abstractions may have to be constructed.

• Hierarchy of models:

– A model in one layer is an abstraction

of the lower layer model.

– An implementation of the model at the higher layer.

33

Abstraction of Complex Problems -- An Example

• Suppose you are asked to understand all life forms that

inhabit the earth.

• Would you start examining each living organism?

– You will almost never complete it.

– Also, get thoroughly confused.

• Solution: Try to build an abstraction hierarchy.

34

Living
Organisms

35

KingdomAnimalia FungaePlantae

Mollusca Chordata Ascomycota Zygomycota

Homo
Sapien

Solanum
Tuberosum

Coprinus
Comatus

Phyllum

Species

Quiz

• What is a model?

• Why develop a model? That is, how does

constructing a model help?

• Give some examples of models.

36

Decomposition

• Decompose a problem into many small independent parts.

– The small parts are then taken up one by one and solved

separately.

– The idea is that each small part would be easy to grasp and

therefore can be easily solved.

– The full problem is solved when all the parts are solved.

37

Decomposition
• A popular example of decomposition principle:

– Try to break a bunch of sticks tied

together versus breaking them individually.

• Any arbitrary decomposition of a problem may not help.

– The decomposed parts must be more

or less independent of each other.

38

Decomposition: Another Example

• Example use of decomposition principle:

– You understand a book better when the contents are

organized into independent chapters.

– Compared to when everything is mixed up.

39

Why Study Software Engineering? (1)

• To acquire skills to develop large programs.

–Handling exponential growth in complexity with size.

–Systematic techniques based on abstraction (modelling)

and decomposition.

40

Why Study Software Engineering? (2)

• Learn systematic techniques of:

–Specification, design, user interface development,

testing, project management, maintenance, etc.

–Appreciate issues that arise in team development.

41

Why Study Software Engineering? (3)

• To acquire skills to be a better programmer:

•Higher Productivity

•Better Quality Programs

42

Jobs versus
Projects

Jobs – repetition of very well-defined and well understood tasks with very
little uncertainty

Exploration – The outcome is very uncertain, e.g. finding a cure for cancer.

Projects – in the middle! Has challenge as well as routine…

Routine
Uncertainty
of outcome

Jobs Projects Exploration

43

Types of Software
Projects

• Two types of software projects:

–Products (Generic software)

–Services (custom software)

• Total business – Several Trillions of US $

–Half in products and half services

–Services segment is growing fast!

44

Types of Software

Packaged software —
prewritten software available for

purchase

Custom software —
software developed at some

user’s requests-Usually developer
tailors some generic solution

Vertical market
software—designed

for particular
industry

Horizontal market
software—meets

needs of many
companies

45

Types of Software Projects

• Software product development projects

• Software services projects

46

Software Services
• Software service is an umbrella term, includes:

– Software customization

– Software maintenance

– Software testing

– Also contract programmers (CP) carrying out coding or

any other assigned activities.

CP

47

Factors responsible for accelerated growth of services…

• Now lots of code is available in a company:

– New software can be developed by modifying the closest.

• Speed of Conducting Business has increased tremendously:

– Requires shortening of project duration

48

Contribution of the
IT sector to India’s
GDP rose to
approximately 9.5%
in 2015 from 1.2%
in 98

49

Scenario of Indian Software Companies

• Indian companies have largely

focused on the services segment --

- Why?

50

A Few Changes in Software Project Characteristics over Last 40 Years

• 40 years back, very few software existed

– Every project started from scratch

– Projects were multi year long

• The programming languages that were used earlier hardly provided
any scope for reuse:

– FORTRAN, PASCAL, COBOL, BASIC

• No application was GUI-based:

– Mostly command selection from displayed text menu items.

51

Traditional versus Modern Projects
• Projects are increasingly becoming services:

– Either tailor some existing software or reuse pre-built libraries.

• Facilitate and accommodate client feedbacks

• Facilitate customer participation in project development work

• Incremental software delivery with evolving functionalities.

• No software is being developed from scratch --- Significant

reuse is being made…

52

Computer Systems Engineering
• Many products require development of software as well as

specific hardware to run it:

– a coffee vending machine,

–a robotic toy,

–A new health band product, etc.

