
Association Relationship
• A class can be associated with itself (unary association).

–Give an example?

• An arrowhead used along with name:

–Indicates direction of association.

• Multiplicity indicates # of instances taking part in the
association.

Person
Friend of

*
*

Self Association: Example of
Computer Network

Computer

Connects to

*

*

Computer
Network: Object

Diagram

Node7

Node2 Node3

Node4

Node5

Node6

Node1

Node8

works for

Association Exercise 1
• A Person works for a Company.

Person Companyemployee employer

Association Name

Role

Observe: Implicit bidirectional navigation

Implicit attribute of type Company

Implicit attribute of type Person

Implementation?

Quiz: Read and
understand
UML class
diagram

• 1 CPU has 0 to two Controllers
• 1-4 DiskDrives controlled by 1 SCSIController
• SCSIController is a (specialized) Controller

CPU Controller

SCSIControllerDiskDrive

1 0..2

1..4 1
controls

has

Types of Class
Relationships

Relation

AssociationGeneralization Dependency

Aggregation

Binary Association N-ary Association

Composition

Overdoing Associations
• Avoid unnecessary Associations

1Person

Name

PersonInfo

Address
E-Mail
Birthday

PersonInfo

Name
Address
E-Mail
Birthday

1

Avoid This… Do This

Aggregation Relationship
• Represents whole-part relationship
• Represented by a diamond symbol at the composite end.
• Usually creates the components:

–Also, aggregate usually invokes the same operations of all its
components.

–This is in contras to plain association

• Usually owner of the components:
–But can share with other classes

employs memberOf

Aggregation Relationship

Document Line1 * Paragraph 1 *

Company Club
1 * Person 0..1*

An aggregate object contains other objects.

Aggregation limited to tree hierarchy:

− No circular aggregate relation.

Aggregation cont…

LineParagraph
1 *

Inheritance:
− Different object types with similar features.

− Necessary semantics for similarity of behavior is in place.

Aggregation:
− Containment allows construction of complex objects.

Aggregation vs. Inheritance
Cont…

Composition
• A stronger form of aggregation

– The whole is the sole owner of its part.
• A component can belong to only one whole

– The life time of the part is dependent upon the whole.
• The composite must manage the creation and destruction of its

parts.
Circle Point

3..*

1

Polygon
Point
Circle

Composition Relationship

Order 1 * Item

• Life of item is same as that of order

Composition: Alternate Notation

Car

Wheel
4

Engine
1

Door
2

Chassis
1

Axle
1

Steering
1

Composition

• An object may be a part of ONLY
one composite at a time.
Whole is responsible for the
creation and disposition of its parts.

Window

Frame
*

1

whole

part

Aggregation vs. Composition• Composition:
– Composite and components have the same life line.

• Aggregation:
– Lifelines are different.

• Consider an order object:
– Aggregation: If order items can be

changed or deleted after placing order.

– Composition: Otherwise.

Composition versus Aggregation

1
Order Item*

Order Item
1 *

Composition

Aggregation

Implementing
Composition

public class Car{
private Wheel wheels[4];
public Car (){

wheels[0] = new Wheel();
wheels[1] = new Wheel();
wheels[2] = new Wheel();
wheels[3] = new Wheel();

}
} Car Wheel1 4

How to identify aggregation/composition?
• Lifetime of part is bound within lifetime of composite

–There is a create-delete dependency

• There is an obvious whole-part physical or logical assembly

• Some properties of composite propagate to parts (e.g.,
location)

• Operations applied to composite propagate to parts (e.g.,
destruction, movement, recording)

Class Dependency

Dependent Class Independent Class

Dependency
• Dependency relationship can arise due to a variety of reasons:

– Stereotypes are used to show the precise nature of the dependency.

Type of
dependency

Stereotype Description

Abstraction «abstraction» Dependency of concrete class on its abstract class.

Binding «bind» Binds template arguments to create model elements
from templates.

