

To learn the following:

- ► What is a model?
- ▶ First-principles (mechanistic) vs. empirical models.
- Systematic procedure for building models from data.
- ▶ Few critical aspects of data-driven (empirical) modelling.

Introduction to Research

Modelling Skills References					
Objectives					
To learn the following:					
What is a model?					
 First-principles (mechanistic) vs. empirical n 	nodels.				
 Systematic procedure for building models from 	om data.				
Few critical aspects of data-driven (empirical	al) modelling.				
With two hands-on examples in R $^{ m I\!R}$ (a popular software for data analysis) \dots					
		 < 급> < 클> < 클> · 클 · 의익() 			
Arun K. Tangirala, IIT Madras	Introduction to Research	3			

What is a model?

Modelling Skills References

A model is a mathematical (or descriptive) abstraction of a process that emulates its behaviour or characteristics

4 ロ > 4 回 > 4 注 > 4 注 > 注 の へ (?)

4

Modelling Skills References
What is a model?
A model is a mathematical (or descriptive) abstraction of a process that emulates its behaviour or characteristics
For the purposes of
Prediction (inferring the unknowns)
 Classification (pattern recognition)
► Fault detection
Process simulation
Design and optimization
▶
イロト (お) くき) き うくぐ Arun K. Tangirala, IIT Madras Introduction to Research 5
Modelling Skills References Model vs. process
Disturbances (Stochastic effects) Inputs (Adjustable variables) Outputs (Adjustable variables) Outputs (Measured variables) System parameters Physical properties Unputs (Measured variables) Outputs (regressors) Outputs (regressors)
A model emulates the process given the operating conditions, parameters and physical properties. However, in general, its architecture is different from the process!
イロトイラトイミトイミト ミークへぐ Arun K. Tangirala, IIT Madras Introduction to Research 6

understanding processes. As the vehicle is subjected to different test (road) conditions, its response is used by the test-driver to develop a "mental model" of the vehicle.

Arun K. Tangirala, IIT Madras

First-principles vs. Empirical modelling

First-principles	Empirical		
Causal, continuous, non-linear differential-	Models are usually black-box and discrete-time		
algebraic equations			
Model structures are quite rigid - the structure is	Model structures are extremely flexible - implies		
decided by the equations describing fundamental	they have to be assumed/known a priori.		
laws.			
Can be quite challenging and time-consuming to	Relatively much easier and are less time-consuming		
develop	to develop		
Require good numerical ODE and algebraic solvers.	Require good estimators (plenty of them available		
Very effective and reliable models - can be used for	Model quality is strongly dependent on data quali		
wide range of operating conditions	- usually have poor extrapolation capabilities		
Transparent and can be easily related to physical	Difficult to relate to physical parameters of the pro-		
parameters/characteristics of the process	cess (black-box) and the underlying phenomena		

Arun K. Tangirala, IIT Madras

Introduction to Research

<section-header>

< □ > < 쿕 > < 글 > < 글 > 글 < 옷 < ♡ < ♡ 9

Example: Liquid level system

Case 1: Steady-state model between F_o and h:

$$F_o = C_v \sqrt{h}$$

Introduction to Research

 $(C_v \text{ is estimated from data})$

Arun K. Tangirala, IIT Madras

Modelling SkillsReferencesExample: Liquid level systemCase 1: Steady-state model
between F_o and h:Case 2: Dynamic, non-linear model
of h(t) for changes in $F_i(t)$. $F_o = C_v \sqrt{h}$ $F_o = C_v \sqrt{h}$ Case 1: Steady-state model
between F_o and h:Case 2: Dynamic, non-linear model
of h(t) for changes in $F_i(t)$. $A_c \frac{dh}{dt} = F_i - C_v \sqrt{h}$ (requires numerical solvers)

★ □ > ★ @ > ★ E > ★ E > < E</p>

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: Liquid level system

Case 1: Steady-state model between F_o and h:

Case 2: Dynamic, non-linear model of h(t) for changes in $F_i(t)$.

$$F_o = C_v \sqrt{h}$$

 $A_c \frac{dh}{dt} = F_i - C_v \sqrt{h}$

 $(C_v \text{ is estimated from data})$

(requires numerical solvers)

Case 3: Approximate linear, dynamic model about an operating point

$$A_c \frac{d\tilde{h}}{dt} = \tilde{F}_i - \beta \tilde{h}, \quad \beta = \frac{C_v}{2\sqrt{h_s}}$$
$$\tilde{F}_i = F_i - F_s, \tilde{h}_i = h_i - h_s$$

Typically, h_s, F_s are steady-state values.