• Computer systems engineering:

–encompasses software engineering.

53

Computer Systems Engineering

• The high-level problem:

–Deciding which tasks are to be solved by software.

–Which ones by hardware.

54

Computer Systems Engineering (CONT.)

• Typically, hardware and software are developed together:

–Hardware simulator is used during software development.

• Integration of hardware and software.

• Final system testing

55

Feasibility

Study

Requirements
Analysis and
Specification

Hardware
Software

Partitioning

Hardware
Development

Software
Development

Integration
and Testing

Project Management

Computer Systems Engineering (CONT.)

56

57

Emergence of Software
Engineering Techniques

Emergence of Software Engineering Techniques

• Early Computer Programming (1950s):

–Programs were being written in assembly

language…

–Sizes limited to about a few hundreds of lines of

assembly code…

58

Early Computer Programming (50s)

• Every programmer developed his/her own

style of writing programs:

–According to his intuition (called exploratory

or build-and-fix programming) .

59

• High-level languages such as FORTRAN, ALGOL, and

COBOL were introduced:

This reduced software development efforts greatly.

Why reduces?

High-Level Language Programming (Early 60s)

60

• Software development style was still exploratory.

 Typical program sizes were limited to a few thousands of

lines of source code.

High-Level Language Programming (Early 60s)

61

Control Flow-Based Design (late 60s)

• Size and complexity of programs increased further:

–Exploratory programming style proved to be insufficient.

• Programmers found:

–Very difficult to write cost-effective and correct

programs.

62

Control Flow-Based Design (late 60s)

• Programmers found it very difficult:

–To understand and maintain programs written by

others.

• To cope up with this problem, experienced

programmers advised---”Pay particular attention to the

design of the program's control structure.'’

63

Control Flow-Based Design (late 60s)

• What is a program's control structure?

– The sequence in which the program's

instructions are executed.

• To help design programs having good

control structure:

–Flow charting technique was developed.

64

Control Flow-Based Design (late 60s)

• Using flow charting technique:

–One can represent and design a

program's control structure.

–When asked to understand a program:

•One would mentally trace the program's

execution sequence.

65

Control Flow-Based Design

• A program having a messy flow chart

representation:

–Difficult to understand and debug.

66

Spaghetti Code Structure

67

Control Flow-Based Design (Late 60s)

• What causes program complexity?

–GO TO statements makes control

structure of a program messy.

–GO TO statements alter the flow of control arbitrarily.

–The need to restrict use of GO TO statements was

recognized.

68

Control Flow-Based Design (Late 60s)

• Many programmers had extensively

used assembly languages.

–JUMP instructions are frequently used for

program branching in assembly languages.

–Programmers considered use of GO TO

statements inevitable.

69

addi $a0, $0, 1
j next
next:
j skip1
add $a0, $a0, $a0
skip1:
j skip2
add $a0, $a0, $a0
add $a0, $a0, $a0
skip2:
j skip3
loop:
add $a0, $a0, $a0
add $a0, $a0, $a0
add $a0, $a0, $a0
skip3:
j loop

Control-flow Based Design (Late 60s)

• At that time, Dijkstra published his article:

–“Goto Statement Considered Harmful” Comm. of ACM,

1969.

• Many programmers were unhappy to read his

article.

70

Control Flow-Based Design (Late 60s)

• Some programmers published several counter

articles:

–Highlighted the advantages and inevitability of GO TO

statements.

71

Control Flow-Based Design (Late 60s)

• It soon was conclusively proved:

–Only three programming constructs are sufficient to

express any programming logic:

•sequence (a=0;b=5;)

•selection (if(c==true) k=5 else m=5;)

• iteration (while(k>0) k=j-k;)

72

Control-flow Based Design (Late 60s)

• Everyone accepted:

–It is possible to solve any programming problem without

using GO TO statements.

–This formed the basis of Structured Programming

methodology.

73

Structured Programming
• A program is called structured:

–When it uses only the following types of constructs:

•sequence,

•selection,

• iteration

–Consists of modules.