Realization «realize» Indicates that the client model element is an
implementation of the supplier model element

Substitution «substitute» Indicates that the client model element takes place
of the supplier.

Association Vs. Aggregation

• Is aggregation an association?

• Is composition an aggregation?

Association
Types

• aggregation: "is part of"
– Symbolized by empty diamond

• composition: is made of
– Stronger version of aggregation
– The parts live and die with the whole
– Symbolized by a filled diamond

• dependency: Depends on
– Represented by dotted arrow.

1
1

Car

aggregation

Engine

Lottery
Ticket

Random

dependency

Page

Book
composition

*

1

Object Association

n n

Class
Generalization
Relationship

Object
Aggregation
Association

0..*

1..*

Object
Composition
Association

0..*

1

UML Class
Relation Notation

Summary

Will always be “1”

dependency

Aggregation Composition

0..*

1..5

Faculty

CourseTeaching
1..*

1

SalesOrder

SalesOrderLineItem

(team-
teaching is
possible)

Class Relation
Hints

• Composition
– B is a permanent part of A
– A contains B
– A is a permanent collection of Bs

• Subclass / Superclass
– A is a kind of B
– A is a specialization of B
– A behaves like B

• Association (Collaboration)
– A delegates to B
– A needs help from B
– A and B are peers.

Class Diagram Inference Based on Text Analysis
(based on Dennis, 2002)

• A common noun implies a class e.g. Book
• A proper noun implies an object (instance of a class): CSE Dept, OOSD, etc.
• An adjective implies an attribute e.g. price of book
• A “doing” verb implies an operation

– Can also imply a relationship e.g. student issues Book
• A “having” verb implies an aggregation relationship
• A predicate or descriptive verb phrase elaborates an operation e.g. ISBN

numbers are integers
• An adverb implies an attribute of an operation e.g. fast loading of image…

 Faculty & student
 Hospital & doctor
 Door & Car
 Member & Organization
 People & student
 Department & Faculty
 Employee & Faculty
 Computer Peripheral & Printer
 Account & Savings account

Identify Class
Relations

Identify Classes &
Relations

• A square is a polygon

• Shyam is a student

• Every student has a name

• 100 paisa is one rupee

• Students live in hostels

• Every student is a member of the library

• A student can renew his borrowed books

• The Department has many students

Identify Classes &
Relations

• A country has a capital city
• A dining philosopher uses a fork
• A file is an ordinary file or a directory file
• Files contain records
• A class can have several attributes
• A relation can be association or generalization
• A polygon is composed of an ordered set of points
• A person uses a computer language on a project

Class Diagram: Recap

• Describes static structure of a system

• Main constituents are classes and their
relationships:
–Generalization

–Aggregation

–Association

–Various kinds of dependencies

Summary of Relationships Between Classes
• Association

– Permanent, structural, “has a”
– Solid line (arrowhead optional)

• Aggregation
– Permanent, structural, a whole created from parts
– Solid line with diamond from whole

• Dependency
– Temporary, “uses a”
– Dotted line with arrowhead

• Generalization
– Inheritance, “is a”
– Solid line with open (triangular) arrowhead

• Implementation
– Dotted line with open (triangular) arrowhead

OR

Object Diagram

Different representations of
the LibraryMember object

LibraryMember

Mritunjay
B10028
C-108, Laksmikant Hall
1119
Mrituj@cse
25-02-04
25-03-06
NIL

IssueBook();
findPendingBooks();
findOverdueBooks();
returnBook();
findMembershipDetails();

LibraryMember

Mritunjay
B10028
C-108, Laksmikant Hall
1119
Mrituj@cse
25-02-04
25-03-06
NIL

LibraryMember

Interaction Diagram
• Can model the way a group of objects interact to realize some

behaviour.

• How many interaction diagrams to draw?

– Typically each interaction diagram realizes behaviour of a single use
case

– Draw one sequence diagram for each use case.

35

A First Look at Sequence Diagrams

• Captures how objects interact with each other:

– To realize some behavior (use case execution).

