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Modelling Skills References

Objectives

To learn the following:

I What is a model?

I First-principles (mechanistic) vs. empirical models.

I Systematic procedure for building models from data.

I Few critical aspects of data-driven (empirical) modelling.

With two hands-on examples in Rr (a popular software for data analysis) . . .
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What is a model?

A model is a mathematical (or descriptive) abstraction of a process that
emulates its behaviour or characteristics

For the purposes of

I Prediction (inferring the unknowns)

I Classification (pattern recognition)

I Fault detection

I Process simulation

I Design and optimization

I . . .
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Model vs. process
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A model emulates the process given the operating conditions, parameters and physical properties.
However, in general, its architecture is different from the process!
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Two broad approaches to modelling

Models

First-principles
(Fundamentals)

Empirical
(Data-driven)

Write conservation 
equations

Constitutive laws
...

Perform experiments
Postulate models

Estimate parameters
...

Test drive of a vehicle

Taking a vehicle for a test drive is a simple example of how experiments are a natural way of
understanding processes. As the vehicle is subjected to different test (road) conditions, its response is
used by the test-driver to develop a “mental model" of the vehicle.
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First-principles vs. Empirical modelling

First-principles Empirical

Causal, continuous, non-linear differential-
algebraic equations

Models are usually black-box and discrete-time

Model structures are quite rigid - the structure is
decided by the equations describing fundamental
laws.

Model structures are extremely flexible - implies
they have to be assumed/known a priori.

Can be quite challenging and time-consuming to
develop

Relatively much easier and are less time-consuming
to develop

Require good numerical ODE and algebraic solvers. Require good estimators (plenty of them available)
Very effective and reliable models - can be used for
wide range of operating conditions

Model quality is strongly dependent on data quality
- usually have poor extrapolation capabilities

Transparent and can be easily related to physical
parameters/characteristics of the process

Difficult to relate to physical parameters of the pro-
cess (black-box) and the underlying phenomena
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Example: Liquid level system
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between F
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of h(t) for changes in F
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Case 4: Approximate empirical,

linear, grey-box, dynamic,

discrete-time model,

h[k] = a1h[k � 1] + b

i

F

i

[k � 1] + "[k]

(Parameters a1, b1 estimated from
experimental data)

Case 5: Black-box, dynamic,

discrete-time model

1. Model structure based on ease
of estimation and end-use

2. Model may not be physically
interpretable, but designed to
give good predictions.
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Building models from data: systematic procedure

• Primarily one finds three stages,
which again contain sub-stages

• All models should be subjected to
a critical validation test

• Final model quality largely depends
on the quality of data

• Generating rich (informative) data
is therefore essential

Model Development

Data Generation and Acquisition

SensorsProcessInputs

Disturbances
Measurable

Data

Select Candidate 
Models

Visualization
Pre-processing

Non-parametric 
analysis

Model 
Estimation

Optimization
Criteria

Model Quality 
Assessment

Satisfactory?

Prior Process 
Knowledge

No

Yes

Accept it

Residual Analysis
Estimation Error Analysis

Cross-Validation
... 

Actuators
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Two broad classes of models

Time-series models

I Suited for modelling stochastic or random processes (e.g., stock market index, rainfall, sensor noise)

I Causes are either unknown or also random

I Usually dynamic models (in a few applications, steady-state as well)

I Challenges: choosing model structure, making the right assumptions on process characteristics,
non-linearities, etc.
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Two broad classes of models . . . contd.
Input-output or causal models

I Suited for modelling relationship between a variable (or more) and other explanatory variables
(a.k.a. regressors or factors) (e.g., power and current in a wire, temperature and coolant flow)

I Regressors may be known accurately or with some error

I Models could be steady-state or dynamic.

I Challenges: sufficient variability in factors, selection of regressors, measurements and regressors
available at different sampling rates, choosing the order of dynamics, etc.

Remember

In practice, all modelling exercises demand a careful handling of uncertainties
both at the experimental and modelling stages!
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Modelling Skills References

Two broad classes of models . . . contd.
Input-output or causal models

I Suited for modelling relationship between a variable (or more) and other explanatory variables
(a.k.a. regressors or factors) (e.g., power and current in a wire, temperature and coolant flow)

I Regressors may be known accurately or with some error

I Models could be steady-state or dynamic.

I Challenges: sufficient variability in factors, selection of regressors, measurements and regressors
available at different sampling rates, choosing the order of dynamics, etc.

Remember

In practice, all modelling exercises demand a careful handling of uncertainties
both at the experimental and modelling stages!

Arun K. Tangirala, IIT Madras Introduction to Research 19

Modelling Skills References

Excite the process sufficiently!