74

• Sometimes, violations to structured

programming are permitted:

o Due to practical considerations such as:

o Premature loop exit (break) or for exception handling.

Structured Programs

75

Advantages of Structured programming

• Structured programs are:

–Easier to read and understand,

–Easier to maintain,

–Require less effort and time for development.

–Less buggy

76

Structured Programming

• Research experience shows:

–Programmers commit less number of errors:

•While using structured if-then-else and do-while

statements.

•Compared to test-and-branch (GOTO) constructs.

77

Data Structure-Oriented Design (Early 70s)

• As program sizes increased further, soon it was

discovered:

–It is important to pay more attention to the design of data

structures of a program

• Than to the design of its control structure.

78

Data Structure-Oriented Design (Early 70s)

• Techniques which emphasize designing the data

structure:

–Derive program structure from it:

•Are called data structure-oriented design techniques.

79

Data Structure Oriented Design (Early 70s)

• An example of data structure-oriented design

technique:

–Jackson's Structured Programming(JSP) methodology

•Developed by Michael Jackson in 1970s.

80

• JSP technique:

 Program code structure should correspond to the

data structure.

Data Structure Oriented Design (Early 70s)

81

JSP methodology:

 A program's data structures are first designed using notations for

sequence, selection, and iteration.

 The data structure design is then used :

To derive the program structure.

A Data Structure Oriented Design
(Early 70s)

82

• Several other data structure-oriented Methodologies

also exist:

 e.g., Warnier-Orr Methodology.

Data Structure Oriented Design (Early 70s)

83

Data Flow-Oriented Design (Late 70s)

• Data flow-oriented techniques advocate:

–The data items input to a system must first be identified,

–Processing required on the data items to produce the

required outputs should be determined.

84

Data Flow-Oriented Design (Late 70s)

• Data flow technique identifies:

–Different processing stations (functions) in a system.

–The items (data) that flow between processing

stations.

85

Data Flow-Oriented Design (Late 70s)

• Data flow technique is a generic technique:

–Can be used to model the working of any system.

• not just software systems.

• A major advantage of the data flow technique is its

simplicity.

86

CarFit
Engine

Paint and
Test

Fit
Wheels

Fit
Doors

Chassis Store

Door Store

Wheel Store

Engine Store

Partly
Assembled
Car

Assembled
Car

Chassis with
Engine

Data Flow Model of a Car Assembly Unit

87

Object-Oriented Design (80s)

• Object-oriented technique:

–An intuitively appealing design approach:

–Natural objects (such as employees, pay-roll-register,

etc.) occurring in a problem are first identified.

88

Object-Oriented Design (80s)

• Relationships among objects:

–Such as composition, reference, and inheritance are

determined.

• Each object essentially acts as:

–A data hiding (or data abstraction) entity.

89

Object-Oriented
Design (80s)

• Object-Oriented Techniques have gained wide acceptance:

– Simplicity

– Increased Reuse possibilities

– Lower development time and cost

–More robust code

– Easy maintenance

90

Evolution of
Design Techniques

Object-Oriented

Ad hoc

Data flow-based

Data structure-
based

Control flow-
based

Object-Oriented

Aspect-
oriented

Component-
based

Service-
oriented

91

Evolution of Other Software Engineering Techniques

• The improvements to the software design methodologies

–are indeed very conspicuous.

• In additions to the software design techniques:

–Several other techniques evolved.

92

Evolution of Other
Software Engineering

Techniques

• Life cycle models,

• Specification techniques,

• Project management techniques,

• Testing techniques,

• Debugging techniques,

• Quality assurance techniques,

• Metrics,

• CASE tools, etc.

93

Differences between the exploratory style and
modern software development practices

• Use of Life Cycle Models

• Software is developed through several well-defined stages:

–Requirements analysis and specification,

–Design,

–Coding,

–Testing, etc.

94

Differences between the exploratory style and
modern software development practices

• Emphasis has shifted

– from error correction to error prevention.

• Modern practices emphasize:

–detection of errors as close to their point of

introduction as possible.

95

Differences between the exploratory style and
modern software development practices (CONT.)