• Emphasizes time ordering of messages.

• Can model:

– Simple sequential flow, branching, iteration, recursion,
and concurrency.

36

Develop One Sequence
diagram for every use case

member:
LibraryMember book:Book :Book

Copy

borrow(book)
ok = canBorrow()

[ok] borrow(member)

setTaken(member)

Use
Case

Borrow
Book

Return
Book

Search
Book

Borrow
Book

Sequence Diagram
• Shows interaction among objects in a two-dimensional

chart
• Objects are shown as boxes at top
• If object created during execution:

–Then shown at appropriate place in time line

• Object existence is shown as dashed lines (lifeline)
• Object activeness, shown as a rectangle on lifeline

member:
LibraryMember book:Book :Book

Copy

borrow(book)
ok = canBorrow()

[ok] borrow(member)

setTaken(member)

Sequence Diagram Cont…

• Messages are shown as arrows.
• Each message labelled with corresponding message name.

• Each message can be labelled with some control
information.

• Two types of control information:
–condition ([])

–iteration (*)

member:
LibraryMember book:Book :Book

Copy

borrow(book)
ok = canBorrow()

[ok] borrow(member)

setTaken(member)

Gist of Syntax

• iteration marker *[for all objects]
• [condition]

– message is sent only if the condition is true
• self-delegation

– a message that an object sends to itself
• Loops and conditionals:

– UML2 uses a new notation called interaction frames to support
these

member:
LibraryMember book:Book :Book

Copy

borrow(book)
ok = canBorrow()

[ok] borrow(member)

setTaken(member)

Control logic in Interaction Diagrams
• Conditional Message

– [variable = value] message()

– Message is sent only if clause evaluates to true

• Iteration (Looping)
– * [i := 1..N] message()

– “*” is required; [...] clause is optional

– The message is sent many times to possibly multiple receiver
objects.

41

Elements of A Sequence Diagram

Y-A
xis (tim

e)

member:
LibraryMember book:Book :Book

Copy

borrow(book)
ok = canBorrow()

[ok] borrow(member)
setTaken(member)

X-Axis (objects)

ObjectLife Line

message

Activation box

condition
How do you show Mutually exclusive conditional messages?

Sequence Diagrams
How to represent Mutually exclusive conditional invocations? If book is available,
invoke msg2 on ClassB else invoke msg3 on classC,

[flag = true] msg2()

:ClassA :ClassB

msg1()

:ClassC

[flag = false] msg3()

flag = checkBook()

:Library
Boundary

:Library
Book
Renewal
Controller

:Library
Book
Register

:Book :Library
Member

renewBook

displayBorrowing

selectBooks

[reserved]

apology

confirm

find MemberBorrowing

bookSelected
* find

update

[reserved]

apology

confirm

updateMemberBorrowing

Sequence
Diagram for
the renew
book use
case

renewBook

Example: Develop Sequence Diagram
• A user can use a travel portal to plan a travel

• When the user presses the plan button, a travel agent
applet appears in his window

• Once the user enters the source and destination,
– The travel agent applet computes the route and displays the

itinerary.

– Travel agent widget disappears when user presses close button

45

Example: Solution

:client

:travelAgentplan

setItinerary

<<create>>

calculateRoute

<<destroy>>

46

Return Values
• Optionally indicated using a dashed arrow:

– Label indicates the return value.

– Don’t need when it is obvious what is being returned, e.g.
getTotal()

• Model a return value only when you need to refer to it
elsewhere:
– Example: A parameter passed to another message.

Method Population in Classes
• Methods of a class are determined from the

interaction diagrams…

:Registration
form

:Registration
manager

add course
(joe, math 01) RegistrationManager

addCourse(Student,Course)

Example Sequence Diagram: Borrow Book Use Case

member:
LibraryMember book:Book :Book

Copy

borrow(book)
ok = canBorrow()

[ok] borrow(member)
setTaken(member)

Object Creation
• An object may create another object via a <<create>>

message.