Arun K. Tangirala, IIT Madras

Introduction to Research	<□▶ <륜▶ < 클▶ < 클▶ 클 - ୬۹. 13

Modelling Skills References

Example: Liquid level system

Case 1: Steady-state model between F_o and h:

 $F_o = C_v \sqrt{h}$

 $(C_v \text{ is estimated from data})$

Case 2: Dynamic, non-linear model of h(t) for changes in $F_i(t)$.

$$A_c \frac{dh}{dt} = F_i - C_v \sqrt{h}$$

(requires numerical solvers)

Case 3: Approximate linear, dynamic model about an operating point

$$A_c \frac{d\tilde{h}}{dt} = \tilde{F}_i - \beta \tilde{h}, \quad \beta = \frac{C_v}{2\sqrt{h_s}}$$
$$\tilde{F}_i = F_i - F_s, \quad \tilde{h}_i = h_i - h_s$$

Case 4: Approximate empirical, linear, grey-box, dynamic, discrete-time model,

$$h[k] = a_1 h[k-1] + b_i F_i[k-1] + \varepsilon[k]$$

(Parameters a_1, b_1 estimated from

Typically, h_s, F_s are steady-state values. experimental data)

Arun K. Tangirala, IIT Madras

Introduction to Research

Example: Liquid level system

Case 1: Steady-state model between F_o and h:

$$F_o = C_v \sqrt{h}$$

 $(C_v \text{ is estimated from data})$

Case 2: Dynamic, non-linear model of h(t) for changes in $F_i(t)$.

$$A_c \frac{dh}{dt} = F_i - C_v \sqrt{h}$$

(requires numerical solvers)

Case 3: Approximate linear, dynamic model about an operating point

$$A_c \frac{d\tilde{h}}{dt} = \tilde{F}_i - \beta \tilde{h}, \quad \beta = \frac{C_v}{2\sqrt{h_s}}$$
$$\tilde{F}_i = F_i - F_s, \quad \tilde{h}_i = h_i - h_s$$

Typically, h_s, F_s are steady-state values. experimental data)

Arun K. Tangirala, IIT Madras

Modelling Skills References

Case 4: Approximate empirical, linear, grey-box, dynamic, discrete-time model,

$$h[k] = a_1 h[k-1] + b_i F_i[k-1] + \varepsilon[k]$$

(Parameters a_1, b_1 estimated from experimental data)

Introduction to Research

Case 5: Black-box, dynamic, discrete-time model

- 1. Model structure based on ease of estimation and end-use
- Model may not be physically interpretable, but designed to give good predictions.

Building models from data: systematic procedure

- Primarily one finds three stages, which again contain sub-stages
- All models should be subjected to a critical validation test
- Final model quality largely depends on the quality of data
- Generating rich (informative) data is therefore essential

Arun K. Tangirala, IIT Madras

Two broad classes of models

Time-series models

- Suited for modelling stochastic or random processes (e.g., stock market index, rainfall, sensor noise)
- Causes are either unknown or also random
- Usually dynamic models (in a few applications, steady-state as well)
- Challenges: choosing model structure, making the right assumptions on process characteristics, non-linearities, etc.

Arun K. Tangirala, IIT Madras	Introduction to Research	《曰》《卽》《言》《言》	臺 ∽۹ペ 17

Modelling Skills References

Two broad classes of models

	~~		+.	
	CO	n	Т	

Input-output or causal models

- Suited for modelling relationship between a variable (or more) and other explanatory variables (a.k.a. regressors or factors) (e.g., power and current in a wire, temperature and coolant flow)
- Regressors may be known accurately or with some error
- Models could be steady-state or dynamic.
- Challenges: sufficient variability in factors, selection of regressors, measurements and regressors available at different sampling rates, choosing the order of dynamics, etc.

Two broad classes of models

...contd.

▲□▶ ▲圖▶ ▲園▶ ▲園▶

<ロト <回ト < 国ト < 国ト

æ

Jac.

19

Input-output or causal models

- Suited for modelling relationship between a variable (or more) and other explanatory variables (a.k.a. regressors or factors) (e.g., power and current in a wire, temperature and coolant flow)
- Regressors may be known accurately or with some error
- Models could be steady-state or dynamic.
- Challenges: sufficient variability in factors, selection of regressors, measurements and regressors available at different sampling rates, choosing the order of dynamics, etc.

Remember

In practice, all modelling exercises demand a careful handling of uncertainties both at the experimental and modelling stages!

Introduction to Research

Arun K. Tangirala, IIT Madras

Modelling Skills References

Excite the process sufficiently!

Example

Consider a steady-state model:

$$y[k] = b_0 + b_1 u[k] + b_2 u^2[k]$$

- Three unknowns
- Therefore, data corresponding to three steady-states is required
- A more general statement: The regressor matrix

$$\mathbf{U} = \begin{bmatrix} 1 & u[k_1] & u^2[k_1] \\ 1 & u[k_2] & u^2[k_2] \\ 1 & u[k_3] & u^2[k_3] \end{bmatrix}$$

should be non-singular, i.e., of full rank.