• In exploratory style,

–errors are detected only during testing,

• Now:

– Focus is on detecting as many errors as possible in each

phase of development.

96

Differences between the exploratory style and
modern software development practices (CONT.)

• In exploratory style:

–coding is synonymous with program development.

• Now:

–coding is considered only a small part of program

development effort.

97

Differences between the exploratory style and
modern software development practices (CONT.)

• A lot of effort and attention is now being paid to:

–Requirements specification.

• Also, now there is a distinct design phase:

–Standard design techniques are being used.

98

Differences between the exploratory style and
modern software development practices (CONT.)

• During all stages of development process:

–Periodic reviews are being carried out

• Software testing has become systematic:

–Standard testing techniques are available.

99

Differences between the exploratory style and modern software
development practices (CONT.)

• There is better visibility of design and code:

–Visibility means production of good quality, consistent and standard

documents.

– In the past, very little attention was being given to producing good quality

and consistent documents.

–We will see later that increased visibility makes software project

management easier.

100

Differences between the exploratory style and
modern software development practices (CONT.)

• Because of good documentation:

–fault diagnosis and maintenance are smoother now.

• Several metrics are being used:

–help in software project management, quality assurance,

etc.

101

Differences between the exploratory style and
modern software development practices (CONT.)

• Projects are being properly planned:

–estimation,

–scheduling,

–monitoring mechanisms.

• Use of CASE tools.

102

Review Questions

• What is structured programming?

• What problems may appear if a large program is

developed without using structured

programming techniques?

103

Life Cycle Models

104

Software
Life Cycle

Conceptualize

Specify

Design

Code

Test

Maintain

Retire

Deliver

105

Life Cycle Model

• A software life cycle model (also process model or SDLC):

–A descriptive and diagrammatic model of software life

cycle:

–Identifies all the activities undertaken during product development,

–Establishes a precedence ordering among the different activities,

–Divides life cycle into phases.

106

Life Cycle Model (CONT.)

• Each life cycle phase consists of several activities.

–For example, the design stage might consist of:

•structured analysis

•structured design

•Design review

107

Why Model Life Cycle?
• A graphical and written description:

–Helps common understanding of activities among the software

developers.

–Helps to identify inconsistencies, redundancies, and omissions

in the development process.

–Helps in tailoring a process model for specific projects.

108

Life Cycle Model (CONT.)

• The development team must identify a suitable life cycle

model:

–and then adhere to it.

–Primary advantage of adhering to a life cycle model:

•Helps development of software in a systematic and disciplined

manner.

109

Life Cycle Model (CONT.)

• When a program is developed by a single programmer ---

–The problem is within the grasp of an individual.

–He has the freedom to decide his exact steps and still succeed --- called

Exploratory model--- One can use it in many ways

–CodeTestDesign

–CodeDesignTest  Change Code 

– Specify code Design Test etc.

110

Initial
Coding Do Until

Done

Test

Fix

Life Cycle Model (CONT.)

• When software is being developed by a team:

–There must be a precise understanding among team

members as to when to do what,

–Otherwise, it would lead to chaos and project failure.

111

Life Cycle Model (CONT.)

• A software project will never succeed if:

–one engineer starts writing code,

–another concentrates on writing the test document first,

–yet another engineer first defines the file structure

–another defines the I/O for his portion first.

112

Phase Entry and Exit Criteria

• A life cycle model:

–defines entry and exit criteria for every phase.

–A phase is considered to be complete:

•only when all its exit criteria are satisfied.

113

Life Cycle Model (CONT.)

• What is the phase exit criteria for the software requirements

specification phase?

–Software Requirements Specification (SRS) document is

complete, reviewed, and approved by the customer.

• A phase can start:

–Only if its phase-entry criteria have been satisfied.

114

Life Cycle Model: Milestones

• Milestones help software project managers:

–Track the progress of the project.

–Phase entry and exit are

important milestones.

115

Life Cycle and Project Management

•When a life cycle model is followed:

–The project manager can at any time fairly

accurately tell,

•At which stage (e.g., design, code, test, etc.) the

project is.