:A

<<create>> :B

Object Destruction
• An object may destroy another object via a <<destroy>> message.

– An object may also destroy itself.

• But, how do you destroy an object in Java?
– Avoid modeling object destruction unless memory management is critical.

:A :B
<<destroy>>

Control Information

Iteration
example
UML 1.x:

:CompoundShape :Shape

*draw()
draw()

:Library
Boundary

:Library
Book
Renewal
Controller

:Library
Book
Register

:Book

:Library
Member

1: renewBook

3: display
Borrowing

4: selectBooks

[reserved]

8: apology

12: confirm

2: findMemberBorrowing

5: book
Selected

6: * find

9: update

[reserved]

7: apology

10:
confirm

updateMemberBorrowing

Collaboration
Diagram for the
renew book use
case :Library

Boundary

:Library
Book
Renewal
Controller

:Library
Book
Register

:Book :Library
Member

renewBook

displayBorrowing

selectBooks

[reserved]

apology

confirm

find MemberBorrowing

bookSelected
* find

update

[reserved]

apology

confirm

updateMemberBorrowing

a:A

:B

c:C

m1
create

flag=doA(this)
create

doB(c)

Quiz: Write Code for class B

Quiz: Ans
public class B {
…
int doA(A a) {

int flag;
C c = new C();
a.doB(c); …
return flag; }

}

9/13/2018

State Machine
Diagrams

State Chart Diagram Cont…

• State chart avoids two problems of FSM:

– State explosion

– Lack of support for representing concurrency

• A hierarchical state model:

– Can have composite states --- OR and AND states.

Robot: State Variables
• Movement: On, OFF
• Direction: Forward, Backward,

left, Right
• Left hand: Raised, Down
• Right hand: Raised, down
• Head: Straight, turned left, turned right
• Headlight: On, Off
• Turn: Left, Right, Straight

How many states
in the state
machine model?

FSM: exponential
rise in number of
states with state
variables

Features of Statecharts
• Two major features are introduced :

– nested states

– concurrent states

• Many other features have also been
added:
– History state

– broadcast messages

– actions on state entry, exit

– …

S2

S1

Nested State Diagrams

Concurrent State Diagrams

Move
ON

Move
OFF

Move
Forward

Move
Backward

State Chart
Diagram

• Elements of state chart diagram

• Initial State: A filled circle

• Final State: A filled circle inside a larger circle

• State: Rectangle with rounded corners

• Transitions: Arrow between states, also boolean logic
condition (guard)

• UML extended state chart is called state machine

How to Encode an FSM?

• Three main approaches:

– Doubly nested switch in loop

– State table

– State Design Pattern

3 Principal Ways• Doubly nested switch in loop:
– Global variables store state --- Used as switch
– Event type is discriminator in second level switch
– Hard to handle concurrent states, composite state, history, etc.

• State table: Straightforward table lookup
• Design Pattern:

– States are represented by classes
– Transitions as methods in classes

Doubly Nested Switch Approachint state, event; /* state and event are variables */

while(TRUE){

switch (state){

Case state1: switch(event){

case event1:
state=state2; etc…; break;

case event2:…

default:

}

Case state2: switch(event){…

…. }

}}

State Table Approach
• From the state machine, we can set up a state transition

table with a column for the actions associated with each
transition Present

state Event Next
state Actions

Light_off
e1 Light_off none

e2 Light_on set red LED flashing

Light_on
e1 Light_on none

e2 Light_off reset red LED flashing

An Object-Oriented Design Process
• We discuss a design process based to a large extent on

Larman’s approach:
– Also synthesizes features from various other methodologies.

• From requirements specification, an initial model is
developed (OOA):
–Analysis model is iteratively refined into a design model

• Design model is implemented using an OO language.

OOAD Process

OOA OOD/OOP

Iterative and Incremental

Definition
of

the problem

Construction
of

the solution

Specification
Program

Domain
Model
Use
case
model

OOA versus OOD?
• Analysis:

– An elaboration of requirements.