Arun K. Tangirala, IIT Madras

Introduction to Research

(1)

~ ~ ~

20

毫

For dynamic systems

Example

Consider a (deterministic) process:

$$y[k] = b_1 u[k-1] + b_2 u[k-2] + b_3 u[k-3]$$

Suppose that the process is excited with $u[k] = \sin(\omega_0 k)$ (sine of single frequency).

Modelling Skills References

For dynamic systems

Example

Consider a (deterministic) process:

$$y[k] = b_1 u[k-1] + b_2 u[k-2] + b_3 u[k-3]$$

Suppose that the process is excited with $u[k] = \sin(\omega_0 k)$ (sine of single frequency). With this sine wave input,

$$y[k] = b_1 \sin(\omega_0 k - \phi) + b_2 \sin(\omega_0 k - 2\phi) + b_3 \sin(\omega_0 - 3\phi)$$

= $\left(b_1 + \frac{b_2}{2\cos\omega_0}\right) \sin(\omega_0 k - \phi) + \left(b_3 + \frac{b_2}{2\cos\omega_0}\right) \sin(\omega_0 - 3\phi)$
= $\left(b_1 + \frac{b_2}{2\cos\omega_0}\right) u[k-1] + \left(b_3 + \frac{b_2}{2\cos\omega_0}\right) u[k-3]$

Only two of the three parameters can be identified! Why?

Arun K. Tangirala, IIT Madras

Effects of randomness (noise) in data

The second challenging aspect of empirical modelling is the **presence of random or stochastic effects**. Randomness (uncertainties) in the process influences identification in several ways:

- Accuracy of predictions
- Errors in parameter estimates
- Goodness of the deterministic model

Arun K. Tangirala, IIT Madras	Introduction to Research	《曰》《曰》《문》《문》	୬ ୯ (୦ 23

Modelling Skills References

Signal-to-Noise Ratio (SNR)

SNR

A key measure that quantifies the effects of noise is the **Signal-to-Noise Ratio** (SNR), which is defined as the ratio of variance of signal to the variance of noise in a measurement.

$$\mathsf{SNR} = \frac{\sigma_{\mathsf{signal}}^2}{\sigma_{\mathsf{noise}}^2}$$

SNR can be interpreted as a measure of the degree of certainty (deterministic portion) to uncertainty

Arun K. Tangirala, IIT Madras

Example: Effect of SNR

Estimation of linear model from measured data

Process :
$$x[k] = b_1 u[k-1] + b_0; b_1 = 5; b_0 = 2$$

Only y[k] = x[k] + v[k] (measurement) is available. Goal is to estimate b_1, b_0 .

Modelling Skills References

Example: Effect of SNR

Estimation of linear model from measured data

Example: Overfitting

 $\mathbf{Process}: x[k] = 1.2 + 0.4u[k] + 0.3u^2[k] + 0.2u^3[k]$

Only y[k] = x[k] + v[k] (measurement) is available. Goal is to fit a suitable model.

Example: Overfitting

Process :
$$x[k] = 1.2 + 0.4u[k] + 0.3u^{2}[k] + 0.2u^{3}[k]$$

Only y[k] = x[k] + v[k] (measurement) is available. Goal is to fit a suitable model.

Questions for reflection

- What type of models are possible? Which one(s) to choose?
- ▶ How do we "fit" a model that "explains" the variations observed in experimental data?
- ▶ How to "correctly" account for the deterministic and stochastic effects?
- Will the experiment influence the model that we fit? If yes, in what way?
- How do we set up and solve the problem of estimating the unknown model parameters?
- What kind of experiments should we design to obtain a good quality model?
- How much data do we collect? (what should be the sample size?)

Arun K. Tangirala, IIT Madras	Introduction to Research	《曰》《卽》《言》《言》	Ξ ∽۹.(~ 33

Modelling Skills References

Bibliography I

- Bendat, J. S. and A. G. Piersol (2010). Random Data: Analysis and Measurement Procedures. 4th edition. New York, USA: John Wiley & Sons, Inc.
- Johnson, R. A. (2011). Miller and Freund's: Probability and Statistics for Engineers. Upper Saddle River, NJ, USA: Prentice Hall.
- Montgomery, D. C. and G. C. Runger (2011). *Applied Statistics and Probability for Engineers*. 5th edition. New York, USA: John Wiley & Sons, Inc.
- Ogunnaike, B. A. (2010). Random Phenomena: Fundamentals of Probability and Statistics for Engineers. Boca Raton, FL, USA: CRC Press, Taylor & Francis Group.
- Tangirala, A. K. (2014). Principles of System Identification: Theory and Practice. CRC Press, Taylor & Francis Group.

Arun K. Tangirala, IIT Madras