116

Project Management Without Life Cycle Model

• It becomes very difficult to track the progress of the project.

–The project manager would have to depend on the guesses

of the team members.

• This usually leads to a problem:

–known as the 99% complete syndrome.

117

Project Deliverables: Myth and Reality

Myth:

The only deliverable for a successful project is the working

program.

Reality:

Documentation of all aspects of software development are

needed to help in operation and maintenance.

118

Life Cycle Model (CONT.)

• Many life cycle models have been proposed.

• We confine our attention to only a few commonly used models.

–Waterfall

–V model,

–Evolutionary,

–Prototyping

–Spiral model,

–Agile models

Traditional models

119

Software Life Cycle

• Software life cycle (or software process):

–Series of identifiable stages that a software product

undergoes during its life time:

• Feasibility study

•Requirements analysis and specification,

•Design,

• Coding,

• Testing

•Maintenance.

120

Classical Waterfall Model
• Classical waterfall model divides life cycle into following phases:

–Feasibility study,

–Requirements analysis and specification,

–Design,

–Coding and unit testing,

– Integration and system testing,

–Maintenance.

Conceptualize

Specify

Design

Code

Test

Maintain

Retire

Deliver

121

Classical Waterfall ModelFeasibility Study

Req. Analysis

Design

Coding

Testing

Maintenance

Simplest and most
intuitive

122

Relative Effort for Phases
• Phases between feasibility study and

testing

–Called development phases.

• Among all life cycle phases

–Maintenance phase consumes maximum

effort.

• Among development phases,

–Testing phase consumes the maximum effort.

0

10

20

30

40

50

60

R
eq

. S
p

D
es

ig
n

C
o
d

in
g

T
es

t

M
a
in

tn
ce

R
e
la
ti
ve

 E
ff

or
t

Process Model

• Most organizations usually define:

– Standards on the outputs (deliverables) produced at the end of every phase

– Entry and exit criteria for every phase.

• They also prescribe methodologies for:

– Specification,

– Design,

– Testing,

– Project management, etc.

Classical Waterfall Model (CONT.)

• The guidelines and methodologies of an organization:

–Called the organization's software development methodology.

• Software development organizations:

– Expect fresh engineers to master the organization's

software development methodology.

125

Feasibility
Dimensions

Feasibility Study

Schedule
feasibility

Technical
feasibility

Economic
feasibility
(also called
cost/benefit
feasibility)

126

Feasibility Study

• Main aim of feasibility study: determine whether developing the

software is:

– Financially worthwhile

– Technically feasible.

• Roughly understand what customer wants:

–Data which would be input to the system,

–Processing needed on these data,

–Output data to be produced by the system,

–Various constraints on the behavior of the system.

127

First Step

Case Study

• SPF Scheme for CFL

• CFL has a large number of employees, exceeding 50,000.

• Majority of these are casual labourers

• Mining being a risky profession:

– Casualties are high

• Though there is a PF:

– But settlement time is high

• There is a need of SPF:

– For faster disbursement of benefits

128

Feasibility: Case Study

• Manager visits main office, finds out the main
functionalities required

• Visits mine site, finds out the data to be input

• Suggests alternate solutions

• Determines the best solution

• Presents to the CFL Officials

• Go/No-Go Decision

129

Activities During Feasibility Study

• Work out an overall understanding of the problem.

• Formulate different solution strategies.

• Examine alternate solution strategies in terms of:

•resources required,

•cost of development, and

•development time.

130

Activities during Feasibility Study

• Perform a cost/benefit analysis:

–Determine which solution is the best.

–May also find that none of the solutions is

feasible due to:

• high cost,

• resource constraints,

• technical reasons.

131

Cost benefit analysis (CBA)
• Need to identify all costs --- these could be:

– Development costs

– Set-up

– Operational costs

• Identify the value of benefits

• Check benefits are greater than costs

132

The business case
• Benefits of delivered project

must outweigh costs

• Costs include:

- Development

- Operation

• Benefits:

– Quantifiable

– Non-quantifiable

Rs
Rs

Benefits

Costs

133

134
Rajib Mall

CSE Department