– Independent of any specific implementation

• Design:

– A refinement of the analysis model.

– Takes implementation constraints into account

Design Process

OOA OOD

Start

User interface
Issues or GUI

prototype

Glossary

Interaction
diagram

Use case
diagram

SRS
document

Domain
model

Class
diagram Code

Domain Model
Relationships Domain Model

Use Case Model

Interaction Diagrams

Glossary

Dynamic Behavior

Functional Requirements

Conceptual Class Diagram

Domain
objects

Define terms

Domain Modelling
• Represent concepts or objects appearing in the problem

domain.
– Also capture object relationships.

• Three types of objects are identified:
– Boundary objects

– Entity objects

– Controller objects

Class Stereotypes

Cashier Interface
Boundary

Account
Entity

Withdrawal
manager

Control

Three different stereotypes are used to represent classes :
<<boundary>>, <<control>>, <<entity>>.

Boundary Objects
• Handle interaction with actors:

–User interface objects

• Often implemented as screens, menus, forms, dialogs
etc.

• Do not perform processing:
–But may validate input, format output, etc.

Entity Objects
• Hold information over long term:

–e.g. Book, BookRegister

• Normally are dumb servers:

– Responsible for storing data, fetching data etc.

– Elementary operations on data such as searching, sorting, etc.

• Often appear as nouns in the problem description...

Controller Objects
• Overall responsibility to realize use case behavior:

–Interface with the boundary objects

–Coordinate the activities of a set of entity objects

• Embody most of the business logic required for use case
execution:

• There can be more than one controller to realize a single use
case

Controller Classes
• Controller classes coordinate, sequence, transact,

and otherwise control other objects…

• In Smalltalk MVC mechanism:

– These are called controllers

Use Case Realization
Boundary 1 Controller Boundary 2

Entity 3Entity 2Entity 1

Realization of use case through the collaboration of
Boundary, controller and entity objects

	Association Relationship
	Self Association: Example of�Computer Network
	Computer Network: Object Diagram
	Association Exercise 1
	Quiz: Read and understand UML class diagram
	Types of Class Relationships
	Overdoing Associations
	Aggregation Relationship
	 Aggregation Relationship
	Aggregation cont…
	Aggregation vs. Inheritance� Cont…
	Composition
	 Composition Relationship
	Composition: Alternate Notation
	Composition
	Aggregation vs. Composition
	Composition versus Aggregation
	Implementing Composition
	How to identify aggregation/composition?
	 Class Dependency
	Dependency
	Association Vs. Aggregation
	Association Types
	Slide Number 24
	Slide Number 25
	Class Relation Hints
	Class Diagram Inference Based on Text Analysis�(based on Dennis, 2002)
	Slide Number 28
	Identify Classes & Relations
	Identify Classes & Relations
	Class Diagram: Recap
	Summary of Relationships Between Classes
	 Object Diagram
	Interaction Diagram
	A First Look at Sequence Diagrams
	Develop One Sequence diagram for every use case
	Sequence Diagram
	Sequence Diagram Cont…
	Gist of Syntax
	Control logic in Interaction Diagrams
	Elements of A Sequence Diagram
	Slide Number 42
	Slide Number 43
	Example: Develop Sequence Diagram
	Example: Solution
	Return Values
	Method Population in Classes
	Example Sequence Diagram: Borrow Book Use Case
	Object Creation
	Object Destruction
	Control Information
	Slide Number 52
	Slide Number 53
	Quiz: Ans
	State Machine Diagrams�
	State Chart Diagram Cont…
	Robot: State Variables
	Features of Statecharts
	State Chart Diagram �
	How to Encode an FSM?
	3 Principal Ways
	Doubly Nested Switch Approach
	State Table Approach
	An Object-Oriented Design Process
	OOAD Process
	OOA versus OOD?
	Design Process
	Domain Model Relationships
	Domain Modelling
	Class Stereotypes
	Boundary Objects
	Entity Objects
	Controller Objects
	Controller Classes
	Use Case Realization