Example

Consider a steady-state model:
y[k] = b0 + b1u[k] + b2u

2[k]

I Three unknowns

I Therefore, data corresponding to three steady-states is required

I A more general statement: The regressor matrix

U =

2

64
1 u[k1] u2[k1]

1 u[k2] u2[k2]

1 u[k3] u2[k3]

3

75 (1)

should be non-singular, i.e., of full rank.
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For dynamic systems

Example

Consider a (deterministic) process:

y[k] = b1u[k � 1] + b2u[k � 2] + b3u[k � 3]

Suppose that the process is excited with u[k] = sin(!0k) (sine of single frequency).

With this sine wave input,

y[k] = b1 sin(!0k � �) + b2 sin(!0k � 2�) + b3 sin(!0 � 3�)

=

✓
b1 +

b2

2 cos!0

◆
sin(!0k � �) +

✓
b3 +

b2

2 cos!0

◆
sin(!0 � 3�)

=

✓
b1 +

b2

2 cos!0

◆
u[k � 1] +

✓
b3 +

b2

2 cos!0

◆
u[k � 3]

Only two of the three parameters can be identified! Why?
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Effects of randomness (noise) in data

The second challenging aspect of empirical modelling is the presence of random or stochastic effects.

Randomness (uncertainties) in the process influences identification in several ways:

I Accuracy of predictions

I Errors in parameter estimates

I Goodness of the deterministic model
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Signal-to-Noise Ratio (SNR)

SNR

A key measure that quantifies the effects of noise is the Signal-to-Noise Ratio (SNR), which is defined
as the ratio of variance of signal to the variance of noise in a measurement.

SNR =
�2
signal
�2
noise

SNR can be interpreted as a measure of the degree of certainty (deterministic portion) to uncertainty
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Example: Effect of SNR

Estimation of linear model from measured data

Process : x[k] = b1u[k � 1] + b0; b1 = 5; b0 = 2

Only y[k] = x[k] + v[k] (measurement) is available. Goal is to estimate b1, b0.

�

b̂1
= 0.036,�

b̂0
= 0.02 �

b̂1
= 0.114,�

b̂0
= 0.064

Decrease in SNR increases the
error in parameter estimates
(proportional to

p
1/SNR)
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Example: Overfitting
Process : x[k] = 1.2 + 0.4u[k] + 0.3u

2
[k] + 0.2u

3
[k]

Only y[k] = x[k] + v[k] (measurement) is available. Goal is to fit a suitable model.
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0
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15

20
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Input
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u
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t

Input-output data

Cross-validation Selecting the order

Overfitting occurs whenever the local chance variations are treated as global characteristics

3rd order fit: ŷ[k] = 1.17
(±0.05)

+ 0.35
(±0.1)

u[k] + 0.36
(±0.06)

u2[k] + 0.19
(±0.01)

u3[k]
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Only y[k] = x[k] + v[k] (measurement) is available. Goal is to fit a suitable model.
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Overfitting occurs whenever the local chance variations are treated as global characteristics

3rd order fit: ŷ[k] = 1.17
(±0.05)

+ 0.35
(±0.1)

u[k] + 0.36
(±0.06)

u2[k] + 0.19
(±0.01)

u3[k]
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Questions for reflection

I What type of models are possible? Which one(s) to choose?

I How do we “fit" a model that “explains" the variations observed in experimental data?

I How to “correctly" account for the deterministic and stochastic effects?

I Will the experiment influence the model that we fit? If yes, in what way?

I How do we set up and solve the problem of estimating the unknown model parameters?

I What kind of experiments should we design to obtain a good quality model?

I How much data do we collect? (what should be the sample size?)

Arun K. Tangirala, IIT Madras Introduction to Research 33

Modelling Skills References

Bibliography I

Bendat, J. S. and A. G. Piersol (2010). Random Data: Analysis and Measurement Procedures. 4th edition. New
York, USA: John Wiley & Sons, Inc.

Johnson, R. A. (2011). Miller and Freund’s: Probability and Statistics for Engineers. Upper Saddle River, NJ,
USA: Prentice Hall.

Montgomery, D. C. and G. C. Runger (2011). Applied Statistics and Probability for Engineers. 5th edition. New
York, USA: John Wiley & Sons, Inc.

Ogunnaike, B. A. (2010). Random Phenomena: Fundamentals of Probability and Statistics for Engineers. Boca
Raton, FL, USA: CRC Press, Taylor & Francis Group.

Tangirala, A. K. (2014). Principles of System Identification: Theory and Practice. CRC Press, Taylor & Francis
Group.

Arun K. Tangirala, IIT Madras Introduction to Research 34


